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1 INTRODUCTION

1.1 Background

From 1997 through 2000, the Midwest Roadside Safety Facility (MwRSF) developed a
thrie-beam bullnose guardrail system for shielding median hazards found between divided
highways [1-3]. The new, non-proprietary bullnose guardrail system was successfully developed,
full-scale vehicle crash tested, and evaluated according to the Test Level 3 (TL-3) safety
performance evaluation criteria provided in National Cooperative Highway Research Program
(NCHRP) Report No. 350 [4].

Controlled release terminal (CRT) wood posts were used in the bullnose guardrail
system. Although the CRT posts adequately met the TL-3 safety requirements, these wood posts
have several drawbacks. First, the properties and performance of wood posts is highly variable
due to the existence of knots, checks, and splits, thus leading to the necessity of grading and
inspection requirements. Also, two holes are drilled in the CRT posts to allow it to break away
upon impact. These holes further expose the interior of the wood to the environment, which can
accelerate deterioration. Wood posts can also swell under certain environmental conditions,
causing difficulty in the removal of broken posts from steel foundation tubes after impact.
Chemical preservatives used to treat the wood posts have been identified as harmful to the
environment by some government agencies. Thus, the treated wood posts may require special
consideration during disposal. As a result of these concerns regarding the use of wood CRT
posts, there existed a need for a breakaway steel post option for use in the Thrie-Beam Bullnose

guardrail systems.
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First, due to cost efficiency and viability of the design, existing proprietary steel
breakaway posts were investigated and tested in the “Evaluation of an Existing Steel Post
Alternative for the Thrie-Beam Bullnose Guardrail System” [5]. After several proprietary steel
post designs were reviewed and tested, a Road Systems, Inc. (RSI) Hinged Steel Post was chosen
as the best alternative post option for the bullnose system. Two full-scale tests were performed
on the bullnose system with the breakaway hinged steel posts, and both tests were unsuccessful
due to the pickup truck overriding the system.

After the two failed full-scale tests, focus shifted to the development of a new Universal
Breakaway Steel Post to replace the CRT wood posts in the Thrie-Beam Bullnose system. While
the previously designed proprietary steel breakaway posts had been successfully used for
guardrail end terminals, the bullnose system appeared to be more sensitive to subtle differences
between wooden and steel breakaway posts. The new, non-proprietary, Universal Breakaway
Steel Post was to be designed to mimic the strength and behavior of the wooden CRT post in
order to function properly in the bullnose system. In addition, if successfully developed, the new
post could provide a replacement option for the CRT wood post in a wide variety of roadside
hardware systems.

1.2 Objective

The objective of the research project was to develop a generic steel replacement post for
the wood CRT post. First, the new Universal Breakaway Steel Post was to match the
cantilevered bending capacities about the strong and weak axis as well as for a biaxial loading
condition for the existing wood CRT post. Second, the embedded portion of the post would need

to have the same geometry in order to assure comparable rotational resistance in the soil. Third,
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the mass, general geometry, and the breakaway characteristics of the upper post section were to
be similar to the CRT wood post. If these behavior characteristics could be achieved, it was
believed that the Universal Breakaway Steel Post could be used as a replacement for CRT posts
in any application.

1.3 Research Approach

This report is divided into thirteen chapters plus references and appendices. This study
began with a literature review, as seen in Chapter 2, to review any previous CRT wood post
testing and to identify any previous steel breakaway posts concepts that may be appropriate for
use as a replacement for the wood CRT post. Next, Chapter 3 describes CRT wood post bogie
testing in a rigid sleeve. Chapter 4 presents all of the breakaway post design concepts that were
developed for possible use as the universal breakaway steel post.

Chapter 5 contains information on the first round of bogie testing on breakaway posts.
The physical testing setup, details of the testing, and the results of the first round of tests are all
discussed. Chapter 6 contains information on the second round of bogie testing on the breakaway
post concepts. Next, chapter 7 discusses the bogie testing on CRT wood posts placed in soil.
Finally, chapter 8 discusses the third and final rounds of bogie testing on breakaway post
concepts.

After the bogie testing, focus shifted to preliminary simulation work as described in
Chapter 9. Next, all of the details and results of full-scale crash test no. USPBN-1 are discussed
in Chapter 10. Chapter 11 compares test no. USPBN-1 to all previous crash tests designation no.
3-38 on the bullnose barrier. Finally, Chapter 12 and Chapter 13 provide the conclusions and

recommended future work, respectively, for this project.



MwRSF Report No. TRP-03-218-09
August 3, 2009

2 LITERATURE REVIEW

2.1 Previous CRT Wood Post Testing

Many studies of guardrail posts have been performed previously. Hascall et al. [6]
reviewed and summarized the previous post studies completed from 1960 through 2004. The
only relevant study pertaining to CRT post properties was performed by Ensco Inc. and was
titled “Safety Modification of Turned-Down Guardrail Terminals” in which the CRT post was
developed [7]. This report consisted of three volumes and described the development of a safer
turned-down guardrail terminal. The CRT wood post was developed for use as a breakaway post
in the turned-down terminal to allow the rail to fall freely when impacted near the terminal and
to redirect impacts occurring downstream of the first post.

In the development of the CRT wood post, a 6-in. x 8-in. (152-mm x 203-mm) cross
section was utilized. It was found that drilling the two 3 1/2-in. (89-mm) holes in the middle
region of the post allowed the post to break off with a low magnitude of force in the weak axis
for varying soil strengths. For very strong soils, or frozen soils, failure would occur through the
upper hole at ground level, and for more typical soil, the failure would occur at the lower hole or
15 3/4 in. (400 mm) below ground. Drilling the 3 1/2-in. (89-mm) holes parallel to the weak axis
of the post reduced the section modulus by 46 percent in the weak axis but only by 14 percent in
the strong axis. Thus, with the drilled holes, the strong axis of the CRT wood post was 2.2 times
stronger than the weak axis, which was desirable for breaking away near the terminal and
redirecting impacts downstream. Also, it was found that the hole size should not exceed 3 1/2 in.

(89 mm) so the post could still be driven.
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2.2 Previous Breakaway Steel Post Testing

A review was also conducted on prior breakaway post concepts. Many private companies
have developed proprietary steel posts, commonly utilized in guardrail end terminals. Some of
these concepts may be suitable for use as the universal breakaway post. There are a significant
number of patents protecting these proprietary breakaway posts, and a patent review was
performed to identify the relevant post concepts. As shown in Table 1, the numerous patents
cover a broad range of breakaway mechanisms for signs, terminals, and guardrail posts. After
compiling all of the patents, applicable breakaway concepts were chosen as possibilities for the
universal breakaway post. However, permission would first need to be granted from the owner of
the intellectual property in order to use an existing patented concept. For the preliminary stages
of design, most of the relevant ideas were considered for use as the universal steel breakaway
post, and the owner’s permission would be checked if a concept was selected for further
investigation and use. The relevant patents can be seen in bold and in italics in Table 1 and are
described below.

When considering breakaway posts for signs, several patents were deemed relevant for
the universal breakaway post. Patent no. 5,535,555 describes a breakaway coupler with a hollow,
tubular sleeve which breaks at a weakened shear point when struck by a vehicle. The tubular
design could be used to connect a lower foundation tube that was anticipated in the universal
breakaway steel post. However, this patent used numerous pins to connect the post together, and
this design may be difficult to sufficiently weaken under weak-axis impact loading.

In patent no. 5,855,443, shearing plate washers form a shear plane to shear fasteners

connecting a support surface to a sign support. This breakaway connection breaks away cleanly,
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but it is omni-directional meaning it would need to be modified to provide strength in a strong
axis impact and be weakened for weak axis impacts. Also, the desired universal breakaway steel
post may be more flexural controlled instead of shear controlled and the shearing plate washers
would not be needed.

Patent nos. 6,264,162 and 6,390,436 both describe a breakaway collar surrounding a sign
support post. The sidewall of the collar includes at least one vertical line of weakness to facilitate
a portion of the sidewall to break away. This design could break away cleanly as desired, but the
collar would need to be large to be placed around a 6-in. x 8-in. (152-mm x 203-mm) foundation
tube. Also, it may prove difficult to significantly reduce the strength of the design for weak-axis
impacts, while maintaining its strength in strong-axis impacts.

The last relevant breakaway sign post, patent no. 6,409,156, describes a breakaway
bracket assembly connecting two structural members with a central section having a V-shaped,
pre-formed break point. Although this bracket has the potential to break away cleanly as desired,
the custom V-shape may be costly to manufacture.

Next, most of the breakaway steel posts that were developed for end terminals were
relevant for the universal breakaway steel post. In patent no. 6,065,894, a molded coupling unit
with an intermediate fracture zone allows C-channel post segments to separate when subjected to
a vehicle impact greater than a predetermined severity. A thermoplastic or formed-up
thermosetting compound is molded into the coupling unit, which could break away cleanly, but it
may be costly to produce and design.

Patent nos. 6,398,192 and 6,619,630 both describe a breakaway support post with a

releasable coupling assembly consisting of a shear pin designed to break away in a weak-axis
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impact. Although this post has low strength in the weak axis, the post does not break away
cleanly as it rotates around a second bolt down to the ground.

In patent nos. 6,488,268, 6,793,204, and 6,886,813, several breakaway support posts are
described that resist impact in a strong direction and yield to impact in a weak direction. Two
different breakaway support posts have elongated slots cut in flanges of an I-beam to form a
yieldable connection in the weak direction. Also, two different posts involve a shear and pivot
pin, where the shear pin breaks away in the weak direction and the post rotates to the ground
around the pivot pin. The last breakaway post has a connection of two rods, or bolts, aligned in
the strong direction with spacing from breaker bars or nuts allowing the post to bend and fail the
rods. Although these breakaway posts do have a different strong axis and weak axis as desired,
most of these designs may not break away cleanly in weak- or diagonal-axis impacts.

The last relevant patent for a terminal breakaway post is detailed in patent no. 6,729,607.
A cable release anchor is described that has bearing plates with U-shaped cutouts to hold a
tension cable. The post breaks away cleanly when impacted in the weak axis by shearing bolts,
but it is set up for anchorage to react to tensile loads from the tension cable.

Finally, there were numerous applicable patents describing breakaway steel posts for
guardrail. In patent no. 4,330,106, a steel channel member with fastening bolts connects an upper
and lower I-beam member. The steel channel connection breaks away when impacted in the
weak axis, but it does not break away in the strong axis as desired. Patent no. 5,664,905
describes a post with V-shaped or U-shaped notches or cut-outs to have the notches close
together. Although this post has a weakened section, it does not break away cleanly as it just

collapses over on itself.
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In patent nos. 5,988,598 and 6,254,063, a breakaway steel guardrail post is described that
includes upper and lower post sections connected by different breakaway joints. One joint
consisted of through bolts designed to either break or tear out. Another embodiment includes two
U- or channel-shaped steel plates with the flanges of the channel designed to yield upon impact
in the weak axis, while a large diameter steel pin provides strength in the strong axis. The last
embodiment relies on weld failures in the breakaway joint to control the post strength. These
posts all have a strong and weak axis as desired, but they may not break away cleanly. Only the
welded connection may break away cleanly as long as the weld is consistent.

Patent no. 6,902,150 and application nos. 20070063177, 20070063178, and 20070063179
all describe steel breakaway posts with cutouts in the flanges of I-beams. Various cutouts
including circular cutouts and sawcuts are all detailed to weaken the post and create a failure
point in the post. Similarly, patent application no. 20070102689 also describes cutouts but for
cable guardrail posts. One weakness is that these designs would not break away cleanly as
desired in the universal breakaway post.

Last, in patent application nos. 20060027797 and 20060038164, an energy absorbing post
is described where impact energy is absorbed by out-of-plane deformation. The energy is either
absorbed through bolt tear-out or by Mode 3 out-of-plane tearing in a splice plate. Although
these posts absorb energy as desired, they would not break away cleanly in the universal
breakaway post.

In addition to all the proprietary steel posts found in the patent search, another relevant
steel breakaway post was the steel slipbase breakaway cable terminal (BCT) post [8-10]. These

posts consisted of three ASTM 325 bolts in a triangular slipbase configuration. However, the
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design never did gain wide acceptance due to high initial costs and maintenance issues when

compared to the BCT wood post.
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3 CRT PHYSICAL TESTING DETAILS

3.1 Introduction

The next step in the research was determining the dynamic properties of the controlled
releasing terminal (CRT) wood post under various loading conditions. Dynamic impact testing
was performed on 6-in. x 8-in. (152-mm x 203-mm) CRT wood posts placed in a rigid sleeve at
three different angles. A total of nine bogie tests were performed with three tests each at 0, 45,
and 90 degree angles relative to the strong axis. For each bogie test, raw acceleration data,
obtained from accelerometers, was filtered with a CFC 60 filter. Using initial velocity and
measured accelerations, the force-displacement and energy-displacement graphs were plotted.
Thus, the energy dissipation and capacity of the CRT wood posts at the different impact angles
were determined [11]. A brief summary of the properties of the CRT wood post and results of the
nine bogie tests are presented below.
3.2 CRT Wood Post Details

Controlled releasing terminal (CRT) wood posts were fabricated from grade No. 1 or
better, non-dense southern yellow pine (SYP) wood material. The 72-in. (1,829-mm) long, CRT
wood post was designed to break away when impacted about its weak axis of bending in turned-
down guardrail applications. A standard 6-in. x 8-in. (152-mm x 203-mm) cross section was
utilized and weakened by drilling out two 3 1/2-in. (89-mm) holes in the middle region of the
post. A CRT wood post is shown in Figure 1 with the cross section shown in Figure 2.

From the cross-sectional dimensions and the properties of the wood CRT posts, a
reasonable estimate was made for the peak load capacities about both axes of bending. As shown

in Table 2, the peak load is a function of the estimated modulus of rupture, which was chosen as
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5,400 psi (37,232 MPa) [12] to accurately represent properties of the SYP wood being tested.
The results from Table 2 show that the strong axis should absorb approximately twice the peak

load as the weak axis of the post.

Figure 1. CRT Wood Post in Rigid Sleeve
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3.3 CRT Bogie Test Results

The dynamic properties for the CRT wood post were determined through bogie testing
with target impact conditions consisting of a speed of 15 mph (24.1 km/h), orientation angles of
0, 45, and 90 degrees relative to the strong axis, and a height of 24 7/8 in. (632 mm) above the
ground line. Also, all the posts were placed in the rigid sleeve with an embedment of 40 in.
(1016 mm). Test nos. MNCRT-1 through MNCRT-3 were impacted in the strong axis at an
impact angle of 0 degrees. Test nos. MNCRT-4 through MNCRT-6 were impacted in the weak
axis at an impact angle of 90 degrees. Finally, test nos. MNCRT-7 through MNCRT-9 were
impacted in a diagonal axis at an impact angle of 45 degrees. The test results presented in this
section are grouped according to impact angle and are used to provide insight into the properties
of the CRT post at the three different impact orientations.

For all tests, the CRT posts exhibited an initial rise in the force level due to the inertial
effects and initiation of post failure. This initial rise occurred before a deflection of 5 in. (127
mm) for every test. After the initial 5 in. (127 mm), the post had already fractured and had lost
most of its resistance, as seen in the high-speed video. As a result, energy levels at 5 in. (127
mm) of deflection were chosen to provide a consistent position to compare the different tests.
The energy dissipated during each test was calculated by integrating the area under its force-
deflection curve.

3.3.1 Test Nos. MNCRT-1, MNCRT-2, and MNCRT-3

The first three bogie tests were performed on the strong axis of the CRT wood posts. The
test summaries for all three tests are given in Table 3, while force versus displacement and

energy versus displacement curves can be seen in Figure 3 and Figure 4 respectively. For all
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three tests, the initial peak force occurred quickly at a similar displacement, averaging 1.45 in.
(37 mm). The peak force levels had larger variability, ranging from 7.58 kips (33.72 kN) to
13.31 kips (59.21 kN). In tests MNCRT-1 and MNCRT-3, the energy levels showed similar
results with 11.4 kip-in. (1.29 kJ) and 13.6 Kip-in. (1.54 kJ), respectively. However, test
MNCRT-2 had a significantly larger energy level of 23.9 kip-in. (2.70 kJ) at 5 in. (127 mm) of
deflection. This difference can be attributed to a variation in the wood properties. The post in
MNCRT-2 had no knots, while the other two posts in MNCRT-1 and MNCRT-3 had several
knots that significantly reduced the strength, or energy levels, of both posts. With no post knots
in MNCRT-2, the post broke differently by splitting down the middle before fracturing and
finally failing near the breakaway hole. The posts in MNCRT-1 and MNCRT-3 fractured near

the breakaway hole and broke off quickly.
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Force Versus Deflection For 0 Degree Tests (EDR3)
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Figure 3a. Force versus Deflection Curves for MNCRT-1, 2, and 3 — English
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3.3.2 Test Nos. MNCRT-4, MNCRT-5, and MNCRT-6

The second set of three bogie tests was performed on the weak axis of the CRT wood
posts. The test summaries for all three tests are given in Table 4, while force versus displacement
and energy versus displacement curves can be seen in Figure 5 and Figure 6 respectively. For all
three tests, failure resulted from the post breaking near ground level at the breakaway hole. The
initial peak force occurred quickly at a similar displacement, averaging 1.50 in. (38.2 mm). The
peak force levels were also similar, ranging from 7.67 kips (34.12 kN) to 10.34 kips (45.99 kN).
Test MNCRT-4 had an energy level of 17.1 kip-in. (1.93 kJ), test MNCRT-5 had an energy level
of 20.2 kip-in. (2.28 kJ), and test MNCRT-6 had an energy level of 13.4 kip-in. (1.51 kJ). Any
differences can be attributed to variations in the wood material. The average energy level for
these three weak-axis tests was 16.9 kip-in. (1.91 kJ), which was actually slightly higher than the
average of 16.4 kip-in. (1.85 kJ) for the strong-axis tests.

Although the higher energies seen in the weak axis testing was not expected, a reason for
the higher energies can be explained by the larger displacements before fracture seen in the
testing. These larger displacements in the weak axis can be explained by the static, elastic

deflection for a cantilever beam calculated from Equation 1.

PxL3
T 3xExl

Eqn. 1
Where: P=Applied Load, L=Length of Beam, E=Elastic Modulus, I=Moment of Inertia
For the same elastic modulus and based on the properties found in Table 2, the CRT
wood post should have approximately 33 percent more deflection in the weak axis. Thus, with
higher deflections, the weak axis absorbed similar energy even with the slightly lower peak force

levels. Also, variations in the wood could explain the higher energies absorbed in the weak axis.
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The modulus of rupture in the weak axis was nearly double the modulus of rupture seen in the
strong-axis testing, 8,356 psi (57.6 GPa) compared to 4,357 psi (30.0 GPa). If more tests were
conducted, it would be expected that the modulus of rupture in the weak axis testing would
decrease to values seen in the strong-axis testing and also in other research studies involving post

testing.
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Force Versus Deflection For 90 Degree Tests (EDR3)

18

16

14

12

8

2

& —— MNCRT4
<6 —— MNCRT5
= —— MNCRT6
1 VAN

VA

0 2 4 6 8 10 12 14 16 18 20

Deflection (In.)

Figure 5a. Force versus Deflection Curves for MNCRT-4, 5, and 6 — English

Force Versus Deflection For 90 Degree Tests (EDR3)

80

70

60

50

40

VAR —
A o

Force (kN)

10

e A\\ ) e

\

-20

-30 T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500
Deflection (mm)

Figure 5b. Force versus Deflection Curves for MNCRT-4, 5, and 6 — Metric
25




MwRSF Report No. TRP-03-218-09
August 3, 2009

Energy (Kip-In.)

40

35 4

30

25 4

15 A

10

Energy Versus Deflection For 90 Degree Tests (EDR3)

20 1

——MNCRT4
——MNCRT5
——MNCRT6

6 8 10 12 14 16 18 20

Deflection (In.)

Figure 6a. Energy versus Deflection Curves for MNCRT-4, 5, and 6 — English

Energy (kJ)

5.0

4.5

4.0

35

3.0

15

1.0

0.5

0.0

Energy Versus Deflection For 90 Degree Tests (EDR3)

— MNCRT4

—— MNCRT5
— MNCRT6

/
/

50

150 200 250 300 350 400 450 500
Deflection (mm)

Figure 6b. Energy versus Deflection Curves for MNCRT-4, 5, and 6 — Metric

26



MwRSF Report No. TRP-03-218-09
August 3, 2009

3.3.3 Test Nos. MNCRT-7, MNCRT-8, and MNCRT-9

The final set of three bogie tests was performed on the diagonal axis (45°) of the CRT
wood posts. The test summaries for all three tests are given in Table 5, while force versus
displacement and energy versus displacement curves can be seen in Figure 7 and Figure 8
respectively. For all three tests, failure resulted from the post breaking near ground level at the
breakaway hole. The initial peak force occurred at a displacement averaging 2.79 in. (70.8 mm).
The peak force levels ranged from 6.98 kips (31.05 kN) to 16.11 Kips (71.66 kN). The large
differences in the peak forces again illustrate the high variability in the wood properties. Also, in
MNCRT-8, the post rotated up in the rigid sleeve, so the breakaway hole moved above ground
level causing more inconsistency as the post did not break away nearly as quickly. The energy
versus deflection curves also were not as consistent as the previous impact angles. For these
tests, there was a fixture issue in the rigid sleeve that had some affect on the consistency of the
energy levels. It was observed that posts would shift in the rigid sleeve for the first 6 to 8 ms of
the tests. This movement was unexpected and created some error as the wood posts were not
properly held rigidly in place. The three tests averaged 23.13 kip-in. (2.61 kJ), which was higher
than expected due to the fixture issue.

Due to the fixture issue, the data was also processed by cutting off the fixture effect, as
seen in Table 6 and Figures 9 and 10. By cutting off the initial peak due to the fixture, both the
energy levels and deflections of the post dropped to more expected results. Approximately 1 1/2

in. (38 mm) of deflection was cut off when subtracting off the fixture issue.
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Force Versus Deflection For 45 Degree Tests (EDR3)

. A
) \
o | ]
)\ S
VA

./

©
—
>
|

Force (Kips)
B (o2}
~_|
§
[

0 2 4 6 8 10 12 14 16 18 20

Deflection (In.)

Figure 7a. Force versus Deflection Curves for MNCRT-7, 8, and 9 — English
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3.4 Conclusion/Recommendations

Although only nine bogie tests were performed with three tests at three different angles,
the test results provided the basic properties of the CRT post under dynamic impact testing.
Based on the bogie tests and the properties of the CRT post given in Table 2, the peak forces and
total energy for the strong, weak, and diagonal axis were determined and are illustrated in Figure
11.

The strong-axis peak force of 12 kips (53.4 kN) was chosen based on the bogie testing
that showed a similar average of 10.27 kips (45.7 kN). Although the bogie testing in the weak
axis averaged 9.07 kips (40.3 kN), the weak-axis peak force was chosen as 6 Kips (26.7 kN). This
decision was based on knowing the modulus of rupture in the weak axis was nearly double the
modulus of rupture seen in the strong axis testing, 8,356 psi (57.6 GPa) compared to 4,357 psi
(30.0 GPa). If more tests were conducted, it would be expected that the modulus of rupture in the
weak axis testing would decrease to values seen in the strong axis and in other testing and
studies. Also, wood properties of a SYP CRT wood post found in Table 2 shows how the strong
axis should have nearly double the peak force due to the different moment of inertias for the
separate axes. This data from the moment of inertias was independent of the differences and
variation in the wood that greatly affected the nine bogie tests.

For the energy levels, 2 in. (51 mm) of deflection at the peak force was chosen to be
representative of the energy level. Thus, the target energy levels were 24 Kkip-in. (2.71 kJ) in the
strong axis, 12 Kip-in. (1.36 kJ) in the weak axis, and 16 kip-in. (1.81 kJ) in the diagonal axis.
These values stemmed from the bogie results and also from previous experience with the CRT

posts knowing that the posts fracture relatively quickly. From these results, there were now target
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force and energy values to aim for in the development of preliminary breakaway post designs, as

seen in Figure 11.

Figure 11a.
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Figure 11b. Peak Forces Energy and Levels of the CRT Post - Metric
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4 PRELIMINARY BREAKAWAY POST DESIGNS

4.1 Introduction

After observing and determining the dynamic properties of the CRT wood post, the next
phase of research consisted of brainstorming possible breakaway post designs to match the
properties and breakaway characteristics of the CRT post. The preliminary breakaway post
designs needed to be tuned to the longitudinal, lateral, and oblique resistances of the CRT wood
post, thus allowing it to replace the CRT post in several guardrail applications. In addition to
developing new preliminary breakaway post concepts, previous breakaway post ideas were also
examined.

4.2 Preliminary Breakaway Post lIdeas

As described in the literature review presented in Chapter 2, previous breakaway post
designs were examined to determine concepts for consideration as the universal breakaway post.
This section described the effort to develop new breakaway post concepts. A new design concept
would eliminate any patent infringement concerns and would allow states to use the new post
royalty free.

While brainstorming new designs, numerous concepts were identified that may replicate
both the strength and failure properties that were observed in CRT wood posts. As mentioned
earlier, the post must attach to a 6-in. x 8-in. (152-mm x 203-mm) steel foundation tube in order
to maintain the same soil interaction as the 6-in. x 8-in. (152-mm x 203-mm) CRT wood post.
Another important consideration was the need to maintain the brittle breakaway characteristics

that were observed with the CRT wood posts.
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At first, steel breakaway posts were the main focus. However, due to the ductile behavior
of steel, other more brittle materials were also considered. Steel has difficulty matching the
fracture behavior of the wood. Wood fibers can begin failing, which reduces the cross-section
and weakens the post. As a result, even if force levels drop, the wood post can still break away
due to the weakened cross section. In steel, even if some yielding begins to occur, the cross
section does not weaken and the force levels must reach the full capacity of a steel section in
order for a steel post to break away. All the preliminary breakaway post ideas can be seen in
Figures 12 through 16.

4.2.1 Steel Breakaway Post Ideas

Numerous options, as shown in Figure 14, were considered for use with a steel W8x10
(W203x14.9) upper post connected to the steel foundation tube. With one exception, all of the
W8x10 (W203x14.9) concepts used steel plates to create either a welded or bolted breakaway
connection between the upper W8x10 (W203x14.9) post and the lower steel foundation tube.
Some breakaway concepts pictured, including the plug weld post, the A325 bolt post, the circular
fillet weld post, the two plug weld post, and the elliptical plug weld post, were possibly covered
by existing patents and may require the owner’s permission before their use in actual guardrail
systems is considered. Also, two preliminary tubular steel post options are illustrated in Figure
15. Finally, a fracturing bolt (slipbase) option, shown in Figure 16, was also considered as a
candidate for use as the universal breakaway post. All of these developed concepts utilized all
steel parts, and each of these concepts, shown in Figures 14 through 16, is described in more

detail below.
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Beginning with welded connections in Figure 14, the plug weld concept, the groove weld
concept, the circular fillet weld concept, the two plug weld concept, and the elliptical plug weld
concept are all similar designs with comparable breakaway characteristics. All of these welded
concepts have welds that are designed to shear and break away when impacted. Next, the A325
bolt post concept has a bolted connection designed to shear off the bolts and break away. The
breakaway tab concept consists of a notched steel plate designed to fracture and break away
when impacted.

In the steel tube in steel tube concept in Figure 15, an upper tube creates a “socket” with
the lower tube. By just being embedded in the lower tube with no connection, the upper tube is
able to be pulled up and out of the lower tube when impacted. Also, the weakened steel tube
concept has a drilled hole out at the ground level of steel tube in order to weaken the steel tube
and allow the tube to fail easier. Last, the fracturing bolt (slipbase) concept, shown in Figure 16,
has four connecting bolts designed to fracture and break away due to tensile and shear forces.

4.2.2 Brittle Material Post Ideas

The other preliminary tubular designs in Figure 15 capitalized on the brittleness of
various other materials to better match the breakaway properties of wood. For the coupler
designs, a cast steel, cast iron, or ceramic coupler was used as a “brittle” breakaway mechanism
between the lower steel foundation tube and an upper steel tube. These cast steel, cast iron, or
ceramic coupler designs could either be a tubular coupler as shown or plates attached to the
outside of the upper tube and lower foundation tube.

Another material considered was fiber reinforced plastic (FRP) in various structural

shapes. The FRP component is a pultruded composite of E-glass fiber and thermosetting
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isophthalic polyester resin with UV inhibitor [13]. As illustrated in Figure 12, the continuous
strand mat and fiber reinforcements provide the strength for an FRP shape, while the resin binds
the reinforcements and protects it from UV exposure. For the FRP material, both an upper post
and a tubular coupler option, as visible in Figure 15, were considered as practical candidates for
the universal breakaway post.

Lastly, recycled plastic was explored as a possible alternate coupler material. The
recycled plastic consisted of various recycled high-density polyethylene mixed with sawdust and

shaped into a guardrail post [14], as depicted in Figure 13.

Figure 12. Fiberglass Reinforced Plastic Structural Shape
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Figure 13. Recycled Plastic Post Options
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4.3 Options for First Round of Bogie Testing

After developing candidate posts for the universal breakaway post, the potential options
needed to be narrowed down to the most promising designs for use in the initial round of bogie
testing. Beginning with the steel W8x10 (W203x14.9) options listed in Figure 14, the plug weld
post was discarded after evaluation of historical bogie tests. The post was found to absorb too
much energy for strong-axis impacts when the back-side plug weld would not disengage from
the foundation post. Also, from previous bogie tests, the A325 bolt option was dropped because
the non-traffic side bolts would not break, and the post did not break away freely. Both the two
plug weld and elliptical plug weld options were also deemed insufficient, as these designs would
have similar behavior to the single plug weld. The groove weld option was also eliminated based
upon concerns that variations in weld quality would lead to inconsistent behavior.

For the breakaway tab option, one concern was that the non-traffic-side tab would not
break away as desired, since it would just bend over after the traffic-side plate fractured in
tension. As a result, this option was also discarded. Finally, the circular fillet weld option seemed
the most promising of the W8x10 (W203x14.9) designs to break away cleanly like wood, since it
did not have a solid plug weld to get hung up on the non-traffic-side face. Thus, it was decided
that a circular fillet had the best chance to break away on the non-impact side and to include this
design in the first round of bogie testing.

Next, looking at the tubular designs in Figure 15, the steel tube in tube idea would be able
to break away cleanly when the upper tube is pulled out of the lower tube. As a result, it was
included in the bogie testing. For the coupler designs, the cast steel, cast iron, and ceramic

options all provide acceptable breakaway behavior, but the cost of developing these options was
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deemed to be high. There would be a need for a costly custom mold during development, and
even minor revisions in the design would require a new mold. For the fiber reinforced plastic
(FRP) concepts, the upper FRP post and FRP coupler options utilize the brittle characteristics of
the FRP material. There are numerous standard FRP structural shapes, which can be used for the
universal breakaway post. Thus, this concept was chosen for further study.

Next, the recycled plastic post option mixes polyethylene with sawdust. This mixture
does not provide the preferred uniformity, and the polyethylene in the recycled plastic has a high
toughness that will resist fracturing and breaking away when impacted. Another unacceptable
factor of the recycled plastic is the sawdust, which is the same wood material that the breakaway
post was intended to replace. The weakened steel tube would just bend over to the ground and
would not break away cleanly due to the ductile behavior of the steel. Thus, the weakened steel
tube was not considered for the first round of bogie testing. Finally, the fracturing bolt (slipbase)
post in Figure 16 was included in the bogie testing, as it would be able to break away as desired
when the bolts broke due to tensile and shear forces.

Thus, the number of preliminary concepts was narrowed down to the five options listed
in Table 7. These concepts were tested in the first round of bogie testing to determine if they
could replicate the strength and failure properties of the CRT post.

Table 7. Round 1 Bogie Testing Concepts

Concept
No. Post Type
1 Steel Tube In Steel Tube
2 Steel Tube In Steel Tube With Thru Bolt
3 Upper FRP Post
4 Fracturing Bolt (Slipbase)
5 Circular Fillet Weld
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5 BREAKAWAY POST BOGIE TESTING - ROUND 1

5.1 Purpose

Physical component testing is an important aspect of any design process which is often
used to gain practical insights into the behavior of the design. As such, bogie tests were
undertaken on the selected post designs to verify fracture characteristics and determine if fracture
forces could be tuned to match the behavior of the wood CRT post.
5.2 Scope

Initial bogie tests were conducted on the five post concepts identified for further
investigation, as shown in Table 7. For these bogie tests, the posts were embedded 40 in. (1,016
mm) in standard strong soil in order to match the conditions in the bullnose system, where the
posts are embedded in soil. Earlier, the wood CRT posts were embedded in rigid sleeves to
determine the strength of the post without the effect of soil. The coarse aggregate soil conformed
to the American Association of State Highway Transportation Officials (AASHTO) standard
specifications for “Materials for Aggregate and Soil Aggregate Sub-base, Base, and Surface
Courses,” designation M 147-65 (1990) Grading B, as recommended in NCHRP Report No. 350
[4]. The target test conditions consisted of a impact speed of 20 mph (32 km/h) using a centerline
contact with the bogie nose, approximately 24 7/8 in. (632 mm) above the ground. The weight
(mass) of the bogie was 1841 Ibs (835 kg). The test matrix for the first round of bogie testing is

listed in Table 8.
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Table 8. Test Matrix for Round 1 Bogie Testing

Speed Impact
Test No. Post Concept mph (km/hr) s (mis) Axis
UBSP-1 Steel Tube in Steel Tube 19.5 (31.3) 28.5 (8.70) Strong
UBSP-2 | Steel Tube in Steel Tube With Thru Bolt | 19.3 (31.1) 28.3 (8.63) Weak
UBSP-3 Upper FRP Post 19.7 (31.7) 28.9 (8.81) Strong
UBSP-4 Upper FRP Post 19.6 (31.5) 28.7 (8.76) Weak
UBSP-5 Fracturing Bolt (Slipbase) 19.4 (31.2) 27.6 (8.67) Strong
UBSP-6 Fracturing Bolt (Slipbase) 18.5 (29.8) 27.1 (8.27) Weak
UBSP-7 Circular Fillet Weld 19.4 (31.2) 23.6 (8.67) Strong
UBSP-8 Circular Fillet Weld 20.2 (32.4) 29.6 (9.01) Weak

5.3 Post Details

5.3.1 Steel Tube in Steel Tube

The steel tube in steel tube concept utilized an upper 5-in. x 7-in. x 3/16-in. (127-mm x
178-mm x 4.8-mm) tube embedded 6 in. (152 mm) into the lower 6-in. x 8-in. x 3/16-in. (152-
mm x 203-mm x 4.8-mm) foundation tube, as shown in Figures 17 through 19. This concept
relied on the collapse of the upper tube, further initiating a pullout from the lower tube. The
upper tube sat on top of a through bolt and was not connected to the lower foundation tube in
order to allow the upper tube to easily pop out of the lower foundation tube and to release from
the base.

The strength of this concept was dependent on numerous factors, including the
embedment depth of upper post into the lower post. The depth of embedment controls the force
required to initiate collapse of the upper post which leads to pop out. Clearance also affects the
strength of the post. Shims were used to adjust the snugness, or clearance, between the two tubes.
Other factors, including cutting corners or slotting the upper tube, were believed capable of

altering the strength of the post but were not implemented at this time. Instead, they were
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reserved for later use and refinement of the ratio of the post strengths in the weak and strong
axis, if deemed necessary.

For the first round of bogie testing, it was decided that a strong-axis impact with an
embedment depth of 6 in. (152 mm) and 1/8 in. (3.2 mm) clearance in the “socket” area would
be sufficient to provide an understanding of the general behavior and strength of the steel tube in
steel tube concept. Refinements and adjustments could easily be made based on this first run to

adjust to the desired strength and behavior.
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5.3.2 Steel Tube in Steel Tube With Thru Bolt

This concept was nearly identical to the steel tube in steel tube concept. The only
difference was the upper tube was connected to the lower foundation tube with a thru bolt.
Instead of sitting on top of a support bolt, the bolt passed through the upper tube, as shown in
Figures 20 through 22. This concept relied on the bolt tearing out as the upper tube pulled up and
out of the lower foundation tube. The thru bolt only passed through the upper tube on the traffic
side. The non-traffic side was slotted; since, it is in compression during a strong-axis impact and
would not tear out. In order to be consistent, this concept was also tested with a 6-in. (152-mm)
embedment depth and a 1/8 in. (3.2 mm) clearance. This concept was believed to be most
sensitive to weak-axis impacts. Under weak-axis loading, the post rotation would initially place
very low tension on the retaining bolt. Thus, in order to explore the worst case situation, the thru-

bolt design was tested in the weak axis.
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5.3.3 Upper FRP Post

This FRP concept relied on the same pop out failure mechanism as the first two concepts.
However, this concept involved replacing the upper steel tube with a fiber reinforced plastic
(FRP) tube. Similar to the first concept, the upper FRP post sat on top of a thru bolt to allow it to
easily pop up and out of the lower foundation tube after some displacement.

FRP tubing is produced by numerous companies in standard shapes and sizes. The goal
was to find the best available size of FRP tubing to fit in and form a 6 in. (152 mm) long
“socket” with the lower 6-in. x 8-in. (152-mm x 203-mm) foundation tube. After researching
numerous standard sizes, the 4-in. x 6-in. x 3/8-in. (102-mm x 152-mm x 9.5-mm) tubing
provided by Advanced Fiber Products was chosen the best option available [15]. This FRP
tubing had UV inhibitor and had ample strength for both strong- and weak-axis impacts. Thick
shims were used to accommodate the size difference between the FRP tube and the lower
foundation tube. For the first round of bogie testing, a wood/steel shim was utilized. These make-
shift shims could be replaced if the FRP option proved to have promising potential for use as the
universal breakaway post. The details of the upper FRP concept are presented in Figures 23

through 25.
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5.3.4 Fracturing Bolt (Slipbase)

The fracturing bolt (slipbase) concept relied on fracturing and shearing bolts to control
the post strength. The lower foundation tube was connected to an upper W6x9 (W152x13.4)
beam through a base plate and four breakaway bolts, as shown in Figures 26 through 30. Two
1/2-in. (12.7-mm) thick steel plates were rigidly welded to the bottom of the W6x9 (W152x13.4)
beam and to the top of the foundation tube.

When impacted, the bolts were expected to break in tension on the impact side and to
break in shear on the back side. Step washers were utilized to create a shear plane for the bolts.
The size and location of the breakaway bolts control the post fracture load for this concept. The
peak post load should be close to the point when a simple bending analysis predicts that the front
bolts reach their rated tensile strength. In this manner, the size and locations of the splice bolts
were initially selected. This analysis led to the selection of 5/16 in. (7.94 mm) diameter grade 5,
fully-threaded rods for the fracturing bolts. The threaded rods were spaced apart 10 in. (254 mm)
in the strong axis and 4 in. (102 mm) in the weak axis. A close-up view of the assembled

fracturing bolt concept can be seen in Figure 26.
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Figure 26. Assembled Fracturing Bolt (Slipbase) Design
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5.3.5 Circular Fillet Weld

The circular fillet weld concept incorporated a splice plate with circular holes on the front
and back of the post. The splice plates were welded to the upper post with a fillet weld around
these holes. This concept relied on failure of these fillet welds to control the strength of the post.
The two steel splice plates connected an upper W8x10 (W203x14.9) wide-flange section with the
lower 6-in. x 8-in. x 3/16-in. (152 mm x 203 mm x 4.8 mm) foundation tube, as shown in Figures
31 through 33.

The circular breakaway welds were expected to rupture due to shear in both the strong
and weak axis. In the strong axis, the welds break in transverse shear. In the weak axis, the welds
break in shear from torsional loading induced into the circular welds. As seen in Figure 34,
calculations were performed to estimate the area of weld needed to obtain the desired strength
levels. It was decided to use a circular fillet weld, since this shape allows for the most consistent
weld. As a result, this design is very similar to the breakaway steel post in patent number
5,988,598 and described in the “Design and Development of Steel Breakaway Posts” [16]. The

difference is this circular fillet concept uses a fillet weld instead of a plug weld.
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Weak Axis
1.15*%F, * A*r
I:resistance =
h
Where:
A= Area of SingleWeld =t, *L
t. =Weld Throat Thickness
L = Length of Weld
r = Radius of Circular Weld
F, = Strength of Weld Or Base Material
h = Impact Height Above Weld
- Strong Axis
0.577*F, * A*d
Fresistance =
h
Where:

A= Area of Weld =t, *L
t, =Weld Throat Thickness
L = Length of Weld

F, = Strength of Weld Or Base Material
h = Impact Height Above Weld

d = Distance between Circular Fillet Welds

Figure 34. Circular Fillet Weld Calculations
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5.4 Equipment and Instrumentation
A variety of equipment and instrumentation was used to record and collect data.
Equipment and instruments utilized in this testing included:
e Bogie
e Accelerometer
e Pressure Tape Switches
e Digital Photographic Cameras

5.4.1 Bogie

A rigid frame bogie was used to impact the posts. The bogie impact head was constructed
of 8-in. (203-mm) diameter, 1/2-in. (12.5-mm) thick, standard steel pipe, with 3/4-in. (19-mm)
thick, neoprene belting wrapped around the pipe to prevent local damage to the post from the
impact. The bogie with the impact head is shown on the guidance track in Figure 35. The weight
(mass) of the bogie with the addition of the mountable impact head was 1,841 Ibs (835 kg). The
impact height contacted the test specimen at 24 7/8 in. (632 mm) above the ground. The target
speed for the tests was 20 mph (32 km/h).

In all tests, a pickup truck with a reverse cable tow and guide rail system was used to
propel and direct the bogie. The bogie was accelerated toward the post along the guidance
system, which consisted of a steel pipe anchored above the tarmac. In all of the tests, the bogie
wheels were aligned for caster and toe-in values of zero so that the bogie would track properly.
When the bogie reached the end of the guidance system, it was released from the tow cable,
allowing it to be free rolling when it struck the post. A remote braking system was installed on

the bogie, to provide for safe deceleration of the bogie after the test.
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Figure 35. RigiFrme Bogie o uidce Track

5.4.2 Accelerometer

One tri-axial piezoresistive accelerometer system, Model EDR-3, with a range of 200
g’s, was developed by Instrumented Sensor Technology (IST) of Okemos, Michigan, and was
mounted on the frame on the bogie near its center of gravity. Data sampling was at 3,200 Hz
with a 1,120 Hz Butterworth low-pass filter with a -3dB cut-off. Computer software, “DynaMax
1.75” and a customized “Microsoft Excel” worksheet were used to analyze and plot the
accelerometer data [17].

An additional accelerometer system, model DTS manufactured by Diversified Technical
Systems, Inc. (DTS) of Seal Beach, CA, was used to measure the acceleration in the longitudinal,
lateral, and vertical directions at a sample rate of 10,000 Hz. The environmental shock and
vibration sensor/recorder system, a two-Arm piezoresistive accelerometer, was developed by
Endevco of San Juan Capistrano, CA. Three accelerometers were used to measure each of the
longitudinal, lateral, and vertical accelerations independently. Data was collected using a Sensor

Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM
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memory and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a
TDAS3-R4  module rack. The module rack is configured with isolated
power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal
back-up battery. Both the SIM and module rack are crashworthy. “DTS TDAS Control” and
“DADISP” computer software programs, and a customized “Microsoft Excel” worksheet were
used to analyze and plot the accelerometer data [18].

5.4.3 Pressure Tape Switches

Three pressure tape switches, spaced at 1.5-ft (0.457-m) intervals and placed near the end
of the bogie track, were used to determine the speed of the bogie before the impact. As the front
right tire of the bogie passed over each tape switch, a strobe light was fired sending an electronic
timing signal to the data acquisition system. Test speeds were determined by dividing the
measured distance between the switched by the time between these signals.

5.4.4 Photography Cameras

One high-speed AOS VIT cam digital video camera, with a Sigma 24-70 mm lens and an
operating speed of 500 frames/sec, was located perpendicular to the post impact direction. Two
JVC digital video cameras, each with an operating speed of 29.97 frames/sec, were also used to
film the bogie tests.
5.5 Methodology of Testing

A total of eight bogie tests were performed on posts about the strong and weak axes of
bending. The tests were configured with posts embedded 40 in. (1,016 mm) in a testing pit. For
the tests, holes measuring 24 in. (610 mm) in diameter and approximately 44 in. (1,118 mm)

deep were augured in the soil. These holes were then filled with soil meeting AASHTO standard
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specification for “Materials for Aggregate and Soil Aggregate Sub-base, Base, and Surface
Courses,” designation M 147-65 (1990) Grading B. Standard compaction procedures with the
pneumatic tamper were followed. The test parameters are shown in Table 9 and Figure 36.

Table 9. Test Parameters

UBSP Test Parameters

JUBSP: Universal Breakaway Steel Post Concepts

Test: Strong Axis Impact at 0 degrees and Weak Axis Impact at 90 degrees
Accelerometer: EDR-3 and DTS Data

IBogie Weight (Mass): 1,841 Ibs (835.1 kg)

|Bumper Height: 24 7/8 in. (632 mm)

Post Length: 72 in. (1,829 mm)

Soil: 135 Ib/ft* (2163 kg/m®) NCHRP 350 (AASHTO 147-65 (1990) Grade B)

5.6 End of Test Determination

During an impact, the data acquisition system continuously records the bogie
accelerations after it is triggered. These recorded accelerations include vibrations in the bogie
vehicle, impact head, and accelerometer mounting assembly. A consistent method for identifying
the end of the test needed to be defined in order to assure that the post fracture performance
could be compared.

The event time was identified as the time that the peak vibration in the acceleration trace
subsided back toward zero, and no more high loads were measured. When the acceleration trace
subsided toward zero, the force levels would also subside toward zero, and the energy levels
would level off, clearly showing that the continuation of vibrations were not caused by
interaction with the post. Also, each test was limited by the bogie-post contact time, so there
were no unreasonably long test durations. For each test, the high-speed video was used to
establish the length of time the bogie was actually in contact with the post. This time was then

used to define maximum possible test length.
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5.7 Data Processing

Initially, the data was filtered using a SAE Class 60 Butterworth filter conforming to the
SAE J211/1 specifications [19]. The processed acceleration data was then multiplied by the mass
of the bogie to obtain the impact force based upon Newton’s Second Law. Next, the acceleration
trace was integrated to find the change in velocity. The initial velocity of the bogie, calculated
using the data from the pressure tape switches, was then used to determine the actual bogie
velocity versus time. The calculated actual velocity trace versus time was then integrated to find
the displacement versus time trace. Thus, the force versus time and the displacement versus time
data could be combined to produce the force versus deflection curve for each test. Finally,
integration of the force versus deflection curve provided the energy versus displacement curve

for each test.
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5.8 Round 1 Bogie Testing Results

The accelerometer data was processed for each test in order to obtain acceleration,
velocity, and displacement curves, as well as force versus deflection and energy versus
deflection curves. This section discusses those results for the EDR-3 accelerometer. Although
both the EDR-3 and DTS data recorders were used for the tests, the current EDR-3 triggered and
provided accurate results for every test, while the DTS did not trigger for every test. However,
the accelerometers did provide similar results when both units had valid data. Also, using the
EDR-3 was consistent with the previous bogie testing of the wood CRT posts. Individual test
results are provided in Appendix A.

The following sections discuss the dynamic behavior and results for test nos. UBSP-1
through UBSP-8. Conclusions regarding the performance comparison of the different post

concepts are discussed in a subsequent section in this report.
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5.8.1 Test UBSP-1 — Steel Tube in Steel Tube

Test UBSP-1 was a strong-axis impact at 0 degrees on the steel tube in steel tube concept
embedded in standard strong soil. The force and energy data are shown in Figures 37 and Figure
, respectively. Time-sequential photographs of this test are shown in Figure 39. Upon impact, the
upper steel tube began to rotate immediately and lost contact with the bogie head at 6 ms. The
1/8 in. (3.2 mm) clearance in the “socket” area between the foundation tube and upper tube
allowed the upper post initially rotate freely in the socket. The upper post quickly reached the
limits of free rotation, and at approximately 24 ms, the bogie regained contact with the upper
steel tube. Thereafter, the bogie remained in contact with the upper post until 100 ms after
impact. During this period, the upper tube popped out and 1 in. (25.4 mm) and 1 1/4 in. (31.75
mm) cracks formed on or near the downstream corners of the foundation tube. Also, the impact
side of the upper tube experienced some deformation along the bottom. The lower foundation
tube rotated 2 in. (50.8 mm) in the soil before the upper tube popped out. Post-impact images of
the steel tubes can be seen in Figure 40.

The force versus deflection curve, as provided in Figure 37, indicated an initial peak in
the force level, due to the inertial effects of the upper steel tube. After this initial peak, the force
level subsided toward zero, while the post rotated freely in the socket area. The force levels
increased rapidly when the upper post reached the limits of free rotation. Although the peak force
levels were near the desired 12 kips (53 kN), the average force levels were lower than desired
from when the post rotated freely. However, there were desirable energy levels for this
breakaway post, as shown in energy versus deflection curve in Figure . The post broke away and

did not rotate thru the soil absorbing large amounts of energy.
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Figure 40. Post Impact Images of Test UBSP-1

TIME =120 ms
Figure 39. Time Sequential Photographs, Test UBSP-1
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5.8.2 Test UBSP-2 — Steel Tube in Steel Tube with Thru Bolt

Test UBSP-2 was a weak-axis impact at 90 degrees on the steel tube in steel tube with a
thru bolt concept. The force and energy data are shown in Figures 41 and 42, respectively. Time-
sequential photographs are shown in Figure 43. When impacted by the bogie, the upper tube
began to rotate immediately and lost contact with the bogie head at approximately 6 ms. At
approximately 22 ms, the bogie regained contact with the post, and 4 1/2 in. (114.3 mm) and 4
3/8 in. (111.1 mm) cracks were formed near the downstream corners of the lower foundation
tube. These cracks allowed the upper post to bend over and the bogie to eventually override the
post and lose contact at approximately 148 ms. The upper tube also experienced minor
deformation, but there was no sign of bolt tear out. As a result, this concept did not perform as
desired. The upper tube did not pop up and break away from the lower foundation tube. Post-
impact images can be seen in Figure 44.

The force versus deflection curve, provided in Figure 41, indicated an initial peak in the
force level, due to the inertial effects of the upper steel tube. After this initial peak, the force
level subsided towards zero as the post rotated due to the gap between the two tubes. Then, the
force levels increased rapidly to undesired levels as the upper tube rotated over and did not break
away cleanly. Also, the energy versus deflection curve is shown in Figure 42. By not breaking

away cleanly and easily, both the force and energy levels were higher than desired.
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Figure 44. Post-Impact Images of Test UBSP-2

TIME=120ms
Figure 43. Time Sequential Images, Test UBSP-2
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5.8.3 Test UBSP-3 — Upper FRP Tube

Test UBSP-3 was a strong-axis impact at 0 degrees on the fiber reinforced plastic (FRP)
tube concept embedded in standard strong soil. The force and energy data are shown in Figures
45 and 46, respectively. Time-sequential photographs of this test are shown in Figure 47. Upon
impact, the FRP tube began to rotate immediately and lost contact with the bogie head at
approximately 6 ms. At approximately 14 ms, the bogie regained contact, and the lower
foundation tube began rotating in the soil. The lower foundation tube rotated 1 in. (25 mm) in the
soil and also experienced some yielding along the downstream side. The steel/wood shims
suffered some damage as the wood crushed along the downstream side. The upper FRP post also
showed brittle characteristics as there was some cracking and crushing on the upstream face, as
shown in Figure 48. Finally at 68 ms, the FRP post popped out of the lower foundation tube and
then remained in contact with the bogie head until approximately 92 ms, even though there was
little resistance after the post had broken away.

The force versus deflection curve, as provided in Figure 45, indicated an initial peak in
the force level due to the inertial effects of the upper FRP tube. After this initial peak, the force
level subsided towards zero as the post rotated due to the clearance between the two tubes.
Finally, the force levels climbed back up as the upper FRP tube rotated, deformed, and popped
out of the lower foundation tube. Although the force levels did increase until the FRP popped
out, the force levels were lower than the desired 12 kips (53 kN). Also, the energy versus

deflection curve, as shown in Figure 46, reveals the low energy levels absorbed by this post.
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Figure 47. Time Sequential Photographs, Test UBSP-3
86



MwRSF Report No. TRP-03-218-09
August 3, 2009

5.8.4 Test UBSP-4 — Upper FRP Tube

Test UBSP-4 was a weak-axis impact at 90 degrees on the fiber reinforced plastic tube
concept embedded in standard strong soil. The force and energy data are shown in Figures 49
and 50 respectively. Time-sequential photographs are shown in Figure 51. The FRP tube began
to rotate immediately and lost contact with the bogie head at approximately 6 ms until 18 ms.
After 18 ms, the FRP tube began to crush and rotated over until approximately 122 ms when the
bogie ramped up and overrode the tube. Also, the lower foundation tube and the wood/steel
shims yielded, which allowed the FRP post to bend over. However, there was not enough
deformation to allow the FRP post to break away. After the bogie overrode the FRP tube, the
tube sprung back and popped out backwards from the foundation tube, as seen in Figure 52.

As evidenced by the force and energy levels in the force versus deflection and energy
versus deflection curves provided in Figures 49 and 50, respectively, the FRP post did not
behave as desired. The upper FRP post did not pop out and break away from lower foundation
tube. Even though the FRP post popped out as desired in the strong-axis impact in test UBSP-3,
this weak-axis test exhibited a different behavior, as the FRP material was not brittle enough and
did not crush enough to allow separation of the upper FRP tube. In weak-axis impacts, the upper
FRP post needs to crush farther due to the shorter distance between the upstream and
downstream faces of the post. This shorter distance decreases the rotation that occurs, and thus,
increases the deformation needed to get the upper FRP tube to break away, which helped lead to

the undesired behavior in this weak-axis impact.
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Figure 52. Post-Impact Images of UBSP-4

TIME = 120
Figure 51. Time Sequential Photographs, Test UBSP-4
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5.8.5 Test UBSP-5 — Fracturing Bolt (Slipbase)

Test UBSP-5 was a strong-axis impact at 0 degrees on the fracturing bolt (slipbase)
concept embedded in standard strong soil. The force and energy data are shown in Figures 53
and 54, respectively. Time-sequential photographs are shown in Figure 55. Upon impact, the
post began to rotate immediately in the soil until the impact-side bolts broke in tension at
approximately 16 ms. After the impact-side bolts broke, there was little resistance left from the
post. The upper W6x9 (W152x13.4) post rotated around the non-impact side bolts, until these
bolts eventually bent and broke away, thus leading to the post losing contact with the bogie head
at approximately 70 ms. The only deformation in the post occurred to the bolts and washers. The
bolts tended in break in either a level or 45 degree plane, and the washers were deformed from
compression between the nuts, bolt heads, and the base plates. Post-impact images of the posts
and fractured bolts can be seen in Figure 56.

As seen in the force versus deflection curve in Figure 53 and the energy versus deflection
curve in Figure 54, the fracturing bolt concept adequately absorbed energy, but the magnitude of
the force levels was too low. Even though the impact-side bolts broke in tension as expected, the
non-impact side bolts did not affect the peak force levels and did not break due to shearing. The
shear load did affect the failure, but the tensile load was the controlling force in the failure of the

bolts.
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Figure 56. Post-Impact Images of UBSP-5

TIME =120 ms

Figure 55. Time Sequential Photographs, Test UBSP-5
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5.8.6 Test UBSP-6 — Fracturing Bolt (Slipbase)

Test UBSP-6 was a weak-axis impact at 90 degrees on the fracturing bolt (slipbase)
concept embedded in standard strong soil. The force and energy data are shown in Figures 57
and 58, respectively. Time-sequential photographs are shown in Figure 59. Upon impact, the
post began to rotate immediately, and the impact-side bolts broke in tension at approximately 10
ms. After the impact-side bolts broke, the post rotated over with little resistance until the non-
impact-side bolts broke away, and the post lost contact with the bogie head at approximately 46
ms. Similar to the strong-axis impact in test UBSP-5, the fracturing bolt concept broke away as
desired.

As seen in the force versus deflection curve and the energy versus deflection curve in
Figures 57 and 58, the fracturing bolt concept in a weak-axis impact had desirable strength and
behavior. The impact-side bolts broke away at a peak load of 5.34 kips (23.8 kN) near the
desired 6 kips (26.7 kN). Also, the post broke away quickly and absorbed a small amount of
energy as desired. Similar to test UBSP-5, the only deformation in the post occurred to the bolts
and washers. The bolts tended in break in either a level or 45 degree plane, and the washers were
deformed from compression between the nuts, bolt heads, and the base plates. Post-impact

images of the posts and fractured bolts can be seen in Figure 60.
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Figure 60. Post-Impact Images of UBSP-6

TIME =120 ms
Figure 59. Time Sequential Photographs, Test UBSP-6
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5.8.7 Test UBSP-7 — Circular Fillet Weld

Test UBSP-7 was a strong-axis impact at O degrees on the circular fillet weld concept
embedded in standard strong soil. Time-sequential photographs are shown in Figure 61. The post
began to rotate immediately but did not break away as intended. As a result, the bogie never lost
contact with the post and came to rest on top of the post, as seen in Figure 62. For this test, the
acceleration transducers did not work, but this was not an issue since the post did not break
away. The only deformation that occurred during the test was some slight yielding below ground
level on the impact side of the lower foundation tube. This deformation could be a sign of frozen
soil, which hindered any rotation of the tube.

The breakaway welds did not fail as expected due to error in judging the weld strength.
The strength of the base steel material, 36 ksi (248 MPa), was used as the controlling strength of
the weld. However, the strength of the actual weld material, 70 ksi (483 MPa), should have been
used in the calculations for this concept. The strength of the actual weld material controls in this

case with the weld acting as the failure mechanism.
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IMPACT

Figure 62. Post-Impact Images of UBSP-7

TIME =120 ms
Figure 61. Time Sequential Photographs, Test UBSP-7
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5.8.8 Test UBSP-8 — Circular Fillet Weld

Test UBSP-8 was a weak-axis impact at 90 degrees on the circular fillet weld concept
embedded in standard strong soil. The force and energy data are shown in Figures 63 and 64,
respectively. Time-sequential photographs are shown in Figure 65. Upon impact, the post began
to immediately rotate in the soil. At approximately 30 ms, the upper W8x10 (W203x14.9) post
began to yield and buckle over the steel plates. Like in test UBSP-7, the post did not break away
as desired, and the bogie continued to rotate and yield the circular fillet weld post until
eventually overriding the post and losing contact at approximately 112 ms. The only deformation
in the test occurred to the upper W8x10 (W203x14.9) post as it deformed and bent over the steel
plates. There was no evidence of the weld failing, which again was due to an error in judging the
strength of the weld. The post-impact images can be seen in Figure 66.

The force and energy versus deflection curves can be seen in Figures 63 and 64. These
graphs also show the undesired behavior of this design. Although the peak force level of 7.45
kips (33.1 kN) was only slightly higher than the 6 kips (26.7 kN) desired, the high force levels
continued through a large displacement. Thus, the post absorbed much more energy than desired

by not breaking away.
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Figure 66. Post-Impact Images of UBSP-8

 TIME =120 ms
Figure 65. Time Sequential Photographs, Test UBSP-8
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5.9 Round 1 Summary and Conclusions

The behavior of each post was evaluated with regard to its potential for matching CRT
wood posts. A summary of the first round of bogie testing can be seen in Table 10.

For the first concept in test UBSP-1, the steel tube in steel tube broke away as desired.
Even though this concept showed some promise, it was determined that there were too many
factors controlling the post’s strength and behavior to continue with this concept. In order to
refine the results on this concept, there would need to be numerous bogie tests to get the desired
behavior and results. Although simulation work with LS-DYNA [20] could be performed to help
analyze different factors in the design, the fracture seen in the bogie test would be very difficult
to predict and simulate after making design modifications. Thus, this concept was dropped from
consideration for the Universal Breakaway Steel Post.

In test UBSP-2, the steel tube in steel tube with a thru bolt did not perform as desired.
The bolt did not tear out, and thus, the upper tube did not break away. Therefore, the steel tube in
steel tube with a thru bolt concept was dropped from consideration. Also, tests UBSP-3 and
UBSP-4 with upper fiber reinforced plastic (FRP) tubes did not perform as desired. The FRP
tube broke away too easily in the strong-axis impact and did not break away in the weak-axis
impact in test UBSP-4. Similar to the steel tube in steel tube concept, the FRP tube concept could
probably be made to work but had too many variables controlling its strength and behavior. Also,
the crushing and deformation in the FRP would be very difficult to predict and simulate in LS-
DYNA simulation work. As a result, the FRP tube concept was also dropped from consideration

as the Universal Breakaway Steel Post.
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The fracturing bolt (slipbase) concept tested in UBSP-5 and UBSP-6 performed
sufficiently by breaking away cleanly in both the strong and weak axes. Even though all of the
bolts broke away in tension instead of shear, the post showed great potential. The only issue was
that the measured fracture loads were lower than those from CRT testing. As a result, the
fracturing bolt concept was selected for inclusion in the second round of bogie testing.

Finally, the circular fillet weld concept did not break away in either test UBSP-7 or
UBSP-8. However, this undesired behavior was due to the error in calculating of the weld
fracture strength. From previous testing, it was known that this concept had desirable behavior
with correct calculations, and it was decided to revise the design and include this concept in the
second round of bogie testing.

Although most the concepts in the first round of bogie testing showed some potential for
use as an Universal Breakaway Steel Post, the number of concepts was narrowed down to the
two most promising designs. Both the fracturing bolt and circular fillet weld concepts
demonstrated good potential for use as the Universal Breakaway Steel Post. As a result, these
two concepts were modified and included in the second round of bogie testing to identify the

design with the best potential for matching properties of the CRT.
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6 BREAKAWAY POST BOGIE TESTING - ROUND 2

6.1 Purpose

The second round of bogie testing was performed to evaluate the design modifications of
the fracturing bolt and circular fillet weld breakaway concepts. These tests were used to help
determine which breakaway steel concept would be the best option for the Universal Breakaway
Steel Post.
6.2 Scope

The second round of bogie testing was conducted on two different concepts, as detailed
in Section 6.3. The test setup was identical to the previous setup used in the first round of bogie
testing. All posts were embedded 40 in. (1,016 mm) in standard strong soil. The target impact
condition for the tests was 20 mph (32 km/h) with the impact occurring at the centerline of the
bogie, and at a height of 24 7/8 in. (632 mm) above the ground. For tests UBSP-9 and UBSP-11,
technical difficulties were encountered with the speed trap system so the actual speed was not
known, but the velocity of the tow truck was used to determine the speed for these two tests. Five
tests were performed on the two concepts, and the scope of the second round of bogie testing is
shown in Table 11.

Table 11. Test Matrix for Round 2 Bogie Testing

Speed .
Test No. | Test Date Post Concept mph (km /h)p fils (mls) Impact Axis
UBSP-9 | 05-29-2008 Fracturing Bolt 19.9 (32.0) 29.2 (8.90) Strong
UBSP-10 | 05-29-2008 Fracturing Bolt 19.1 (30.7) 28.0 (8.53) Weak
UBSP-11| 05-29-2008 | Circular Fillet Weld 19.7 (31.7) 28.9 (8.81) Weak
UBSP-12 | 06-04-2008 | Circular Fillet Weld 18.7 (30.1) 27.4 (8.35) Strong
UBSP-13 | 06-04-2008 Fracturing Bolt 18.7 (30.1) 27.4 (8.35) Strong
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6.3 Post Details

6.3.1 Fracturing Bolt

The fracturing bolt concept used in the second round of bogie testing only had minor
changes from the first round of bogie testing. The post still utilized a lower foundation tube
connected to an upper W6x9 (W152x13.4) beam and attached with four breakaway bolts. In the
first round of bogie testing, this concept performed sufficiently but broke away at a lower peak
force level than the desired 12 kips (53 kN) in the strong axis.

The first design revision included the use of standard washers and no step washers. This
change was made after observing the behavior in the first round of bogie testing where the bolts
broke away in tension versus in shear. As a result, there were no longer any patent concerns with
using this concept.

Upon review, it was noticed that the non-impact-side bolts had minimal effect on the
ultimate strength of the post. Thus, calculations were performed to help determine the spacing
and size of the breakaway bolts, as seen in Figure 67. From these calculations, the diameter of
the breakaway bolts was changed from 5/16 in. (7.9 mm) to 3/8 in. (9.5 mm) to increase the post
strength about the strong axis of bending. Also, the bolts were moved closer together with
respect to the weak axis to keep the force levels low enough for weak-axis impacts. The bolts
were spaced apart 2 1/2 in. (64 mm) in the weak axis and 10 in. (254 mm) in the strong axis.

In the middle of the second round of bogie testing, there was a change in the breakaway
connector used to attach the post segments. For tests UBSP-9 and UBSP-10, a 3/8 in. (9.5 mm)
diameter, grade 5, double end stud was tested. However, in test UBSP-13, a 3/8 in. (9.5 mm)

diameter, grade 5, hex head bolt was tested. Since the bolt and double end stud were the same
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size and grade, they were believed to provide identical behavior and strength. The reason for the
change was that the hex head bolt option contained fewer pieces and would be a simpler design
to install. The switch from a rod to a bolt was the only design modification for tests UBSP-9,
UBSP-10, and UBSP-13. The drawings shown in Figures 68 through 71 provide details for the
hex head bolt configuration.

- Strong Axis

A
F o _ANR)A)
h © ©
Where: .
A = Distance Between Fracturing Bolts © ©

F, = Ultimate Strength of Fracturing Bolt
A, = Effective Area of Fracturing Bolt

h = Height of Impact Above Fracturing Bolt

- Weak Axis
- _@B)(F)A)
resistance h
Where:

B = Distance Between Fracturing Bolts

F, = Ultimate Strength of Fracturing Bolt

A, = Effective Area of Fracturing Bolt

h = Height of Impact Above Fracturing Bolt

Figure 67. Fracturing Bolt Calculations
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6.3.2 Circular Fillet Weld

The circular fillet weld concept was also similar to the design evaluated in the first round
of bogie testing. Once again, two steel splice plates were used to connect an upper W8x10
(W203x14.9) wide-flange section to the lower 6-in. x 8-in. x 3/16-in. (152-mm x 203-mm x 4.8-
mm) foundation tube. However, the major difference was a reduction in the size of the circular
breakaway weld.

In the first round of bogie testing, a 1/4-in. (6.4-mm) fillet weld was used around the
circumference of a 3-in. (76-mm) diameter circle. This weld was reduced to a 3/16-in. (4.8-mm)
weld used around a 1 1/2-in. (38-mm) diameter circle for the second round of bogie testing.
Similar design calculations were used as in the first round of bogie testing, as shown previously
in Figure 34. However, the yield strength of the 36 ksi (248 MPa) base steel was replaced with
the 70 ksi (483 MPa) tensile strength of the weld material for calculating the fracture strength of
the weld.

Another change in the design was the reduction in thickness of the two steel splice plates
connecting the lower foundation tube to the upper wide flange section. For strong-axis impacts,
the weld can shear out of the top of the splice plate in case the breakaway weld is made too
strong. This alteration was performed to get two different failure modes in order to ensure the
post breaks away as desired in the strong axis. Calculations on this splice plate tear out, as seen
in Figure 72, were carried out to determine the edge distance of the weld and the thickness of the
splice plate to ensure that the post breaks away even if a weld is too strong. All of the design

changes are shown in Figures 73 through 75.
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Strong Axis

- _ (m()®)(F,) +1.15(F,)(t)(A)(d)

resistance h

Where:
A = Edge Distance of Circular Fillet Weld
F, = Ultimate Strength of Splice Plate Steel
r =Radius of Circular FilletWeld
t = Thickness of Splice Plate

F, = Tensile Strength of Weld Material
d = Distance between Circular Fillet Welds

h = Impact Height Above Weld

-

Figure 72. Circular Fillet Weld Tear Out
Calculations
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6.4 Equipment and Instrumentation

The equipment and instrumentation used in the second round of bogie tests was largely
the same as that used in the first round. The only differences were in the accelerometers used and
in the methodology of auguring holes in the standard strong soil.

Similar to tests UBSP-1 through UBSP-8, the EDR-3 accelerometer was used for every
test, provided accurate results, and was used for the results reported. For tests UBSP-9 through
11, the data acquisition system used the DTS accelerometer system, similar to the first round of
bogie testing. The difference was in tests UBSP-12 and UBSP-13, where an EDR-4
accelerometer replaced the DTS unit. The tri-axial, piezoresistive, accelerometer system Model
EDR-4M6 with a range of = 200 g’s was developed by Instrumented Sensor Technology (IST) of
Okemos, Michigan and was mounted on the frame of the bogie near its center of gravity. Data
sampling occurred at 10,000 Hz with a Butterworth low-pass filter with a -3dB cut-off frequency
and a 1,500 Hz anti-aliasing filter.

The other equipment difference involved the hole size augured out of the soil testing pit.
In tests UBSP-12 and UBSP-13, holes measuring 36 in. (914 mm) in diameter and deep enough
to accommodate the 40 in. (1,016 mm) embedment depth were augured into the test pit. A 24-in.
(610-mm) diameter hole was used previously in tests UBSP-1 through UBSP-11. The reason for
the change was to reduce inconsistencies in the soil strength observed in the previous bogie
testing.

The end of the test was determined in the same manner as used in the first round of bogie
testing. The recorded acceleration data was also processed in the same manner as that recorded in

the first round of bogie testing.

116



MwRSF Report No. TRP-03-218-09
August 3, 2009

6.5 Round 2 Bogie Testing Results

The accelerometer data was processed for each test in order to obtain acceleration,
velocity, and displacement curves, as well as force versus deflection and energy versus
deflection curves. This section discusses those results for the EDR-3 accelerometer. Using EDR-
3 data was consistent with the first round of bogie testing. Individual test results are provided in
Appendix A.

The following sections discuss the dynamic behaviors and results for test nos. UBSP-9
through UBSP-13. Conclusions regarding the performance of the different post concepts are

discussed in Section 6.7.
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6.5.1 Test UBSP-9 — Fracturing Bolt

Test UBSP-9 was a strong-axis impact at O degrees on the fracturing bolt concept
embedded in standard strong soil. The force and energy data are shown in Figures 76 and 77,
respectively. Time-sequential photographs for this test are shown in Figure 78. Upon impact, the
post began to rotate in the soil until the impact-side bolts broke in tension at approximately 30
ms. After the bolts broke, the post offered little resistance, and thus, the bogie head lost contact
with the post from approximately 34 ms until 58 ms. The bogie regained contact with the post
from 58 ms until 70 ms, when the non-impact-side bolts fractured and broke away. However,
there was little resistance, and the post was pushed over to the ground. The only deformation in
the post occurred to the bolts and washers. The bolts tended in break with either a level or 45
degree plane, and some impact-side washers were deformed from compression between the nuts,
bolt heads, and the base plates. Post-impact images can be seen in Figure 79.

As seen in the force versus deflection curve in Figure 76 and the energy versus deflection
curve in Figure 77, the fracturing bolt concept performed sufficiently by breaking at a peak load
of 11.0 Kips (48.9 kN) and absorbing energy up until the peak load was reached. The only issue
was one of the impact-side nuts stripped off of the bolt instead of the bolt fracturing. This
behavior was unexpected and may have caused premature failure at the 11.0 kips (48.9 kN) peak
load. It was decided to rerun this strong-axis test on the fracturing bolt concept to ensure that the
nut failure did not cause any unrealistic behavior. The results from this second test can be seen in
test UBSP-13, as shown in Section 6.5.5. Even with the nut stripping, the post did break away as

desired.
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Figure 79. Post-Impact Images of UBSP-9

TIME = 120 ms
Figure 78. Time Sequential Photographs, Test UBSP-9
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6.5.2 Test UBSP-10 — Fracturing Bolt

Test UBSP-10 was a weak-axis impact at 90 degrees on the fracturing bolt concept
embedded in standard strong soil. The force and energy data are shown in Figures 80 and 81,
respectively. Time-sequential photographs are shown in Figure 82. The post began to
immediately rotate in the soil until the impact-side bolts fractured in tension at approximately 14
ms. Next, the non-impact-side bolts broke at approximately 24 ms, thus causing the post to lose
its resistance and contact with the bogie at 32 ms.

As seen in the force versus deflection curve provided in Figure 80, the fracturing bolt
broke with a peak force level of 6.42 kips (28.6 kN), close to the 6 kips (26.7 kN) targeted in a
weak-axis direction. As desired, the post did not absorb significant energy, as shown in Figure
81. The only post deformation occurred to the bolts and washers. The bolts again tended in break
in either a level or 45 degree plane, and some washers were deformed from compression between

the nuts, bolt heads, and the base plates. Post-impact images can be seen in Figure 83.
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6.5.3 Test UBSP-11 - Circular Fillet Weld

Test UBSP-11 was a weak-axis impact at 90 degrees on the circular fillet weld concept
embedded in standard strong soil. The force and energy data are shown in Figures 84 and 85,
respectively. Time-sequential photographs are shown in Figure 86. Upon impact, the post began
to rotate immediately in soil. At approximately 32 ms, the circular fillet welds began to fracture,
and the post began to rotate over to the ground. Eventually, the post lost contact with the bogie
head at approximately 100 ms when the bogie overrode the post. Although both fillet welds did
fracture, the post got caught up on one of the welds and did not break away cleanly, as desired.
The welds were the only visible post damage, as seen in the post-impact images in Figure 87.

Similar to the fracturing bolt concept evaluated in test UBSP-10 using a weak-axis
impact, this weak-axis test revealed that the circular fillet weld broke at low peak force level and
did not absorb significant energy, as desired. The force versus deflection curve and energy versus
deflection curve for test UBSP-11 are provided in Figures 84 and 85, respectively. The only

undesired behavior was that the post did not break away cleanly.
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IME = 20 ms
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" TIME = 90 ms

"TIME = 120 ms
Figure 86. Time Sequential Photographs, Test UBSP-11
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6.5.4 Test UBSP-12 — Circular Fillet Weld

Test UBSP-12 was a strong-axis impact at 0 degrees on the circular fillet weld concept
embedded in standard strong soil. The force and energy data are shown in Figures 88 and 89,
respectively. Time-sequential photographs for this test are shown in Figure 90. Upon impact, the
post began to rotate immediately and continued to rotate through the soil until approximately 200
ms when the bogie ramped and rode over the post. There was no sign of the circular fillet weld
breaking away, but the splice plates yielded, as seen in post-impact images in Figure 91. It could
not be determined when the splice plates began yielding due to the soil interfering with the
camera views.

This bogie test demonstrated the behavioral inconsistencies of posts embedded in
standard strong soil. As seen in the energy versus deflection curve in Figure 89, the circular fillet
weld did not break away; instead, it rotated through the soil and absorbed a large amount of
energy. Although this behavior was not expected, the post actually performed as desired for this
soil strength. The post was designed to break away at a peak load of 12 kips (53 kN). As seen in
Figure 88, the post rotated through the soil at an average force level of 6 kips (27 kN). Since the
soil was weaker than expected, the post rotated through the soil as desired, although the force
levels never came close to the 12 kip (53 kN) range. The unexpected reduction in the soil
strength can be attributed to inconsistencies in the soil compaction and variations in the standard

strong soil.

127



MwRSF Report No. TRP-03-218-09

August 3, 2009

JIBIN - ZT-dSdN 40 3AIND UOII8|aQ snsaan ABasu3 "geg ainbi4

(ww) vordayag

00vT 00zt 000T 008 009 0oy 00z 0

ot

€403 —

(p1) ASaau3

ST

14

st

(21-dsan) uondajyaqg snsisap ASiauz

us

116U - ZT-dS9N 404 8AIND Uo1I3}aqd SnsaaA ABuau] egg aanbi4

(rur) vopayaa

09 o0s oy og oz ot 0

€403 ——

s
]
(cur-dy) AB1ou3

08t

(z1-dsan) uondayyaq snsiap A1suz

BNl - ZT-dSEN 40} 3AIND U033 SNSIBA 32404

qgg aunbi

(ww) vorpayag

00vT 00zt 000T 008 009 ooy 00z

£403 ——

AA ?>$<>> .
Voo

(N2) 32104

e

(21-dsdn) uondajyaq snsiap 32104

ys1|bul - ZT-dSgn 40) 8AIND U033 SNSI3A 3240 "egg 3.nbi4

128

(-u1) uorpayag

09 0s or o€ 14 ot

€403 —

(sdiy) @010

(z1-dsan) uonosjyaq snsiap 404




MwRSF Report No. TRP-03-218-09
August 3, 2009

Figure 91. Post-Impact Images of UBSP-12

TIME =120 ms
Figure 90. Time Sequential Photographs, Test UBSP-12
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6.5.5 Test UBSP-13 — Fracturing Bolt

Test UBSP-13 was a strong-axis impact at O degrees on the fracturing bolt concept
embedded in standard strong soil. The force and energy data are shown in Figures Figure and
Figure , respectively. As stated earlier, this test was a repeat of test UBSP-9 to ensure that the nut
failure in UBSP-9 did not cause any unrealistic behavior. A comparison of tests UBSP-9 and
UBSP-13 is provided in Section 6.6. Time-sequential photographs of test UBSP-13 are shown in
Figure 94. Upon impact, the post began to rotate immediately through the soil. As the post
continued to rotate in the soil, there was no sign of any fracture or deformation to the bolts or
post, and the post remained in contact with the bogie head until approximately 198 ms when the
bogie rode over the post.

Similar to test UBSP-12, this test showed the behavioral inconsistency of posts embedded
in strong soil. As seen in the force versus deflection curve provided in Figure , the post rotated
through the soil at approximately 5 kips (22 kN) and did not come close to the desired
breakaway force level of 12 kips (53 kN). The post did absorb significant energy, as seen in
Figure . Again, the unexpected reduction in soil strength can be attributed to inconsistencies in
the compaction of the standard strong soil. The post did not break away, but it did perform as
desired for this soil strength. Post-impact images of the undamaged post rotated over in the soil

can be seen in Figure 95.
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Figure 95. Post-Impact Images of UBSP-13

TIME =120 ms

Figure 94. Time Sequential Photographs, Test UBSP-13
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6.6 Test UBSP-9 versus Test UBSP-13

Both tests UBSP-9 and UBSP-13 consisted of a strong-axis impact at 0O degrees on the
fracturing bolt concept. After the nut stripped off of the double end stud in test UBSP-9, it was
decided to rerun the test in order to ensure there was no undesired behavior from this nut failure.
As stated previously, the only difference between the two tests pertained to the type of fastener
used. In test UBSP-9, a 3/8-in. (9.5-mm) diameter, grade 5, double end stud was used. In test
UBSP-13, a 3/8-in. (9.5-mm) diameter, grade 5, hex head bolt was used. Since the bolt and
double end stud were the same size and grade, both fasteners should have identical behavior and
strength. As noted previously, the change was made in order to reduce the number of pieces and
provide a simpler design to install.

From the force and energy versus deflection curves shown in Figures 96 and 97,
respectively, the two nearly identical tests had totally different behavior. In test UBSP-9, the
fracturing bolt post rotated through the soil at approximately 11 kips (49 kN). However, in test
UBSP-13, the post rotated through the soil at approximately 5 kips (22 kN). Although there were
inconsistencies with the soil compaction, the fracturing bolt post performed as desired in both
tests. The post broke away when the strong soil had more compaction, and it absorbed energy
and rotated through the less compacted soil, as desired. The difference in these tests clearly
shows the inconsistency when dealing with soil and also illustrates the attention that needs to be

given to the compaction and potential variability of the standard strong soil.
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6.7 Round 2 Summary and Conclusions

The second round of bogie testing consisted of five tests on two different breakaway
concepts. After reviewing the results from all of the tests, the preferred concept was determined
for the Universal Breakaway Steel Post. A summary of the second round of bogie testing is
provided in Table 12.

First, all three tests on the fracturing bolt concept showed encouraging results. In test
UBSP-9, the fracturing bolt performed as desired in a strong axis impact by breaking away at a
peak load of 11.0 kips (49 kN). The only issue was that one nut stripped off instead of allowing
the bolt to fracture. As a result, the evaluation was rerun in test UBSP-13, which was also a
strong-axis impact test that showed desirable but unexpected behavior. There was an issue with
the compaction of the soil, so the post just rotated through the soil at a low force level. However,
the post performed as desired by not breaking away in the weaker soil. For test UBSP-10, the
fracturing bolt concept was impacted in the weak axis and also performed as desired. The post
had a peak force of 6.42 kips (28.6 kN), which is close to the desired 6 Kip (26.7 kN) level.

There were two tests on the circular fillet weld that both performed adequately. In test
UBSP-11, the circular fillet weld was impacted using the weak axis of bending, and the weld
broke as desired. Even though the welds broke at 5.87 kips (26.1 kN) near the desired 6 kip (26.7
kN) level, one weld did not break away cleanly as it got hung up on the steel plates. For test
UBSP-12, the circular fillet weld was impacted using the strong axis of bending, but this test
showed the inconsistency and variation with standard strong soil. The post did perform as

desired by rotating through the soil, but only since the strength of the soil was weaker than
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expected. As a result, the actual breaking strength of the circular fillet weld concept in the strong
axis was still an unknown.

After reviewing the results from the five tests on the two different concepts, it was
decided that the fracturing bolt concept was the best option for the Universal Breakaway Steel
Post, even though the circular fillet weld design did show some promise. The decision was based
on several factors, including that the fracturing bolt post had already proven that it could break
away cleanly in both impact directions. Also, there was a concern with the consistency of weld
failures in the circular fillet weld concept. Another factor was that the fracturing bolt concept no
longer had patent issues, while the circular fillet weld has possible patent concerns.

Once the fracturing bolt concept was selected for use as the Universal Breakaway Steel
Post, it was necessary to demonstrate that this concept accurately represents the CRT wood post
embedded in soil. As a result, CRT wood post testing in standard strong soil was deemed
necessary for comparing to fracturing bolt concept that was previously tested in the strong soil.
No previous research was found regarding the testing of CRT wood posts in soil. Thus, six bogie
tests were later performed to assure that the fracturing bolt behavior matched that of the CRT

wood posts placed in soil.
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7WOOD CRT POST BOGIE TESTING IN SOIL

7.1 Purpose

In this round of bogie testing, six tests were run on CRT wood posts embedded in
standard strong soil. Previously, bogie testing was performed on CRT posts placed in a rigid
sleeve to determine the wood post properties. However, these tests were performed with the CRT
wood posts embedded 40 in. (1,016 mm) in standard strong soil to determine post-soil behavior.
The results from this testing will be compared to those obtained for the fracturing bolt concept
that also was tested in the standard strong soil.
7.2 Scope

For this round of bogie testing, the wood posts were embedded 40 in. (1,016 mm) in
standard strong soil. The test setup was identical to both the first and second round of bogie
testing. The target test condition consisted of a 20 mph (32 km/h) impact speed occurring at the
centerline of the bogie and at 24 7/8 in. (632 mm) above the ground. For tests UBSP-18 and
UBSP-19, technical difficulties were encountered with the speed traps so the actual speed was
not known. Thus, the target speed of 20 mph (32 km/h) was used for the analyses of tests UBSP-
18 and UBSP-19. As shown in Table 13, a total of six tests were performed with two tests about
the strong axis, weak axis, and at a diagonal angle at 45 degrees.

The 45-degree impact angle was chosen to be consistent with the previous CRT post
testing in the rigid sleeve. This angle allowed for the evaluation of wood posts subjected to a
biaxial loading condition. For vehicular impacts into the nose of the bullnose median barrier

system, the posts in the curved section may be loaded at some oblique angle. As such, this testing
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served to broaden the knowledge for wood post fracture and post-soil behavior due to a non-
typical loading.

Table 13. Test Matrix for Wood CRT Post Bogie Testing In Soil

Test No. Test Date o (ke/h) Speed s (M) Impact Axis
UBSP-14 06-17-2008 19.1 (30.7) 28.0 (8.54) Strong
UBSP-15 06-17-2008 20.5 (33.0) 30.1 (9.16) Strong
UBSP-16 06-18-2008 20.2 (32.5) 29.6 (9.03) Weak
UBSP-17 06-18-2008 20.6 (33.2) 30.2 (9.21) Weak
UBSP-18 06-18-2008 20.0 (32.3) 29.3 (8.94) 45 Degrees
UBSP-19 06-19-2008 20.0 (32.3) 29.3 (8.94) 45 Degrees

7.3 Post Details

The posts evaluated in this round of bogie testing were identical to the CRT wood posts
tested in the rigid sleeve and detailed in Chapter 3. Since wood is a highly variable material, all
of the CRT wood posts were carefully documented. As shown in Table 14, the post dimensions,
moisture content, mass (weight), ring density, and knots were all recorded. The post dimensions
were measured at the top of the post. The moisture content was tested at 16 in. (406 mm) above
ground line, at ground line, and at 20 in. (508 mm) below ground line with a pin type moisture
meter [21]. It should be noted that the post used in test UBSP-14 had a considerable knot in a
critical location.
7.4 Equipment and Instrumentation

The equipment and instrumentation used in this bogie testing was nearly identical to that
used in the second round of bogie testing. The only difference was that tests UBSP-16 through
UBSP-19 only used the EDR-3 accelerometer. In tests UBSP-14 and UBSP-15, both the EDR-3

and EDR-4 accelerometers were used, similar to the second round of bogie testing. Still, the
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EDR-3 was used for all of the tests and for the results that are reported. Also, the test setup, end
of test determination, and data processing were the same as that used in the first and second

rounds of the bogie testing.
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7.5 Test Results for Wood CRT Posts in Soil

The accelerometer data was processed for each test in order to obtain acceleration,
velocity, and displacement curves, as well as force versus deflection and energy versus
deflection curves. This section discusses those results for the EDR-3 accelerometer, which is
consistent with the first and second rounds of the bogie testing. Individual test results are
provided in Appendix A.

The following sections discuss the dynamic behaviors and results for test nos. UBSP-14
through UBSP-19. Also, the standard strong soil and a comparison to the results of the CRT

wood posts in a rigid sleeve from Chapter 3 are both discussed in section 7.6.
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7.5.1 Test UBSP-14 — Strong Axis (0 Degree) Impact on CRT Post

Test UBSP-14 was a strong-axis impact at O degrees on the wood CRT post embedded in
standard strong soil. The force and energy data are shown in Figures 98 and 99, respectively.
Time-sequential photographs are shown in Figure 100. Approximately 10 ms after impact, the
wood CRT post began to fracture on the tension side near the upper breakaway hole at ground
level. The post continued to fracture as it was deflected by the bogie’s impact head until the post
lost all strength and lost contact with the bogie at 72 ms.

As shown in the post-impact images provided in Figure 101, the CRT wood post had a
large knot located near the breakaway hole where the post fractured. This knot caused some
unexpected results. As seen in Figure 98, this CRT wood post broke at a peak load of 8.3 kips
(36.9 kN), which was less than the 12 kip (53.4 kN) load for which the post was predicted to
break, as determined in rigid sleeve testing documented in Chapter 3. Also, the post broke away
quite quickly, did not rotate through the soil, and did not absorb much energy, as provided in
Figure 99. From the results, it is believed that the knot greatly affected the strength and behavior

of the post, but it also showed the variability and inconsistency of wood material.
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Figure 101. Post-Impact Images of UBSP-14

=E

TIME = 120 ms
Figure 100. Time Sequential Photographs, -Il-?l%t UBSP-14
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7.5.2 Test UBSP-15 — Strong-Axis (0 Degree) Impact on CRT Post

Test UBSP-15 was also a strong-axis impact at 0O degrees on the wood CRT post
embedded in standard strong soil. The force and energy data are shown in Figures 102 and 103,
respectively. Time-sequential photographs are shown in Figure 104. Even though this test was a
repeat of test UBSP-14, a different behavior was observed. Upon impact, the wood CRT post
rotated through the soil instead of fracturing near the ground line. The bogie head remained in
contact with the post until approximately 178 ms when the bogie ramped over the rotated post.
The post showed no signs of fracturing, and the only damage was impact marks from the bogie
head, as shown in the post-impact images of the post in Figure 105.

As depicted in Figures 102 and 103, the CRT wood post rotated through the soil,
absorbed significant energy, and did not break away. When compared to test UBSP-14, the
results demonstrated the affect that defects have on wood post properties as well as on post-soil
behavior. In addition, this post rotated through the soil at approximately 5 kips (22 kN), which
was lower than 12 Kips (53.4 kN), where the post would not have been expected to break. Thus,
the wood post performed as expected for this weaker soil strength. Based on this test and the
second round of breakaway steel post testing, there were concerns regarding the inconsistent soil

strength.
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Figure 105. Post-Impact Images of UBSP-15

“TIME = 120 ms _
Figure 104. Time Sequential Photographs, Test UBSP-15
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7.5.3 Test UBSP-16 — Weak-Axis (90 Degree) Impact on CRT Post

Test UBSP-16 was a weak-axis impact at 90 degrees on the wood CRT post embedded in
standard strong soil. Due to technical difficulties, no high-speed photography was available for
this test. However, the post was observed to rotate through the soil. The post did not break away
and was in contact with the bogie head until the bogie overrode the post.

As shown in Figures 106 and 107, the post rotated through the soil at approximately 4
kips (18 kN) and absorbed significant energy. This 4-kip force level was notably low when
considering the CRT wood post with its 8-in. (203-mm) wide face had to move considerably
more soil when impacted about the weak axis of bending. Once again, the test results revealed
inconsistencies in the behavior of compacted, standard strong soil. However, the post performed
as expected for this soil resistance, as the force levels did not reach the predicted fracture load of
approximately 6 kips (27 kN) other than the inertial spike. Post-impact images of the undamaged

post and displaced soil are shown in Figure 108.
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Figure 108. Post-Impact Images of UBSP-16

152



MwRSF Report No. TRP-03-218-09
August 3, 2009

7.5.4 Test UBSP-17 — Weak-Axis (90 Degree) Impact on CRT Post

Test UBSP-17 also consisted of a weak-axis impact at 90 degrees on the wood CRT post
embedded in standard strong soil. The force and energy data are shown in Figures 109 and 110,
respectively. Time-sequential photographs are shown in Figure 111. Upon impact, the post began
to immediately rotate in the soil. Next, the post began to fracture, thus causing the post to lose its
resistance to the bogie vehicle. The fracture occurred just below ground level and was not
immediately visible. The post eventually lost contact with the bogie at 92 ms.

As shown in the force versus deflection and energy versus defection curves in Figures
109 and 110 respectively, the post broke away at approximately 5 kips (22 kN) after rotating
approximately 5 in. (127 mm). This post-soil behavior was close to what was expected, since the
CRT post was predicted to break away at 6 kips (27 kN) for bending about the weak axis and
embedment in a sleeve. The post broke just below ground level on the bottom side of the upper
breakaway hole. Post-impact images for the displaced soil and fractured post are provided in

Figure 112.
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Figure 112. Post-Impact Images of UBSP-17

TIME = 120 ms
Figure 111. Time Sequential Photographs, Test UBSP-17
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7.5.5 Test UBSP-18 — Diagonal-Axis (45 Degree) Impact on CRT Post

Test UBSP-18 was a 45-degree impact on a wood CRT post embedded in standard strong
soil. The force and energy data are shown in Figures 113 and 114, respectively. Time-sequential
photographs are shown in Figure 115. Upon impact, the post began to rotate immediately and
continued to rotate through the soil until approximately 162 ms when the bogie ramped and
overrode the post. There was no sign of wood fracture. Post-impact images of the standard strong
soil and CRT wood post are provided in Figure 116.

As shown in the force versus deflection and energy versus deflection curves provided in
Figures 113 and 114, the post rotated through the soil and absorbed considerable energy. Similar
to the weak-axis impact condition, the CRT wood post had to move more soil as compared to the
strong-axis impact condition. In this test, the post did rotate at a higher force level of 7 kips (31
kN), which was close to predicted fracture load of 8 kips (36 kN) for the diagonal impact

condition. As would be expected for the observed force level, the post did not break away.
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Figure 116. Post-Impact Images of UBSP-18

"TIME = 120 ms

Figure 115. Time Sequential Photographs, Test UBSP-18
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7.5.6 Test UBSP-19 — Diagonal-Axis (45 Degree) Impact on CRT Post

Test UBSP-19 was also a 45-degree impact on a wood CRT post embedded in standard
strong soil. The force and energy data are shown in Figures 117 and 118, respectively. Time-
sequential photographs are shown in Figure 119. The post began to rotate immediately upon
impact and continued to rotate through the soil until the bogie ramped and overrode the post at
approximately 154 ms. There was no sign of post fracture. Post-impact images from the test are
provided in Figure 120. The only post damage occurred to the top region due to contact with
bogie as it overrode the post.

Force versus deflection and energy versus deflection curves are provided in Figures 117
and 118. Even though the post rotated through the soil similar to that observed in test UBSP-18,
the force level was 5 kips (22 kN) instead of the 7 kips (31 kN) observed in test UBSP-18. Thus,
these two tests once again showed the effect that inconsistent, compacted, standard strong soil

had on post-soil behavior.

159



MwRSF Report No. TRP-03-218-09

August 3, 2009

BN - 6T-dSEN 40J 3AIND U033 SNSAaA ABasuT *qgTT a4nbi4

(ww) uondayag

00vT 00zt 000T 008 009 00r 00z 0

€403 ——

(P A812u3

(6T-dSan) uondsyyaq snsisap Asiauz

ysl

LL

16U - 6T-dSAN 401 3AIND UOIIB|Ja Snsaan ABasug egTT a4nbi
(vur) uvopayea

€403 ——

(-ur-diy) A3sau3

ost

(6T-dsan) uondayyaq snsiap Assaug

SIIBIAl - 6T-dSEN 40} 3AIND UOI31J3 SNSIBA 32104 "/ TT 84Nnbi4

(ww) uompayea

00vT [as 000T 008 009 0oy 00z 0

€403 ——

B
(Nw) 32104

(6T-dsgn) uondayaq snsiap 32104

ys

116U - 6T-dSEN 40§ 3AIND UOII3|J3( SNSIBA 82104 "8/ TT 84nBi4
(-u1) vorpapaq

€403 ——

(sdix) 2104

ot

a3

(6T-dsan) uondayaq snsiap o4

160



MwRSF Report No. TRP-03-218-09
August 3, 2009

Figure 120. Post-Impact Images of UBSP-19

TIME =120 ms
Figure 119. Time Sequential Photographs, Tg%t1 UBSP-19
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7.6 Summary and Conclusions

A summary of the results for the six CRT wood post, soil tests in this round of bogie
testing is provided in Table 15. In a strong-axis impact in test UBSP-14, the wood CRT post had
a knot near the breakaway hole, and the post broke away at a low peak force level. For another
strong-axis impact in test UBSP-15, the post rotated through the soil at approximately 5 kips (22
kN), which was lower than the expected capacity of the post of 12 kips (53.4 kN) from the rigid
sleeve testing. Test UBSP-16 was a weak-axis impact condition where the CRT wood post
rotated through the soil at a low force level and did not break away as expected. In the second
weak-axis test, test no. UBSP-17, the post broke away at approximately 5 kips (22 kN), which
was close to the predicted fracture load of 6 kips (27 kN). For the two diagonal impact tests, test
nos. UBSP-18 and UBSP-19, the posts rotated through the soil at force levels lower than the
expected breaking force and did not break away.

As previously mentioned, there was concern that the post-soil behavior may have been
influenced by inconsistencies in soil compaction and soil behavior. However, it was believed that
the test results could still provide useful information for making comparisons to the results from
the fracturing bolt concept.

Even with the inconsistency in the tests, there was no reason to doubt the fracturing bolt
concept would have the same behavior as the CRT wood posts in soil. It had already been shown
in test nos. UBSP-9 and UBSP-13 that the fracturing bolt would rotate through the soil in weaker
soil and would break away with stronger soil. This behavior was similar with the CRT wood
posts in soil, where the wood posts would also rotate through weaker soil and break away in

stronger soil. Thus, even though comparisons between the fracturing bolt and CRT wood posts in
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soil were difficult due inconsistent soil compaction and behavior, the fracturing bolt concept still
had similar behavior as the CRT wood post tests in soil.

The only issue was that the fracturing bolt concept had never been tested at an oblique
(diagonal) angle. As a result, the fracturing bolt needed to be tested at an oblique angle to make
certain it matched the strength and behavior of the CRT wood post. Also, there were minor
refinements to the fracturing bolt design, so the fracturing bolt was retested in a strong axis
impact in addition to the oblique angle test for a third round of bogie testing on the fracturing

bolt design.
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8 BREAKAWAY POST BOGIE TESTING — ROUND 3

8.1 Purpose

The third round of bogie testing was performed to evaluate design refinements in
fracturing bolt breakaway concept. Two bogie tests were performed to ensure that the fracturing
bolt concept sufficiently matched the post-soil behavior and strength of the CRT wood post.
8.2 Scope

The third round of bogie testing was conducted on the fracturing bolt concept with minor
refinements, as detailed in Section 8.3. The test setup was identical to the previous setup used for
the bogie testing of CRT wood posts in soil. The posts were embedded 40 in. (1,016 mm) in
standard strong soil. With the erratic results during the testing of CRT wood posts placed in soil,
it was confirmed that the strong soil was compacted thoroughly using 6-in. (152-mm) lifts for the
third round of tests. The target test condition consisted of a 20 mph (32 km/h) speed and an
impact occurring at the centerline of the bogie vehicle, or at 24 7/8 in. (632 mm) above the
ground. Two bogie tests were performed, as shown in Table 16. One test was planned for
bending about the strong axis. For the second test, the oblique impact angle was set at 45 degrees
to be consistent with previous testing. No changes were planned for the weak-axis load
condition. Thus, a weak-axis impact was not performed. The behavior of the fracturing bolt
concept would be expected to have the same response as that observed in the weak-axis
condition in test UBSP-10.

Table 16. Test Matrix for Round 3 Bogie Testing

Speed .
Test No. | Test Date Post Concept oph (keih) | Tt (mis) Impact Axis
UBSP-20 | 06-30-2008 | Fracturing Bolt | 19.0 (30.6) | 27.9 (8.49) Strong
UBSP-21| 06-30-2008 | Fracturing Bolt | 19.6 (31.5) | 28.7 (8.76) 45 Degrees
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8.3 Post Details

The fracturing bolt concept was the only post tested in this third round of bogie testing.
The design was nearly identical to the fracturing bolt used in test UBSP-13 in the second round
of bogie testing, except that the bolts were spaced out farther to strengthen the post for bending
about the strong axis. The bolts were previously spaced 10 in. (254 mm) apart, but for third
round testing, the bolts were spaced 10 13/16 in. (275 mm) apart in the strong-axis direction.
This modification was performed to strengthen the post and have it deflect more before it
rupturing. The bolt spacing for a weak-axis impact was not altered. Also, fully threaded hex
bolts, or tap bolts, were used for the fracturing bolt concept. This change was incorporated to
ensure that the bolts would consistently break away regardless of the installation. The design
refinements are shown in Figures 121 through 124.
8.4 Equipment and Instrumentation

The equipment and instrumentation was the same as that used in CRT wood post testing
in soil. The EDR-3 was the only accelerometer system used for these two tests. Also, the test
setup, end of test determination, and data processing were the same as that used in the first and

second rounds of bogie testing.
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8.5 Test Results for Fracturing Bolt Concept — Round 3

The accelerometer data was processed for each test in order to obtain acceleration,
velocity, and displacement curves, as well as force versus deflection and energy versus
deflection curves. This section discusses those results for the EDR-3 accelerometer. Individual
test results are provided in Appendix A.

The following sections discuss the dynamic behaviors and results for test nos. UBSP-20
through UBSP-21. However, conclusions regarding a comparison in post performance for the

different post concepts are discussed in a subsequent section.
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8.5.1 Test UBSP-20 — Fracturing Bolt — Strong Axis

Test UBSP-20 was a strong-axis impact at O degrees on the fracturing bolt concept
embedded in standard strong soil. The force and energy data are shown in Figures 125 and 126,
respectively. Time-sequential photographs are shown in Figure 127. The post began to rotate
immediately and the impact-side bolts broke in tension at approximately 26 ms. As a result of the
bolt fracture, the post offered little resistance, and thus, the bogie head lost contact with the post
from approximately 30 ms until 54 ms. The bogie later regained contact with the post from 54
ms until 64 ms, but there was little resistance as the impact-side bolts had already failed, and the
post was pushed to the ground.

As shown in the force versus deflection and energy versus deflection curves provided in
Figures 125 and 126, the fracturing bolt concept performed sufficiently by breaking away cleanly
at a peak load of 10.8 kips (48 kN) and absorbing energy up to that peak load. All of the bolts
fractured as desired but at a slightly lower peak load than expected, which was probably due to
the actual moment arm, or distance between the bolts being shorter than anticipated. However,
the post strength was close to the 12-kip (53 kN) desired force level, and the post did break away
cleanly, thus leaving a 2 1/4 in. (57 mm) gap in the soil. This test performed similar to test no.
UBSP-9, when the soil was also well compacted. Post deformation was observed in the bolts and
washers with some slight yielding noticed in the two steel plates. Post-impact images of the post,
bolts, and soil are provided in Figure 128. Also, close-up images of the fractured bolts and

damaged washers are shown in Figure 129.
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Figure 128. Post-Impact Images of UBSP-20

Figure 127. Time Sequential Photographs, Test UBSP-20
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Figure 129. Additional Images of Bolt and Washer Damage of UBSP-20
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8.5.2 Test UBSP-21 - Fracturing Bolt — 45-Degree Angle

Test UBSP-21 was a 45-degree impact on the fracturing bolt concept embedded in
standard strong soil. The force and energy data are shown in Figures 130 and 131, respectively.
Time-sequential photographs are shown in Figure 132. The post immediately began to rotate in
the soil and twist due the 45-degree oblique impact. At approximately 22 ms, the first bolt on the
impact side fractured. The other three bolts fractured soon thereafter, but there is no clear
indication of when fracture occurred. After all four bolts had fractured, the post was weakened
and lost contact with the bogie’s head at approximately 64 ms.

Upon review of the force versus deflection and energy versus deflection curves provided
in Figures 130 and 131, it was clear that the test performed as desired. The post broke away
cleanly at a peak force level of 8.3 kips (37 kN), which was close to the targeted load value of 8
kips (36 kN) for a 45-degree impact. For this oblique load condition, the fracturing bolt post was
impacted on the flange of the upper W6x9 (W152x13.4) post segment. As a result, damage
occurred to the flange near the impact location. Also, the 1/2-in. (13-mm) thick, bottom steel
plate was bent down on the downstream corner. There was a 1/2-in. (13-mm) gap in the soil.
Post-impact images of the post, bolts, and soil are shown in Figure 133. Additional close-up

images of the fractured bolts and damaged washers are provided in Figure 134.

176



MwRSF Report No. TRP-03-218-09

August 3, 2009

SIBIAl - TZ-dSEN 40} 3AIND U033 SNSAaA ABasuT *qTET a4nbi

€403 ——

00¥T

00zt

(ww) uoipayaq

000T 008 009 0oy

(T2-dsan) uonospaq snsaap ASiauz

(0 ABau3

ysijbu3 - Tz-dSgn 401 3AIND UoI8|a snsaan ABasu3 eTeT a4nbi4

€403 —

(1) uorpayaa

oy o€ 14

(Tz-dsan) uondayaq snsiap Assaug

ozt

08t

(vur-diy) A81au3

SIBIAl - TZ-dSEN 40} 3AIND UOI1931J3 SNSI3A 32104 "QQST 84Nnbi4

ys

(ww) uorpayaq

0071 00zT 000T 008 009 00r 00z 0

€403 ——

(1) 32104

(Tz-dsan) uondayaq snsiap 2104

116U - TZ-dSgN 40) 8AIND UOINI3[Jad SNSISA 82104 "BOLT 84nbi4
(ru1) uonsayea
NENIVA 0

€403 ——

©
(sdiy) 32104

ot

(T2-dsan) uondajyaq snsiap adlod

177



MwRSF Report No. TRP-03-218-09
August 3, 2009

IME ooms Figure 133. Post-Impact Images of UBSP-21
= ms

Figure 132. Time Sequential Photographs, Test UBSP-21

178




MwRSF Report No. TRP-03-218-09
August 3, 2009

Figure 134. Additional Images of Bolt and Washer Damage of UBSP-21
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8.6 Round 3 Summary and Conclusions

A summary of the round 3 bogie testing results is provided in Table 17.The final two
bogie tests were performed to ensure that the fracturing bolt concept sufficiently matched the
strength and post-soil behavior of the CRT wood post. Both a strong-axis impact and an oblique
(45-degree) impact were performed on the fracturing bolt concept. No changes were planned that
would affect the weak-axis impact condition. As such, a weak-axis bogie test was not performed.

First, the strong-axis load condition, test no. UBSP-20, provided desired results. The
fracturing bolt concept broke away cleanly at a peak load of 10.8 kips (48 kN) and absorbed
energy up to that peak load. All of the bolts fractured as desired but at a slightly lower peak load
than expected, which was probably due to the actual moment arm or distance between the bolts
being shorter than anticipated. However, the post strength was close to the 12-kip (53 kN)
desired force level, and the post broke away cleanly in the well-compacted soil. The second test,
test no. UBSP-21 consisted of a 45-degree, oblique angle impact on the fracturing bolt concept.
During this test, the post performed very adequately and broke away cleanly at a peak load of 8.3
kips (37 kN), which is close to the targeted value of 8 kips (36 kN).

As proven by these last two bogie tests, the fracturing bolt closely matched the strength
and post-soil behavior of the CRT wood post. The strength of the fracturing bolt was close to the
targeted strength level for each impact angle, allowing the post to break away cleanly. Thus, the
fracturing bolt post concept was deemed ready for full-scale crash testing and evaluation in the

thrie-beam bullnose system.
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9 COMPUTER SIMULATION

9.1 Introduction

In addition to the dynamic bogie testing, preliminary computer simulation modeling
using LS-DYNA [20] was performed to evaluate and analyze the fracturing bolt post. This
nonlinear, finite element analysis (FEA) was planned in order to gain confidence and knowledge
with modeling the fracturing bolt concept in the event that design modifications were needed in
the future.
9.2 Previous LS-DYNA Modeling

First, although this new breakaway steel post relies on fracturing bolts, the design still
remains similar to existing slipbase designs. As a result, previous LS-DYNA slipbase simulation
models were researched and investigated. Hiser [22] reviewed and summarized the previous
slipbase simulation studies completed through 2003. Later, Hiser developed a slipbase model, as
shown in Figure 135, which served as the basis for the simulation model of the fracturing bolt
concept. However, more detail was added to include a more accurate model for predicting bolt

failure, an improved bogie model, and soil to allow the post to rotate.
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Figure 135. Hiser Slipbase Model
9.3 Fracturing Bolt Model Details

The simulation model of the fracturing bolt post was developed and validated against
results from a strong-axis bogie test, test no. UBSP-20, as described previously in Section 8.5.1.
Later, the model was also validated using the results from test nos. UBSP-10 and UBSP-21,
which were impacts in the weak- and 45-degree axes, respectively.

9.3.1 Part Details

The first step for simulating the new fracturing bolt post was to develop an accurate mesh
of the post geometry. The post consisted of many parts, as listed in Table 18. All of the parts,
besides the bolt shafts, matched the actual geometry of the post. The bolt shafts were meshed to

match the tensile area of the bolt.
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The different parts were then assigned appropriate element types and material properties.
The MAT_024 material properties for the ASTM A36 steel were taken from a previous study
[22], while the ASTM A325 bolt properties were initially estimated using the yield strength [95
ksi (0.655 GPa)] and the ultimate strength [125 ksi (0.862 GPa)]. Later, the ASTM A325 bolt
material properties were altered to better match the actual bogie testing results, as discussed in
Section 9.6.2. Different views of the mesh are provided in Figure 136.

Table 18. Model Parts, Element Types, and Materials

Parts Element Type Material
I-beam Web Fully Integrated Shell Elements (Very Fast) A36 Steel, MAT_024
I-beam Flange Fully Integrated Shell Elements (Very Fast) A36 Steel, MAT_024

Upper Steel Plate

Fully Integrated Selectively-Reduced Solid Elements

A36 Steel, MAT_024

Lower Steel Plates

Fully Integrated Selectively-Reduced Solid Elements

A36 Steel, MAT_024

Bottom Tube Fully Integrated Shell Elements (Very Fast) A36 Steel, MAT_024

Bolt Shaft #1 Fully Integrated Selectively-Reduced Solid Elements A36 Steel, MAT_024

Bolt Head and Nut #1 Fully Integrated Selectively-Reduced Solid Elements A325 Bolt Material, MAT_024
Bolt Shaft #2 Fully Integrated Selectively-Reduced Solid Elements A325 Bolt Material, MAT_024
Bolt Head and Nut #2 Fully Integrated Selectively-Reduced Solid Elements A325 Bolt Material, MAT_024
Bolt Shaft #3 Fully Integrated Selectively-Reduced Solid Elements A325 Bolt Material, MAT_024
Bolt Head and Nut #3 Fully Integrated Selectively-Reduced Solid Elements A325 Bolt Material, MAT_024
Bolt Shaft #4 Fully Integrated Selectively-Reduced Solid Elements A325 Bolt Material, MAT_024
Bolt Head and Nut #4 Fully Integrated Selectively-Reduced Solid Elements A325 Bolt Material, MAT_024
Washer #1 through #16 Fully Integrated Selectively-Reduced Solid Elements Rigid Material

*The 16 Washers were defined in 16 separate parts

Universal Breakaway Steel Post

rhox

Universal Breakaway Steel Pnﬂ ‘ ‘ ‘

&

Figure 136. Meshed Fracturing Bolt Post
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9.3.2 Connection Details

Various techniques were used to connect model parts together. For the I-beam flange and
web, the nodes were merged. For each bolt, the nodes between the bolt head, nut part, and bolt
shaft part were merged together. A contact tied nodes to surface command was used to connect
both the I-beam to the upper steel plate as well as the lower steel plate to the bottom tube.
*CONTACT_AUTOMATIC_SINGLE_SURFACE was used for contact between the bolts,
washers, nuts, and steel plates.
9.4 Initial Simulation Results — Rigid Cylinder Impacts

After modeling the fracturing bolt post, initial simulations were run with a simple rigid
cylinder impacting the fracturing bolt post about the strong axis of bending, as shown in Figure
137. Soil was excluded from these first simple models. The bottom tube was rigidly constrained
just below the ground surface, and the rest of the embedded tube was ignored. These runs were
performed to ensure that proper bolt prestress and post behavior was obtained before additional

complexity was added to the model.

UNIVERSAL BREAKAWAY STEEL FOST
Time =

Figure 137. Rigid Cylinder Impact
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9.4.1 Contact and Prestressing Issues

Numerous changes were made to this simple model in order to prestress the bolts and
eliminate all contact issues. At first, no gaps were included between the different parts in the
post, and the washers were meshed with sharp corners. However, the model did not work
correctly with these features. Contact issues were observed that caused the washers to jump and
slide around.

The first fix was to add gaps between the washers, bolts, nuts, and steel plates. After
studying different gap sizes, a 0.000394 in. (0.01 mm gap) seemed to fix the contact issues.
However, when bolt preload was added into the system, the contact issues reappeared. Thus, the
second fix included the rounding of the corners of the washers in addition to the use of gaps in
the model. Also, the 1-beam and the bottom tube were dropped from the contact definitions. As a
result of these changes, the contact feature was working correctly, and the bolts were able to be
prestressed.

9.4.2 Prestressing Results

The prestress in the bolt shafts was assigned using the *INITIAL_STRESS SOLID
command, similar to that used in the Hiser research study. An excel spreadsheet using the
CONCATENATE command was set up to prestress every integration point for all of the
elements in the bolt shafts.

The preload in the bolts required approximately 2 ms to reach equilibrium, as seen in
Figure 138. The prestress stabilized as the initial gaps in the model disappeared and the

deformable parts compressed.
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UNIVERSAL BREAKAWAY STEEL POST
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Figure 138. Prestress Levels in One Bolt Shaft
A prestress of 94 ksi (0.65 GPa) was assigned to the bolt shafts. This value was just

below the yield stress of the bolts and resulted in a final bolt preload of approximately 1.12 Kips
(5 kN). In the actual bogie test, there was no torque value specified for the bolts, and the pre-load
in the bolts was unknown. All that was known was that the bolts were tightened up “snugly”.
Thus, it was decided to move forward using a bolt prestress of 94 ksi (0.65 GPa), since there was
at least some pre-load in the bolt and no known pre-load levels for which to compare against.

9.4.3 Rigid Cylinder Impact Results

After allowing the prestressing in the bolts to stabilize, the rigid cylinder impacted the
fracturing bolt post. This impact was run to ensure proper post behavior before adding more
complexity to the model. In the actual bogie test, the bolts broke without much deformation to
the remainder of the post. This behavior was also observed in the initial simulations, as shown in
Figure 139. Thus, it seemed as though this simulation with the simple cylindrical impacter was
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working properly, and focus of the simulation effort shifted toward adding more detail and

accuracy to the model.

UNIVERSAL BREAKAWAY STEEL POST
Time=  8.0001

wh v

Figure 139. Rigid Cylinder Impact Results
9.5 Bogie and Soil Model Details

9.5.1 Bogie Model

Next, a previously developed bogie model was added to the fracturing bolt model, as
shown in Figure 140. For modeling impacts into the fracturing bolt concept, changes included
the deletion of the rigid cylinder impacter, moving the fracturing bolt post to the correct position,
and adding a more accurate bogie model. At first, the post experienced more contact issues even
before Dbeing impacted. However, when the soft option in the *CONTACT_
AUTOMATIC_SINGLE_SURFACE was changed to a value equal to 2, the post model worked

fine with the bogie model.
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Figure 140. Fracturing Bolt Model with the Bogie Model Before Impact

The bogie model was given an initial velocity to match the velocity in the actual bogie
testing. Also, an *ELEMENT_MASS command was added to give the bogie the correct weight
(mass) to that measured in the actual bogie testing. A *CONTACT_ AUTOMATIC_GENERAL
command was used for the contact between the bogie head and the fracturing bolt post.

9.5.2 Soil Model

The last addition to the simulation model was a previously developed soil model. This
soil model used springs, *MAT_SPRING_GENERAL_NONLINEAR, to simulate the soil
behavior, as shown in Figure 141. Two springs were used to mimic the soil resistance in both the
strong and weak axis of the fracturing bolt post. The springs were attached to a rigid tube, which
were scaled and placed around the full length of the bottom foundation tube of the fracturing bolt
post. The rigid tube had fixed translation and fixed rotation in the vertical Z-axis about its center

of gravity. Thus, this rigid tube only allowed the post to rotate against the soil springs.
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UNIVERSAL BREAKAWAY STEEL POST
Time = o

Figure 141. Soil Springs and Rigid Soil Tube
The loading of the soil springs seemed to working correctly, but after the bolts broke, the

unloading of soil springs caused the post to quickly spring back to zero displacement. In order to
fix this incorrect behavior, the springs’ unloading curves were changed to only have 0.04 in. (1
mm) of displacement, while having a high force, 1,799 kips (8,000 kN), to not allow any reverse
rotation. Also, an initial yield force was specified for the soil springs to ensure that the unloading
curve would be used. With the unloading curve of the soil springs fixed, the soil seemed to work
properly. Thus, the focus was shifted to accurately match the behavior the real bogie testing.
9.6 Final Simulation Results
Once all of the components in the simulation model were working correctly, numerous
simulations were performed in order to match the simulation results with those obtained from the
bogie testing program. Different soil loading curves and different bolt material properties were
the primary variables that were altered to better match the results from the actual bogie testing.
For this effort, the goal for the simulation was to be able to accurately match the physical

behavior observed in the bogie testing, including the force and energy versus deflection curves.
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At first, only the strong-axis impact condition (test UBSP-20) was validated in order to obtain
the appropriate soil loading curves and bolt material properties. Once the strong axis impact
condition was validated, the model was also validated against the weak-axis impact condition
(test UBSP-10) and the diagonal (45-degree) impact (test USBP-21).

9.6.1 Soil Loading Curve

First, numerous loading soil curves were investigated to match the actual bogie testing
results from test UBSP-20. As previously stated, the soil gap in the actual test was measured to
be approximately 2 1/4 in. (57 mm). The loading curve from the initial soil model, as shown in
Table 19, showed promising results with a soil gap of approximately 2 in. (50 mm), but the force
levels were higher than desired. As a result, lower soil strengths were tried, but it did not have
much effect until the soil strength was significantly reduced. For significantly reduced soil
strength, the post still bounced off of the bogie head too quickly, and the results were not
accurate. Next, stronger soil strengths were simulated, and these tests only led to higher and
more inaccurate force levels. Thus, it was determined to use the initial soil curve, as shown in
Table 19, and investigate different bolt material properties.

Table 19. Soil Loading Curve

Displacement (mm) | Force (KN)*

-351 0
-263 -11.7
-210 -17
-70 -16.7
-15 -11.3

0 0

9 425
246 42.9

* Negative Values for Compression of Springs
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9.6.2 Final Bolt Material Properties

Initially, the bolt material properties were estimated using the yield and ultimate strength
levels. The initial bolt failure occurred at an effective plastic strain of 0.30 and a corresponding
effective plastic stress of 130 ksi (0.90 GPa). However, it was discovered that this failure made
the bolts too weak, and thus, they fractured too quickly. Also, the simulated bolts behaved in a
more ductile manner than what was observed in the actual physical testing.

As a result, simulations were performed to determine which stress and strain values
should be used to match the strength and behavior for the actual testing. From this effort, the best
results were obtained using the bolt material properties listed in Table 20, where failure was at a
effective plastic strain of 0.25 and a effective plastic stress of 218 ksi (1.5 GPa).

Table 20. Final ASTM A325 Bolt Material Properities — MAT_024

ro e pr sigy eppf
7.86*10-06 210 0.26 0.655 0.25
plastic stress/strain curve
0 0.25
0.655 15

*Input for LS-DYNA Deck

9.6.3 Strong-Axis Impact Results

As outlined previously in Section 8.5.1 for bogie test UBSP-20, the bogie head impacted
the post and stayed in contact until approximately 26 ms when the impact-side bolts broke in
tension. Most the post deformation occurred to the bolts with some yielding and deformation in
the lower steel plate, upper steel plate, and in a few of the washers.

The simulation results matched the general post behavior observed in the physical test
closely. The bolt fracture behavior also closely matched the physical behavior, as shown in
Figure 142, where the bolts either broke in a flat or a 45-degree plane. As provided in Figure
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143, the time-sequential photographs showed the general simulated behavior followed the
behavior in the actual test with the main difference being that the bolts broke quicker in the
simulation.

The force versus deflection and energy versus deflection curves for both the simulations
and actual bogie tests are shown in Figures 144 and 145. The simulation results were very
similar to the actual test results through approximately 4 in. (100 mm) of deflection. However,
after this deflection, the simulated force levels jumped higher than observed in the actual testing,
thus resulting in the premature bolt failure and reduced energy absorbed by the post. Numerous
simulations were performed to prevent premature bolt failure. But, in every instance, the highest
bolt stress occurred at around 20 ms or before. Possible reasons for the differences in the
simulation results, such as from using rigid washers, are explained in Section 9.7. Still, the force
levels and total energy of the simulation did tend to follow the general physical test with the

notable difference being the timing for when the bolts broke.
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Figure 142. Bolt Fracture Images of the Simulation and Actual Testing

194



MwRSF Report No. TRP-03-218-09
August 3, 2009

. &
IMPACT

TIME =20 ms

TIME =40 ms

UNIVERSAL BREANAWAY STEEL POST
Twsas 8

TIME =60 ms
Figure 143. Time Sequential Photographs — Strong-Axis Impact
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9.6.4 Weak-Axis Impact Results

As outlined previously in Section 6.5.2 for bogie test UBSP-10, the post began to rotate
immediately and the impact-side bolts fractured at approximately 14 ms. Next, the non-impact-
side bolts broke at approximately 24 ms, causing the post to lose its resistance and lose contact
with the bogie at 32 ms.

The simulation results were very similar to the general post behavior observed in the
physical test. As shown in Figure 146, the time-sequential photographs revealed that the general
simulated behavior followed the behavior in the actual test with the main difference being more
damage to the upper W6x9 (W152x13.4) post in the simulation. There was more deformation
where the bogie impacted the post in the simulation than observed in the actual testing. Also, the
upper W6x9 (W152x13.4) post buckled slightly in the simulation, which was not observed in the
actual bogie test.

The force versus deflection and energy versus deflection curves for both the simulations
and actual bogie tests are shown in Figures 147 and 148. As shown, the simulation did tend to
follow the same general behavior, force levels, and energy levels observed in the actual bogie
testing. The main difference was the simulated post held on slightly longer and absorbed more
energy. Still, the force levels and total energy of the simulation tended to follow the general

behavior of the actual testing closely.
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Figure 146. Time Sequential Photographs — Weak Axis Impact
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9.6.5 Diagonal (45-Degree) Axis Impact Results

As outlined previously in Section 8.5.2 for bogie test UBSP-21, the bogie head impacted
the post and stayed in contact until approximately 26 ms when the impact-side bolts broke in
tension. Most of the post deformation occurred to the bolts with some yielding and deformation
in the lower steel plate, upper steel plate, and in a few of the washers.

The simulation results matched the general behavior of this diagonal angle impact
closely, as shown in the time-sequential photographs provided in Figure 149. One observed
difference was that initial bolt fracture occurred earlier in the simulation as compared to the
actual test. Other than this difference, both the general behavior and deformation pattern
observed in the simulation seemed to match the bogie testing.

The force versus deflection and energy versus deflection curves for both the simulations
and actual bogie tests are shown in Figures 150 and 151. The simulated force levels were very
similar to the actual bogie testing results. The simulated energy levels were slighly lower than
those observed in the actual testing. Still, overall, the force levels and total energy of the

simulation tended to follow the same general behavior that was observed in the actual testing.
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Figure 149. Time Sequential Photographs — Diagonal Axis Impact
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9.7 Conclusions/Recommendations

Computer simulation of the fracturing bolt post was performed using three different axes
of impact. For all three impact conditions, the fracturing bolt post broke away cleanly as
observed in the actual bogie tests. Thus, this fracturing bolt post model may eventually be used
in computer simulation of full-scale vehicle crash tests into thrie beam bullnose barriers in order
to evaluate future design modifications. However, this post model would still require additional
refinement to allow for improved comparisons between simulated and phyiscal test results,
especially for the energy versus deflection curve observed in strong-axis testing.

The differences between the simulation and physical test results may have occured from
multiple sources, including the soil model, the bolt material model, contact with the bogie, and
potentially from using rigid material for the washers. A few simulations were run using
deformable washers in an attempt to match the deformation observed in the actual testing.
However, the fine mesh used for the washers caused the computational time to significantly
increase. A simulation with deformable washers caused the computational time to increase from
4 hours 6 minutes with rigid washers to 16 hours 3 minutes. In addition, technical information in
terms of material properties was unavailable for modeling small washers. Thus, further
investigation is needed before deformable washers are used to improve the simulation results
obtained for the fracturing bolt post. The simulations using deformable washers caused the posts
to break away too quickly in strong-axis impacts.

Other future research should include refinements for improving the accuracy for the soil

and bolt material models. Currently, these models were modified in an attempt to match results
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observed in the the bogie testing, but the modifications to the soil model were not based on

physical data. Also, the contact between the bogie and the post should be further investigated.
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10 FULL-SCALE CRASH TEST PROGRAM

10.1 Test Requirements

Terminals and crash cushions, such as bullnose median barriers, must satisfy the
requirements provided in NCHRP Report No. 350 [4] in order to be accepted for use on new
construction projects or as a replacement for existing barriers not meeting current safety
standards. From previous testing [3], the bullnose median barrier was defined as a non-gating
barrier, and thus, must fulfill the requirements for a non-gating device. A non-gating device is
designed to contain and either redirect or capture a vehicle when impacted downstream from the
end of the device.

According to NCHRP Report No. 350, terminals and crash cushions must be subjected to
eight full-scale vehicle crash tests, five using a pickup truck weighing approximately 2,000 kg
(4,409 Ibs) and three using a small car weighing approximately 820 kg (1,808 Ibs), designated as
2000P and 820C, respectively. The required 2000P crash tests for a Test Level 3 (TL-3) device
are: (1) Test 3-31, a 100 km/h impact at a nominal angle of 0 degrees on the tip of the barrier
nose; (2) Test 3-33, a 100 km/h impact at a nominal angle of 15 degrees on the tip of the barrier
nose; (3) Test 3-37, a 100 km/h impact at a nominal angle of 20 degrees on the beginning of the
LON (Length-of-Need); (4) Test 3-38, a 100 km/h impact at a nominal angle of 20 degrees on
the Critical Impact Point (CIP); and (5) Test 3-39, a 100 km/h reverse direction impact at an
angle of 20 degrees at a location of one half of the distance to the LON from the end of the
terminal. The required 820C crash tests for a TL-3 device are: (1) Test 3-30, a 100 km/h impact
at a nominal angle of 0 degrees on the tip of the barrier nose with a 1/4-point offset; (2) Test 3-

32, a 100 km/h impact at a nominal angle of 15 degrees on the tip of the barrier nose; and (3)
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Test 3-36, a 100 km/h impact at a nominal impact angle of 15 degrees on the beginning of the
LON. It is noted that the Critical Impact Point (CIP) mentioned above is defined for non-gating
terminals as the point along the installation where it unknown whether the guardrail will capture
the impacting vehicle or redirect it.

Previous testing in “Phase I, Il, and 111 Development of a Bullnose Guardrail System for
Median Applications” [1-3] successfully completed all of the required tests on the wood-post,
thrie beam bullnose system. Based on the success of the previous testing, it was believed that the
tests required for this project would be those tests that would be affected by the change from the
wood CRT posts to the steel fracturing bolt posts. After considerable discussion, researchers
determined that two full-scale crash tests, with a possible third test, would be required in this
project:

(1) Test Designation 3-38 (2000P at CIP);

(2) Test Designation 3-30 (820C end-on, with 1/4-point offset); and possibly

(3) Test Designation 3-31 (2000P end-on to evaluate penetration distance)

The full-scale vehicle crash test matrix is provided in Figure 152.
10.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas:
(1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for
structural adequacy are intended to evaluate the ability of the terminal to contain, redirect, or
allow controlled vehicle penetration in a predictable manner. Occupant risk evaluates the degree
of hazard to occupants in the impacting vehicle. Vehicle trajectory after collision is a measure of

the potential for the post-impact trajectory of the vehicle to cause subsequent multi-vehicle
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accidents, thereby subjecting occupants of other vehicles to undue hazard or to subject the
occupants of the impacting vehicle to secondary collisions with other fixed objects. These three
evaluation criteria are defined in Table 21. The full-scale vehicle crash testing program was
conducted and reported in accordance with the evaluation procedures provided in NCHRP

Report No. 350.
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Table 21. NCHRP Report No. 350 Evaluation Criteria for Crash Tests

Evaluation Evaluation Criteria Applicable
Factors Tests
A Test article should contain and redirect the vehicle: the vehicle should not penetrate, 3-36
underride, or override the installation although controlled lateral deflection of the test 3-37
article is acceptable. 3-38
Structural 3-30
Adequacy 3-31
C. Acceptable test article performance may be by redirection, controlled penetration, or 3-32
controlled stopping of the vehicle. 3-33
3-39
D. Detached elements, fragments or other debris from the test article should not
penetrate or show potential for penetrating the occupan: compartment, or present an
undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations ATL
of, or infrusions into, the occupant compartment that could cause serious injuries
should not be permitted.
F. The vehicle should remain upright during and after collision although moderate roll, ALL
pitching, and yawing are acceptable.
. " . . 3-30
Occupant H. Occupant impact velocities should satisty the following: 331
e Occupant Impact Velocity Limits (m/s) 2 21
Risk . ? . 3-32
Component Preferred Maximum 3-33
Longitudinal and 9 12 ey
= 3-36
Lateral
y . . . 3-30
L Occupant ridedown accelerations should satisfy the following: 3-31
Occupant Ridedown Acceleration Limits (G’s) 2 24
: . 3-32
Component Preferred Maximum 3.33
= 3-33
Longitadinal and 15 20 -
- 3-36
Lateral
K. After collision it is preferable that the vehicle's trajectory not intrude into adjacent ALL
traffic lanes. )
. . . —t 3-37
L. The occupant impact velocity in the longitudmal direction should nct exceed 12 3.38
P . - 0 . . . . . -
n/sec and the occupant ridedown acceleration in the longitudina! direction should not 330
iy s 3-39
exceed 20 G’s.
3-36
Vehicle . . : . . 3-37
Trajectory M. The exit angle from the test article preterably should be less than 60 percent ot the 3238
: ’ test impact angle, measured at the time the vehicle lost contact with the device. 3.30
3-30
3-31
. L . . . 3-32
N. Vehicle trajectory behmd the test article is acceptable. 333
J=22
3-39

209




MWRSF Report No. TRP-03-218-09
May 5, 2009

10.3 Bullnose Median Barrier Design Details

The complete layout of the thrie beam bullnose barrier system is shown in Figure 154
with details shown in Figures 155 through 167. Similar to previous testing, a one-half barrier
system was utilized for the testing program in order to limit costs and construction time. The
bullnose system was constructed with twenty-eight posts, with fourteen posts positioned on each
side of the system. The first post on each side of the system was a thrie beam Breakaway Cable
Terminal (BCT) wood post. Although the goal of this study was to develop an all-steel system, it
was found in previous testing that using a BCT wood post in the anchorage system allowed for
improved performance and the effective capture of the pickup truck [5]. Also, the objective for
this study focused on the replacement of the wood CRT posts with steel posts, or other non-wood
posts. Anchor posts are different and would require a different steel post design. The new
fracturing bolt steel post used in the bullnose median barrier system was the same design
previously used in the third round of bogie testing on the breakaway posts. Photographs of the
system are provided in Figures 168 through 170.

All of the posts were placed in a compacted course, crushed limestone material meeting
Grading B of AASHTO M 147-65 as found in NCHRP 350. The soil was placed using 6 in. (152
mm) lifts in 2-ft (610-mm) diameter augured holes. Also, the fracturing bolts in the breakaway
posts were torqued to 35 ft-1bs (47.5 N-m) for the full-scale crash testing program.

10.3.1 Revised Weld Details for Fracturing Bolt Post

After completing full-scale crash testing program using the fracturing bolt post details
described above, it was determined that the 5/16-in. (7.9-mm) weld that was tested as in Figure

160 and that was used to connect the upper W6x9 (W152x13.4) post to the upper steel plate was
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overdesigned and could be made smaller for any future testing or use. As shown in Figure 153,
calculations were made that demonstrated the welds could be reduced from 5/16 in. (7.9-mm) as
tested to a 1/4-in. (6.4-mm) weld on the flanges and 3/16-in. (4.8-mm) weld on the web around
the W6x9 (W152x13.4). The weld strength was checked for both strong- and weak-axis impacts,
where the target loads were 12 kips (53 kN) and 6 kips (27 kN), respectively. Thus, this smaller

weld could be used for any future testing.
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174

kimo in. <102 mm
F\—\ /—17

295 in. (749 mm

2735 in. (695 mm>

Use a 1/4” (6.4 mm) Weld around Flanges and

450 in. (114 mm 3/16" (48 mm) Weld on Web
\
»1 1,50 in, (38 mm) t« 7w
!—J ]

Strong-Axis Impact
Ioutside fiange = (2) ( ) (4)(0.707 * 0.25)% + (2)(0.707)(0.25)(4)(2.95)% = 12.31 in*

Iinside fiange = (2) ( ) (3)(0.707  0.25)% + (2)(0.707)(0.25)(3)(2.735)? = 7.94 in*

Lyep = (2)( )(o 707)(0.1875)(4.5)* = 2.01 in
Liotar = 22.26 in*

22.26 3
= m =7.55in
M apacity = 7.55 (58 ksi) = 437.67 k * in.
. 37.67
Peak Force Capacity = 54875 = 17.6 kips > 12 kips — OK

Weak Axis-Impact
loutside flange = (2) ( ) (0 25)(0 707) (4)3 = 1.89 in*
linside fiange = (4) ( ) (0.25)(0.707)(1.5)* + (4)(0.707)(0.25)(1.5)(0.75 + 0.5)? = 1.86 in*
Iond of fiange = (4) ( ) (0.215)(0.707 » 0.25) + (4)(0.707)(0.25)(0.215)(2 + 0.125)2 = 0.69 in*

Lyep = (2) ( ) (4.5)(0.707 * 0.1875)3 + (2)(0.707)(0.1875)(4.5)(0.085 + 0.09375)% = 0.79 in*

Liotar = 5.23 in*

52 oy
200 M

Meapacity = 2.615 (58 ksi) = 151.7 k * in.

7
24875 = 6.1 kips > 6 kips — OK

*Include 1/4” (6.4 mm) weld completely around flange to ensure weld strength

Figure 153. Fracturing Bolt Recommended Welds

Peak Force Capacity =
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Figure 168. UBSP Bullnose Barrier
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Figure 169. UBSP Bullnose Barrier
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Figure 170. UBSP Bullnose Barrier
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10.4 Test Facility

The testing facility is located at the Lincoln Air-Park on the northwest side of the Lincoln
Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of
Nebraska-Lincoln.

10.5 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test
vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test
vehicle. The test vehicle was released from the tow cable before impact with the barrier system.
A digital speedometer was located on the tow vehicle to increase the accuracy of the test vehicle
impact speed.

A vehicle guidance system developed by Hinch [23] was used to steer the test vehicle. A
guide-flag, attached to the front-right wheel and the guide cable, was sheared off before impact
with the barrier system. This shearing action allowed the vehicle to be completely unrestrained at
impact. The 3/8-in. (9.5-mm) diameter guide cable was tensioned to approximately 3000 Ibs
(13.3 kN), and supported laterally and vertically every 100 ft (30.48 m) by hinged stanchions.
The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was
towed down the line, the guide-flag struck and knocked each stanchion to the ground. For test
USPBN-1, the vehicle guidance system was 884 ft (269 m) long.

10.6 Test Vehicle

For test no. USPBN-1, a 2000 GMC C2500 pickup truck was used as the test vehicle.

The test inertial and gross static weights were 4,474 Ibs (2,029 kg). The test vehicle is shown in

Figure 171, with its dimensions shown in Figure 172.
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Black and white, checkered targets were placed on the vehicle, as shown in Figure 173, to
aid in the analysis of the high-speed digital video. One target was placed directly above each of
the wheels, and another was placed at the vehicle’s center of gravity on both the driver and
passenger sides. In addition, targets were placed on the top of the vehicle. One was placed at the
vehicle’s center of gravity, two were placed on the windshield, one was placed on the hood of
the vehicle, two were placed in the pickup box, and four targets were placed on the side walls of
the box.

The front wheels of the test vehicle were aligned for camber, caster, and toe-in values of
zero so the vehicle would track properly along the guide cable. A 5B flash bulb was mounted on
the left quarter point of the vehicle’s roof to pinpoint the time of impact with the test article on
the high-speed video footage. The flash bulb was fired by a pressure tape switch mounted on the
front-left corner of the bumper. A remote-controlled brake system was installed in the test

vehicle so the vehicle could be brought safely to a stop after the test.
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Figure 171. Test Vehicle, Test USPBN-1
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Date: 11/28/2008 Test Number: USPBN—1 Modal: 2000p/C 2500
Make: Chevrolet Vehicle 1.D.#: 1GCGC24R1YRIB1174
Tire Size: LT245£75 R16 Year: 2000 Odometer: 250447

*(All Measurements Refer to Impacting Side)

Yehick Geomstry —— mm [in.)

o _1889.1  (74.375) b _1835.2 (72.25)

c 55626 (219.0) d _1327.2 (52.25)
e 3327.4 {131.0) f 908.05 (3575}
g _B73.1 {286.5) h _1406.5 (55.375}
1 _441.33  (17.375) j _B47.7  [25.5)

k _609.6  (24.0) | _793.75 _ (31.25)
m 1587.5  (62.5) n _1819.3  (63.75)
o _1009.7__ (39.75) p _B2.55 3.25

q __762 {30.0) r_4445 [17.5)

s 466.73 (18.375) t _1844.7  (72.525}
Wheel Center Height Front 361.95 (14.25)
Wheel Center Height Rear _385.13 (14.375}

] @ P —
T\;’_.chr "J-“»o-\.;\? | Wheel Well Clearonce (FR) B35.35  (35.25)
) Wheel Well Clecronce (RR) _952.5 37.5
Frame Height {FR) 390.53 |15.J?5E
GYWR F 4100 Frame Height (RR) 685.8 27.0
R 6000 Engine Type 8 CYL. GAS
Tet. 2500 Engine Size 2.7L

Tronsmission Type:

Automatic
Weights
kg [Ibs) Curb Test Inertial Gross Stotic RWD
W—frant 1233.3 {2719) (2614) 1185.7  [2614)
W—rear 532.13 !2055! B4 3.68 (186Q) B43.E8 1860)
W—tokal 2185.5  (4774) 2020.4  (4474) 2029.4  (4474)
Note any damage prior to tesi: Hene

Figure 172. Vehicle Dimensions, Test USPBN-1
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TEST #: USPBN-—1
TARGET GEOMETRY—— mm (in.)

A 1607 (63.25) E 2153 (84.75) | 997  (39.25)

B 2362 (93.0) F 1216 (47.875) J 1054  (41.5)

C 1229 (48.375) G 1407 (55.375) K 673  (26.5)

D 2153 (84.75) H 1921 (75.625)

Figure 173. Vehicle Target Locations, Test USPBN-1
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10.7 Data Acquisition Systems

Three data acquisition systems, two accelerometers and one rate transducer, were used to
measure the motion of the vehicle. The output data from all three devices was analyzed and
plotted using the “DynaMax 1 (DM-1)” computer software program and a customized Microsoft
Excel spreadsheet.

10.7.1 Accelerometers

One triaxial piezoresistive accelerometer system with a range of 200 g’s was used to
measure the acceleration in the longitudinal, lateral, and vertical directions at a sample rate of
10,000 Hz. The environmental shock and vibration sensor/recorder system, Model EDR-4M6,
was developed by Instrumented Sensor Technology (IST) of Okemos, Michigan and includes
three differential channels as well as three single-ended channels. The EDR-4 was configured
with 6 MB of RAM memory and a 1,500 Hz low pass filter. The “DynaMax 1 (DM-1)”
computer software program and a customized Microsoft Excel spreadsheet were used to analyze
and plot the accelerometer data.

Another triaxial piezoresistive accelerometer system with a range of £200 g’s was also
used to measure the acceleration in the longitudinal, lateral, and vertical directions at a sample
rate of 3,200 Hz. The environmental shock and vibration sensor/recorder system, Model EDR-3,
was developed by Instrumented Sensor Technology (IST) of Okemos, Michigan. The EDR-3
was configured with 256 kB of RAM memory and a 1,120 Hz low pass filter. The “DynaMax1
(DM-1)" computer software program and a customized Microsoft Excel spreadsheet were used

to analyze and plot the accelerometer data.
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Finally, a third accelerometer system was also used to measure the acceleration in the
longitudinal, lateral, and vertical directions at a sample rate of 10,000 Hz. The environmental
shock and vibration sensor/recorder system, a two-Arm piezoresistive accelerometer, was
developed by Endevco of San Juan Capistrano, California. Three accelerometers were used to
measure each of the longitudinal, lateral, and vertical accelerations independently. Data was
collected using a Sensor Input Module (SIM), Model TDAS3-SIM-16M, which was developed
by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SIM was
configured with 16 MB SRAM memory and 8 sensor input channels with 250 kB
SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack is
configured with isolated power/event/communications, 10BaseT Ethernet and RS232
communication, and an internal back-up battery. Both the SIM and module rack are crashworthy.
The “DTS TDAS Control” computer software program and a customized Microsoft Excel
worksheet were used to analyze and plot the accelerometer data.

10.7.2 Rate Transducers

An Analog Devices, Inc. model ADXRS300 rate gyro with a range of £1200 degrees/sec
in each of the three directions (pitch, roll, and yaw) was used to measure the rotational rates of
motion of the test vehicle. The rate transducer was internally mounted on EDR-4M6, and
therefore was also rigidly attached to the vehicle near its center of gravity. Rate transducer
signals were stored in the internal memory of EDR-4M6.

An additional angular rate sensor was also used. The ARS-1500 has a range of 1,500
degrees/sec in each of the three directions (pitch, roll, and yaw) and was used to measure the

rates of rotation of the test vehicle. The angular rate sensor was mounted on an aluminum block
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inside the test vehicle at the center of gravity and recorded data at 10,000 Hz to the SIM. The
raw data measurements were then downloaded, converted to the proper Euler angles for analysis,
and plotted. The “DTS TDAS Control” computer software program and a customized Microsoft
Excel worksheet were used to analyze and plot the angular rate sensor data.

10.7.3 High-Speed Photography

For test no. USPBN-1, five high-speed VITcam digital video cameras and five digital
video cameras were used. Camera details, lens information, and camera operating speeds are
shown along with a schematic of the camera locations in Figure 174.

The VITcam videos were analyzed using Image Express MotionPlus and Redlake Motion
Scope software. Camera speed and camera divergence factors were considered in the analysis of
the high-speed videos.

10.7.4 Pressure Tape Switches

Five pressure-activated tape switches, spaced at 2-m (6.56-ft) intervals, were used to
determine the speed of the vehicle before impact. Each tape switch fired a strobe light which sent
an electronic timing signal to the data acquisition system as the right-front tire of the test vehicle
passed over it. The test vehicle speed was then determined from the electronic timing mark data
recorded using the “Test Point” software. Strobe lights and high-speed film analysis are used

only as a backup in the event that vehicle speed cannot be determined from the electronic data.
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10.8 Crash Test No. USPBN-1

Test no. USPBN-1 was conducted according to NCHRP Report No. 350 Test Designation
3-38. The 4,474-1b (2,029-kg) pickup truck impacted the test article at a speed of 63.2 mph
(101.7 km/h) and an angle of 22.6 degrees. The target critical impact point was the centerline of
post no. 2, as shown in Figure 175. Actual vehicle impact with the barrier system occurred
approximately 4 in. (101.6 mm) downstream of the target location. A summary of the test results
and sequential photographs are shown in Figure 176. Additional sequential and documentary
photographs are shown in Figures 177 through 187.

10.8.1 Weather Conditions

Test No. USPBN-1 was conducted on November 26, 2008 at approximately 1:30 pm. The
weather conditions were reported as shown in Table 22.

Table 22. Weather Conditions, Test No. USPBN-1

Temperature 52 °F (11 °C)
Humidity 38%

Wind Speed 3 mph (5 km/hr)
Wind Direction 320° from True North
Sky Conditions Sunny

Visibility 10 Statute Miles
Pavement Surface Dry

Previous 3-Day Precipitation 0 in. (0 mm)

Previous 7-Day Precipitation 0 in. (0 mm)

10.8.2 Test Description

Following the initial impact with the pickup truck, the thrie beam rail immediately began
to deform inward. At approximately 0.038 sec, the left front of the pickup truck impacted post
no. 3 on the right side, or side A, causing the bolts to fracture and the post no. 3 to break away.
At 0.058 sec, post no. 4 on the right side had broken away. As the pickup penetrated farther into
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the barrier, post no. 5 broke away at approximately 0.076 sec. At 0.096 sec, the wood blockout
on post no. 2 broke, which separated the rail from post no. 2. After post no. 6 broke at 0.110 sec,
post no. 1 on the right side broke at approximately 0.112 sec, which also eliminated the cable
anchor on the right side. Even with the released anchor, the rail continued to wrap around the
pickup as it penetrated farther into the system.

Next, post no. 7 broke in the strong axis at approximately 0.144 sec. Post no. 2 finally
broke at approximately 0.210 sec, due to the impact with post no. 1, and the rail began to deform
over to post no. 1 on the left side of the system. Also, the rail began to drop on the driver’s side
of the pickup at 0.210 sec. At approximately 0.270 sec, the front end of the pickup was near the
end of the slotted rail at post no. 8, and a buckle point formed in the non-slotted rail near post no.
9, causing the rail to begin to drop on the passenger’s side of the pickup. This buckle caused the
rail to drop to the ground, and the pickup truck began to override the rail. The truck continued to
travel up and over the rail until the left-front corner of the truck contacted the ground at
approximately 0.728 sec. The momentum of the truck continued forward, while the left-rear of
the truck impacted posts no. 11 and 12 on the left side, or side B, of the system at 0.892 sec. This
impact caused the pickup to begin rolling over, and the pickup rolled over top of post nos. 13 and
14 on the left side of the system before coming to rest on its roof approximately 15 ft (4.6 m)
downstream of the system. The trajectory of the pickup truck during the crash test and the final
position of the vehicle are provided in Figures 181 and 182.

10.8.3 Vehicle Damage

The moderate vehicle damage, occurring as a result of the vehicle climbing over the

system and rolling over upon impact, is shown in Figures 186 and 187. Minor undercarriage
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damage was observed on the vehicle. Both the front bumper and the hood had scrapes and dents
across the entire front end. The grill and both headlights broke off completely. Also, the front
windshield and the driver’s-side door were broken and cracked due to the roof of the truck being
crushed inward from the rollover. The driver’s side of the truck received moderate damage as the
front fender was dented inward, the front suspension was broken, and the driver’s door was
pushed out of the frame. In the rear, the driver’s-side rear tire was gashed, and the box shifted
with respect to the cab. Also, there was a dent and gash near the gas cap of the truck. The
passenger’s side of the truck had minor damage as there were minor dents on the box, the door
was slightly out of the frame, and there were scrapes and dents on the front fender. It is noted
that it was difficult to determine the amount and extent of the damage caused by the interaction
with the guardrail as opposed to damage caused with the vehicle overriding the system and the
subsequent rollover of the vehicle. Also, complete occupant compartment deformations and the
corresponding locations are provided in Appendix B.

10.8.4 Barrier Damage

Barrier damage was extensive, as shown in Figures 183 through 185. Most of the post
damage occurred to the right side of the system, or the impact side of the system, Side A. The
first eight posts on the right side of the system were fractured and broke away. BCT post no. 1
fractured through the hole at ground level. The universal steel breakaway post nos. 2 through 8
all broke away as the bolts fractured. None of the breakaway posts had any noticeable soil gap
except for post no. 2, which had a soil gap of 2 1/2 in. (64 mm). Post nos. 9 and 10 on the right
side of the system both bent downstream in the weak axis and were not connected to the thrie

beam rail. Post no. 11 was twisted clockwise slightly and was not connected to the rail. Post no.

241



MwRSF Report No. TRP-03-218-09
August 3, 2009

12 was not damaged but was not connected to the rail. Post no. 13 did not have any damage and
was still connected to the rail. Finally, post no. 14 was still connected to the rail but was broken
through the hole at ground level. On the left side of the system, only post nos. 11 and 12 received
damage, as they were both bent over in the weak axis from impact with the rear driver’s side of
the pickup.

The damage to the thrie beam guardrail in the system consisted of bucking and tearing of
the guardrail. Buckling of the rail on the right side occurred near post no. 2, around post nos. 7
and 8, and at post no. 9. Buckling of the rail on the left side occurred at post no. 1. On right side,
there were tears in the rail at the splice at post no. 1, in the upper slot at post no. 2, at the splice at
post no. 5, and at the bottom of the rail at post no. 6. Also, there were kinks and scuff marks all
along the right side of the barrier from post no. 2 through post no. 8 due to interaction with the
pickup truck. On the left of the system, there was a dent between post nos. 7 and 8, and the slots
at post no. 11 and 12 were deformed. Also, the rail was buckled at post no. 1 on the left side of
the barrier.

10.8.5 Occupant Risk Values

The occupant impact velocities and 0.010-sec average occupant ridedown accelerations
were calculated from both the DTS and the EDR-3 and are summarized in Table 23. It is noted
that the occupant impact velocities (OIVs) and occupant ridedown accelerations (ORAS) were
within the suggested limits provided in NCHRP Report No. 350. The THIV and PHD values
were determined to be 24.6 ft/s (7.5 m/s) and 11.37 @’s, respectively from the DTS rate

transducer. The results of the occupant risk, as determined from the accelerometer data, are also
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summarized in Figure 176. The recorded data from both the accelerometers and the DTS rate

transducer are shown graphically in Appendix C.

Table 23. Summary of OlIV, ORA, THIV, and PHD Values, Test USPBN-1

. o . Transducer System
Evaluation Criteria EDR-3 DTS
oIV Longitudinal -23.68 (-7.22) -21.05 (-6.42)
[FUs (m/s)] Lateral 9.55 (2.91) 2.68 (0.82)
ORA Longitudinal -11.92 -11.36
’S
lg°s] Lateral 5.69 6.03
THIV
[£t/s (m/s)] -- 24.6 (7.5)
PHD - 11.37
[9°s]

10.8.6 Discussion of Results

Following test USPBN-1, a safety performance evaluation was conducted, and the

fracturing bolt, steel-post bullnose barrier system was determined to be unacceptable for test

designation no. 3-38 impact conditions according to the NCHRP Report No. 350 criteria. The

bullnose barrier failed to contain and stop the test vehicle in a controlled manner due to vehicle

vaulting and override of the system. Detached elements and debris from the test article did not

penetrate or show potential for penetrating the occupant compartment. As a result of vehicle

rollover, there was deformation of, or intrusion into, the occupant compartment that could have

caused serious injury. The vehicle did not remain upright during and after collision. The

vehicle’s trajectory did not intrude into adjacent traffic lanes. However, the vehicle trajectory

behind the test article was unacceptable as the test vehicle overrode the guardrail and became

airborne in the median area behind the bullnose system. In summary, test USPBN-1 failed to
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meet several of the safety performance criteria due to the pickup truck overriding the guardrail

and its subsequent rollover.
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n‘.'
CHEVROLET

Figure 175. Impact Location, Test USPBN-1
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©0.150 sec

Figure 177. Additional Sequential Photographs, Test USPBN-1
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0.000 sec 0.500 sec

0.200 sec 0.620 sec

0.250 sec 0.870 sec

0.360 sec 1.280 sec

Figure 178. Additional Sequential Photographs, Test USPBN-1
248



MwRSF Report No. TRP-03-218-09
August 3, 2009

"

0.000 sec 0.320 sec

0.130 sec 0.410 sec

0.210 sec

0.280 sec 0.600 sec

Figure 179. Additional Sequential Photographs, Test USPBN-1
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0.120 sec 0.400 sec

Figure 180. Additional Sequential Photographs, Test USPBN-1
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Figure 187. Vehicle Damage, Test USPBN-1
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11 COMPARISON OF CRASH TESTS USING TEST DESIGNATION NO. 3-38

11.1 Comparison of Crash Tests Designation No. 3-38

Following the unsuccessful crash test on the fracturing bolt, steel-post, bullnose barrier
system, a thorough investigation was performed in order to determine the likely cause for the
unsatisfactory outcome. To assist with this investigation, a comparison was made between test
USPBN-1 and prior test designation 3-38 crash tests on both the previous wood-post and steel-
post, bullnose barrier systems, as detailed in Table 24. In addition, a comparison of the time-
sequential photographs for the fracturing bolt, steel-post bullnose test (test no. USPBN-1) and
the wood-post bullnose (test no. MBN-8) is provided in Figures 188 through 191. From these
comparisons, two factors were believed to have contributed to the vehicle climbing over the
barrier system described herein.

First, the fracturing bolt posts did not absorb sufficient energy to safely capture and
contain the vehicle. The posts broke away quickly and did not rotate much in the soil, which
allowed the pickup to penetrate farther into the system. A comparison of the fracture times for
the wood and steel posts is provided in Table 25. From this comparison, it appears that the
fracturing-bolt, steel posts, except for post no. 2, broke away quicker than the wood counterparts.
Second, post no. 2 remained intact significantly longer than the wood counterpart, thus causing
the pickup truck to redirect more than that observed in the previous wood-post bullnose testing.
Due to these factors, the pickup truck penetrated faster and farther downstream into the system
than that observed in previous testing and did not achieve similar lateral penetration, as provided
in Table 26. The front end of pickup was not sufficiently captured before contacting the end of

the slotted rail near post no. 8. A buckle formed in the non-slotted rail section located near post
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no. 9, which caused the rail to buckle toward the ground. This behavior allowed the pickup truck
to climb up and over the rail.

As a result of the failed test, design changes were deemed necessary to allow for the
successful containment or redirection of the pickup truck. Several design modifications are
recommended in Chapter 13.

Table 24. General Behavior and Comparison of Test Designation No. 3-38 Tests

Test No. Post Type Facts

- Test passed as the slotted rail pocketed around and
captured the pickup.

- The rail completely wrapped around the pickup by the

time the front end of the pickup reached post #7.
MBN-8 WOSSSERT - The rail ended up wrapping around post #8.
- The anchorage, post #1, broke away approximately 154

ms.

- The CRT wood posts broke at the bottom hole, thus
absorbing energy by moving soil.

Steel Hinged | - The anchorage, post #1, held on until 240 ms.

SBN-1 Posts - Pickup redirected instead of pocketing around post #8.

- Post #1 was changed to a wood BCT post.

- The anchorage, post #1, broke away quicker, held on
approximately 90 ms.

Steel Hinged | - Pickup pocketed into system, got inside of post #8

Posts similar to MBN-8.

- However, rail began to drop at approximately 214 ms
when front end of pickup was near post #7.

- Pickup ramped up on debris/posts causing the rail to drop

SBN-2

- The anchorage, post #1, held on until approximately 132
ms.

- Post #2 held on longer than previous wood post testing.

- Pickup did not pocket nearly as much and the rail did not
wrap around the pickup until after post #8.

- After post #8, the rail is non-slotted and the rail buckled
to the ground at approx. 210 ms.

- Posts did not absorb as much energy, no soil gaps and
posts broke away quicker.

Fracturing Bolt

USPBN-11 " Steel Posts
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Table 25. Comparison of Fracture Times for Wood and Steel Posts

MwRSF Report No. TRP-03-218-09

MBN-8 (Wood Posts) USPBN-1 (Steel Posts)
Post # | Time Broke (ms) Post # | Time Broke (ms)

1 154 1 132

2 54 2 106*

3 54 3 38

4 82 4 58

5 126 5 78

6 *x 6 110

*= Time Blockout Broke
** = Time Uncertain

Table 26. Comparison of Pickup Location versus Time

Timing of the front end of the pickup to reach each post position
At post # Test MBN-8 Test USPBN-1 Test SBN-2
3 36 32 32
4 72 56 62
5 118 92 96
6 184 122 132
7 252 168 178

** TImes In msec
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12 SUMMARY AND CONCLUSIONS

12.1 Summary

The study began with an extensive literature review of previous breakaway steel posts to
find potential candidates for use as the universal breakaway steel post. A literature review of
CRT wood post testing revealed the need for additional testing in order to determine the strength
and behavior of the CRT wood posts for use in selecting a new universal breakaway steel post.
As a result, CRT wood posts were tested and evaluated in a rigid sleeve using three different
axes of impact.

After determining the properties of the CRT wood posts, brainstorming was used to
generate new breakaway steel post concepts that could eventually replace the CRT wood post.
Several steel tubular and steel W8x10 (W203x14.9) post options were investigated. In addition,
other breakaway posts were considered and consisted of a steel fracturing bolt concept, and posts
manufactured with brittle materials, including fiber reinforced plastic and cast iron. From these
initial post concept candidates, the list was narrowed down to five concepts for use in a testing
and evaluation program, as described as the round 1 bogie testing.

For the first round of bogie testing, a steel tube in steel tube concept, a steel tube in steel
tube with a through bolt concept, a fiber reinforced plastic (FRP) tube, a fracturing bolt
(slipbase) concept, and a circular fillet weld concept were all tested and evaluated. Although
most of the concepts showed some promise, the number of concepts was narrowed down to the
two most-promising designs. Both the fracturing bolt and circular fillet weld concepts
demonstrated good potential for use as the universal breakaway steel post, and thus, they were

included in a second round of bogie testing.
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The second round of bogie testing involved five bogie tests on revised designs for the
circular fillet weld and fracturing bolt concepts. These two concepts were modified to better
match the properties of the CRT wood posts. After the second round of bogie testing, it was
determined that the fracturing bolt concept best matched the properties of the CRT wood post.
Thus, the fracturing bolt post was chosen for use as the universal breakaway steel post.

Previously, the fracturing bolt post had been tested in soil, while the wood CRT post had
been tested in a rigid sleeve. As a result, it was decided to test and evaluate the CRT wood posts
in soil to determine whether the dynamic performance of the fracturing bolt post compared with
that observed for the CRT wood post when placed in soil. From this soil testing, it was
determined that fracturing bolt reasonably compared with the soil behavior obtained for the CRT
posts. However, it was noted that the fracturing bolt post concept had never been tested at an
oblique (diagonal) angle. As a result, the fracturing bolt post needed to be tested at an oblique
angle to make certain that it matched the strength and behavior of the CRT wood post. Since
minor refinements were made to the fracturing bolt post, it was also retested in a strong-axis
impact in a third round of bogie testing.

For third round of bogie testing, the fracturing bolt post was impacted in both a strong
axis and a diagonal (45-degree) axis. From this testing, the strength of the fracturing bolt post
was found closely matched the targeted strength level for each impact angle. Also, the post broke
away cleanly for each impact angle, similar to the behavior observed for the wood posts. Thus,
the fracturing bolt post was deemed ready for evaluation through full-scale crash testing when

used in a thrie beam bullnose system.
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Before the full-scale crash testing, initial LS-DYNA simulation modeling of the
fracturing bolt post was performed. A simulation of the fracturing bolt post was created that
generally matched the behavior observed in the actual bogie testing for three different axis of
impact. For all three impact scenarios, the fracturing bolt post simulation model broke away
similar to what was observed in the bogie testing. Thus, it was believed that this model could
eventually be used in the simulation of a full-scale crash test or for use in evaluating post design
modifications.

Lastly, test no. USPBN-1 was conducted according to NCHRP Report No. 350 Test
Designation 3-38. The steel-post, bullnose system was impacted at the critical point at the
centerline of post no. 2. Actual vehicle impact with the barrier system occurred approximately 4
in. (101.6 mm) downstream of the target location. The 4,474-1b (2,029-kg) pickup truck
impacted the barrier at a speed of 63.2 mph (101.7 km/h) and an angle of 22.6 degrees.

Following test no. USPBN-1 (test designation no. 3-38), a safety performance evaluation
was conducted, and the fracturing-bolt, steel-post, bullnose barrier was determined to be
unacceptable according to the NCHRP Report No. 350 criteria. The failure of test USPBN-1 to
meet all of the safety performance criteria was directly attributed to the pickup truck overriding
the guardrail near post no. 7 on the right side of the system. Following a comparison between test
no. USPBN-1 and the previous tests run according to test designation nos. 3-38 on the bullnose
system, two factors were believed to have contributed to the vehicle climbing over the system.
First, the fracturing bolt posts did not absorb enough energy to safely capture and contain the
vehicle. The posts did not rotate much in the soil and broke away quickly, which allowed the

pickup to penetrate more into the system. Second, post no. 2 remained intact longer than the
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wood counterparts, thus causing the pickup truck to redirect more than that observed in the

previous testing on the wood-post, bullnose barrier.
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13 RECOMMENDATIONS

13.1 Future Work

Following the failure of test no. USPBN-1, MwWRSF researchers and MnDOT officials
discussed the future plan for this research project. As such, it was determined that this project
should follow one of two approaches. First, it was determined that several changes could be
implemented into the bullnose system, and then the pickup truck crash test could be re-run in
order to evaluate those design modifications. Second, this research and development project
could be refocused to utilize more computer simulation modeling, component testing, and bogie
testing in order to better understand the effect that various features and design modifications
have on overall system performance.

13.1.1 - Plan No. 1 - Implement Modifications and Re-run Full-Scale Crash Test

For the first option, it was proposed that design modifications be implemented into the
steel-post, bullnose system. Then, once any changes were incorporated into the design, the
pickup truck test would be re-run according to the test no. 3-38 impact conditions.

Following an evaluation of the test results from test no. USPBN-1 as well as a
comparison results with prior crash tests performed according to test designation no. 3-38,
several design modifications were brainstormed in order to improve barrier performance. The
potential design modifications included:

1) changing post no. 2 from a breakaway steel post to a wood BCT post, as used in the
wood-post, bullnose system;

2) reducing the soil embedment depth by 6 in. (152 mm) for each breakaway steel post);

3) adding another slotted thrie-beam rail section along each side of the barrier; and

4) increasing the structural capacity for the fracturing-bolt steel post about its strong axis of
bending.
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It should be noted that the implementation of these design changes will not ensure that
the steel-post, bullnose system will perform in an acceptable manner when evaluated with test
designation no. 3-38. However, the researchers believed that that safety performance of the steel-
post, bullnose barrier should be improved if some or all of the noted design modifications were
incorporated.

Some of the noted modifications were conceived in order to provide increased energy
absorption capacity for the breakaway steel posts, thus allowing for improved vehicle-rail
interlock on the front end and increased vehicle capture. As such, it is recommended that post no.
2 be changed back to a wood BCT post in order to provide similar fracture times and vehicle
penetration into the interior of the bullnose system, as compared to the successful test no. MBN-
8.

For option 1, the fracturing-bolt, breakaway steel post could be strengthened by replacing
3/8-in. (9.5-mm) diameter, grade 5 bolts with 7/16-in. (11.1-mm) diameter, grade 5 bolts. With
this change, the clear distance between the bolts in the strong-axis direction could be reduced
from 10 13/16 in. (275 mm) to 10 in. (254 mm). For the weak axis, the bolts would still utilize a
2 1/2-in. (64-mm) clear distance, thus slightly increasing the post strength about the weak axis.
The post capacity about the diagonal (45-degree) axis would increase as well. The post
embedment depth in the soil should also be reduced to 40 in. (1,016 mm) in order to promote
more rotation and energy absorption prior to post fracture. However, the soil would require
sufficient compaction in order to ensure that the posts would break away. With these changes,
the fracturing-bolt, steel-post, bullnose system would have increased potential for capturing the

2000P pickup truck at the TL-3 impact conditions of NCHRP Report No. 350.
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13.1.2 - Plan No. 2 — Refocus Effort on More Research and Development

For the second option, it was proposed that the research and development study be
refocused to include more component and bogie testing as well as LS-DYNA computer
simulation modeling before additional full-scale vehicle crash testing was performed. Using this
option, researchers would obtain a better understanding as to why test no. USPBN-1 failed.
Researchers would also be more able to determine how sensitive the barrier system would be to
the proposed design changes. However, this effort would likely require considerable research
funding and time before confidence would exist for predicting actual crash test behaviors or for
evaluating the effect of design changes. In addition, a longer research period would be needed

under this option versus the alternative approach discussed under option no. 1.
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Appendix A. Bogie Testing Results
A.1 Test Summary Information
A summary sheet for every bogie test is provided in this section. Summary sheets include
acceleration, velocity, and displacement versus time plots, as well as force and energy versus
deflection plots.

Table A-1. Post Testing Summary

UBSP Test Parameters

JUBSP: Universal Breakaway Steel Post Concepts

Test: Impact in standard strong soil at 0, 45, and 90 degrees with respect to strong axis
Accelerometer: EDR-3 Data

|Bogie Mass (Weight): 1,841 Ibs (835.1 kg)

|Bumper Height: 24 7/8 in. (632 mm)

Post Length: 72 in. (1,829 mm)

Soil: 135 Ib/ft* (2163 kg/m®) NCHRP 350 (AASHTO 147-65 (1990) Grade B)

Table A-2. Post Testing Results Reference

Test No. mp\;elouty}:t e Tﬁg@}? Post Type Figure Number
UBSP-1 19.5 28.5 0 Steel Tube in Steel Tube Figure A-1
UBSP-2 19.3 28.3 90 Steel Tube in Steel Tube Figure A-2
UBSP-3 19.7 28.9 0 FRP Tube Figure A-3
UBSP-4 19.6 28.7 90 FRP Tube Figure A-4
UBSP-5 194 27.6 0 Fracturing Bolt Figure A-5
UBSP-6 18.5 27.1 90 Fracturing Bolt Figure A-6
UBSP-7 194 23.6 0 Circular Fillet Weld ** No Data
UBSP-8 20.2 29.6 90 Circular Fillet Weld Figure A-7
UBSP-9 19.9 29.2 0 Fracturing Bolt -Revision Figure A-8
UBSP-10 19.1 28.0 90 Fracturing Bolt - Revision Figure A-9
UBSP-11 19.7 28.9 90 Circular Fillet Weld - Revision Figure A-10
UBSP-12 18.7 27.4 0 Circular Fillet Weld - Revision Figure A-11
UBSP-13 18.7 27.4 0 Fracturing Bolt - Revision Figure A-12
UBSP-14 19.1 28.0 0 CRT Wood Post Figure A-13
UBSP-15 20.5 30.1 0 CRT Wood Post Figure A-14
UBSP-16 20.2 29.6 90 CRT Wood Post Figure A-15
UBSP-17 20.6 30.2 90 CRT Wood Post Figure A-16
UBSP-18 20.0 29.3 45 CRT Wood Post Figure A-17
UBSP-19 20.0 29.3 45 CRT Wood Post Figure A-18
UBSP-20 19.0 27.9 0 Fracturing Bolt — 2™ Revision Figure A-19
UBSP-21 19.6 28.7 45 Fracturing Bolt — 2" Revision Figure A-20
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MIDWEST ROADSIDE SAFETY FACILITY
Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBSP-1 Max Deflection: 298 1n,
Test Date: 12-Mar-2008 Peak Force: 125k
Failure Type: Post Falure Inihial Linear Stffness: 1.3 Kin
Total Energy. 832 k-in
|Post Properties
Post Type: Steel Tube in Steel Tube
Post Size H3STeox316 HSS178212724.8
Past Length: T2in. 1829 cm
Embedment Depth: 40, ) 1016 cm
Orientation: Strong Axis g Bogie Acceleration vs. Time
|Soil Prop erties 7
radation: HA 6
Moisture Content A -
Compaction Method Pneumatic Tamper B5 [ n
Soil Density, yd: A T4
- A
ogie Properties =
Tmpact Veloaty. T9 dmph (2851ps)  B.7 mi =2 VU 1 A
Impact Height 24 8751 63.2em 21
Bogie Mass: 1841 1bs. 8351k o l , ! l l FAN
WY vy
|Data Acquired i
Acceleration Data: EDER-3 -2
CameraData AOS-5 Perpendicular - 28
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T Force vs Deflection At Impact Location 15 Bogie Velocity vs. Time
12 20
10 [ ———
8 A fi} i_I."S
o U VL o
g, i VA z
g : ' V 'U \ g 15
s A E
2 2 v VIV 5
-4 o
o 5 1o 15 20 25 3 35 [} 0.02 0.04 0.0 0.08 01 0.12
Deflection (in) Time [s)
100 Energy vs Deflection At Impact Location 2 Deflection at Impact Location vs. Time
S0 |
- o~ 30
= 70 ?25
£ o =
% 50 ,j _§ 20 /
b 7 E15
55 / 2 A
30 et S 10
20 j) o L~
10 3
o] 4]
0 5 10 15 20 25 30 35 o 002 0.04 0.0 108 1 0.12
Deflection {in) Tlmeq 5)

Figure A-1. Results of UBSP-1 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: UBSP-2 Max Deflection: 510 1n
Test Date: 12-Mar-2008 Peak Force: 137 k
Failure Type: Post Yielded Inihial Linear Stffness: 1.6 kin
Total Energy. 1629 k-in
|Post Properties
Post Type: Steel Tube in Steel Tube
Post Size H3STeox316 HSS178212724.8
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Orientation: Weak Aws g Bogie Acceleration vs. Time
|Soil Prop erties 7
radation: HA
Moisture Content A 5 H
Compaction Method:  NA s
Soil Density, yd: A =
sS4
|Bogie Properties E 3 \
Impact Velccity: 19 3mph (223 fps) E6mls =
Impact Height 24.875in 63.2 ¢ g2
Bogie Mass: 1841 1bs. 835.1kg 1 f v\-‘
|Data Acquired G e
Acceleration Data: EDER-3 ] -1
CameraData AOS-5 Perpencheular - 28 o 0.5 0.1 — 0.15 0.2 0.25
i Force vs Deflection At Impact Location 15 Bogie Velocity vs. Time
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Figure A-2. Results of UBSP-2 (EDR3)
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MIDWEST ROADSIDE SAFETY FACILITY
Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Mumber: TURESP-3 Mz Deflection: 23.3 1n,
Test Date: 13-Mar-2008 Peak Force: 57k
Failure Type: Post Falure Inihial Linear Stffness: 0.9 kin
Total Energy. 426 k-in
|Post Properties
Post Type: FETF Tube
Post Size Gudui3 152x102x9.5
Past Length: T2in. 1829 cm
Embedment Depth: 40, ) 1016 cm
Orientation: Strong Axis g8 Bogie Acceleration vs. Time
|Soil Prop erties 3
radation: HA o
Moismure Content HA - i
Compaction Method  NA & o _ﬂ " ﬂ
Seil Density, yd: NA & i1 Nt A
|Bogie Properties E 1 l l -’ l \VN \ _.-A
Tnpact Veloaty, 5 Tmph (220 fps)  Eome 5 I 1 | N\
Impact Height 24.975in 63.2em 25 \ |V
Bogie Mass: 1841 1bs. 835.1kg I} \'V )
|Data Acquired e
Acceleration Data: EDER-3 -1
CameraData AOS-5 Perpendicular - 28
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Figure A-3. Results of UBSP-3 (EDR3)

279



MwRSF Report No. TRP-03-218-09
August 3, 2009

Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBRSP4 Max Deflection: 41.0 1n,
Test Date: 13-Mar-2008 Peak Force: 74k
Failure Type: Post Falure Inihial Linear Stffness: 0.9 kin
Total Energy. 221 k-in
|Post Properties
Post Type: FETF Tube
Post Size Gudui3 152x102x9.5
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Orientation: Weak Aws g Bogie Acceleration vs. Time
|Soil Prop erties
radation: HA 4
Moisture Content A —
Cempaction Method:  NA B3
Sail Density, yd: MA E L
|Bogie Properties E 2 V
Impact Velccity: 19 6mph (227 fps) E8mls = A
Impact Height 24.875in 63.2 ¢ g1 v v
Bogie Mass: 1841 1bs. 8351k "
|Data Acquired
Acceleration Data: EDER-3 -1
CameraData AOS-5Perpenchcular - 28
0.02 004 C0%ime [Q.UB o1 012 .14
: Force vs Deflection At Impact Location 15 Bogie Velocity vs. Time
i 30
6 [ ———
5 B ,_.,25 ———
I
R fa A 22
@ >
g, \ 2
g W\ g1s
2 \/ A z
16
: N
o 5
=]\ o
o 10 20 30 40 50 0.02 .04 00g .08 01 012 014
Deflection (in) Time (s
100 Energy vs Deflection At Impact Location i Deflection at Impact Location vs. Time
= '_’-"’ S /’
0 il £ /‘/
z 0 g E30 /’
&, M 525 -
& % 2
B 4 =20
=
* w0 / ais -
20 _'/ 10 //
10 [ 5 ~
o] 4]
o 10 20 .30 40 50 0.02 0.04 006, .08 0.1 012 0.14
Deflection {in) Time [59

Figure A-4. Results of UBSP-4 (EDR3)
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MIDWEST ROADSIDE SAFETY FACILITY
Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBSP-5 Max Deflection: 23.1 1n
Test Date: 14-Mar-2008 Peak Force: 77k
Failure Type: Post Falure Inihial Linear Stffness: 1.9 kin
Total Energy. 356 kdn
|Post Properties
Post Type: Slipbase
Post Size Wexd W152x134
Past Length: T2in. 1829 cm
Embedment Depth: 40, ) 1016 cm
Orientation: Strong Axis g Bogie Acceleration vs. Time
|Soil Prop erties
radation: HA 4 r"\
Moisture Content A — \,\
Compaction Method A EE] Y
Seil Density, ye: MA T \
|Bogie Properties E 2
Impact Velccity: 12 8mph (276 fps) 24 mls = 1
Impact Height 24 8751 63.2em 8 \
Bogie Mass: 1841 1bs. 8351k " \ /'\ TN
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Figure A-5. Results of UBSP-5 (EDR3)
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MIDWEST ROADSIDE SAFETY FACILITY
Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Mumber: TREP-6 Mz Deflection: 154 1n.
Test Date: 14-Mar-2008 Peak Force: 53 k
Failure Type: Post Falure Inihial Linear Stffness: 38 kin
Total Energy. 193 kdin
|Post Properties
Post Type: Slipbase
Post Size Wexd W152x134
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Orientation: Weak Aws g8 Bogie Acceleration vs. Time
|Soil Prop erties 3
radation: HA n
Moisture Content A 25 ’ \
Compaction Method A & 2
Seil Density, yd: NA & I N
|Bogie Properties 21 l \
Tnpact Veloaty, TS smph (27 10ps)  E3mp 5 { \ VY
Impact Height 24.9751n 63.2¢em 25 \ / U~
Bogie Mass: 1841 1bs. 835.1kg I} ~ N
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Acceleration Data: EDER-3 -1
CameraData AOS-5 Perpendicular - 28
P .01 002 Tiﬂ‘iﬁs] 0,04 0.os .06
: Force vs Deflection At Impact Location 15 Bogie Velocity vs. Time
5 Af\ 30
4 25
g s g
= 3 l \ /"\ \ 22
g z
E 2 </ } 815
[\ /1 \
1 / \ 10
o \\/ N\ 5
-1 0
o 5 10 15 20 o 0,01 0.02 0.0 004 o.os .06
Deflection (in) Time [s)
% Energy vs Deflection At Impact Location 18 Deflection at Impact Location vs. Time
16
P L i //
z / 12 -
&, B / g10 ,/
¥ /| Es -
- / 2 s ~
5 4 ,/
2 P
o] 4]
o 10 15 20 0.01 0.02 0.0 0.04 0.05 0.06
Deflection {in) Tlmﬁ 5)

Figure A-6. Results of UBSP-6 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: UBSP-8 Max Deflection: 448 1n,
Test Date: 18-Mar-2008 Peak Force: 74k
Failure Type: Post Falure Inihial Linear Stffness: 4.8 kin
Total Energy. 1534 k-in
|Post Properties
Post Type: Circular Fillet Weld
Post Size WEx10 W152¢223
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Crientation. Weak fzs 45 Bugie Acceleration vs. Time
|Soil Prop erties 4 e
radation: HA a5
Moisture Content A =5 2 =
Compaction Method A ) ™
Soil Density, yd: MA ?5 -‘ -\V \
[Boge Propertes g A
ogie Properties =
Impact Velccity: 20 2mph (296 fps) Ymlfe %:LS V\
Impact Height 24 8751 63.2em g1
Bogie Mass: 1841 1bs. 8351k 0.5 \“
|Data Acquired ¢ [
Acceleration Data: EDER-3 ] -5
CameraData AOS-5 Perpencheular - 28 o 0.05 Ti*ﬁ'el{s] 0.15 0.2
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Figure A-7. Results of UBSP-8 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: UBSP-9 Max Deflection: 21.5 1n,
Test Date: 29-May-2008 Peak Force: 110 k
Failure Type: Post Falure Inihial Linear Stffness: 5.9 kin
Total Energy. 251 k-in
|Post Properties
Post Type: Fracturing Belt
Post Size Woxd W152x134
Past Length: T2in. 1829 cm
Embedment Depth: 40, ) 1016 cm
Orientation: Strong Axis g Bogie Acceleration vs. Time
|Soil Prop erties 7
radation: HA
Moisture Content A 8
Compaction Method Pneumatic Tamper o 5 |4
Sail Density, yd: MA E i ﬁ}
|Bogie Properties g 3 v
Impact Velccity: 19.9mph (222 fps) E9m/s T 2
Impact Height 24 8751 63.2em .
Bogie Mass: 1841 1ks 835.1kg 1
o n Aﬁl
|Data Acquired vy
Acceleration Data: EDER-3 ] -1
CameraData AOS-5Perpencheular - 3233 o 0.05 Tiq‘llsl 0.15 0.2
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Figure A-8. Results of UBSP-9 (EDR3)
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Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TBRSP-10 Max Deflection: 185 1.
Test Date: 29-May-2008 Peak Force: 64 k
Failure Type: Post Falure Inihial Linear Stffness: 4.7 kin
Total Energy. 273 k-in
|Post Properties
Post Type: Fracturing Belt
Post Size Woxd W152x134
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Orientation: Weak Aws g Bogie Acceleration vs. Time
|Soil Prop erties 7
radation: HA
Moisture Content A 8
Compaction Method Pneumatic Tamper o 5
Soil Density, yd: A =
sS4
|Bogie Properties g 3
Impact Velccity: 19 1mph (2Efps) E5mls T ﬁ
Impact Height 24.875n 63.2em g? UL A
Bogie Mass: 1841 1ks 835.1kg 1
. L\ AAN
|Data Acquired A
Acceleration Data: EDER-3 ] -1
CameraData AOS-5Perpencheular - 323 o 0.05 Tiq‘llsl 0.15 0.2
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Figure A-9. Results of UBSP-10 (EDR3)
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Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: UBSP-11 Max Deflection: 27.1 1n,
Test Date: 29-May-2008 Peak Force: 59 k
Failure Type: Post Falure Inihial Linear Stffness: 36 kin
Total Energy. 40.9 k-in
|Post Properties
Post Type: Circular Fillet Weld
Post Size WEx10 152x102x9.5
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Orientation: Weak Aws g Buogie Acceleration vs. Time
|Soil Prop erties 7
radation: HA
Moisture Content A 8
Compaction Method A o 5
Soil Density, yd: A =
sS4
|Bogie Properties g 3 &
Impact Velccity: 197 mph (229 fps) E8mls w 2 n
Lmpact Height 24.875in 63.2cm g
Bogie Mass: 1841 1ks 835.1kg < 1 ILMAA\'
o N
|Data Acquired -
Acceleration Data: EDER-3 -1
CameraData AOS-5Perpencheular - 323
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Figure A-10. Results of UBSP-11 (EDR3)
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Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBSP-12 Max Deflection: 3E 1n
Test Date: 4-Tun-2008 Peak Force: W1k
Failure Type: Post Rotation Inihial Linear Stffness: 7.1 kin
Total Energy. 1527 k-in
|Post Properties
Post Type: Circular Fillet Weld
Post Size WEx10 Wa03e149
Past Length: T2in. 1829 cm
Embedment Depth: 40, ) 1016 cm
Orientation: Strong Axis g Bogie Acceleration vs. Time
|Soil Prop erties 7
radation: HA
Moisture Content A 8
Compaction Method A o 5 i
Soil Density, yd: A = A
sS4 L
e —— 2 N FiVAAVAN ]
Impact Velccity: 127 mph (274 fps) 24 mls T 2 v Ny
Impact Height 24 8751 63.2em . \-\\
Bogie Mass: 1837 1bs 8332kg 1 ]
o M—
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Figure A-11. Results of USBP-12 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBSP-13 Max Deflection: 3.6 1n
Test Date: 4-Tun-2008 Peak Force: W3 k
Failure Type: Post Rotation Inihial Linear Stffness: 6.7 kin
Total Energy. 1517 k-in
|Post Properties
Post Type: Fracturing Belt
Post Size Woxd W152x134
Past Length: T2in. 1829 cm
Embedment Depth: 40, ) 1016 cm
Orientation: Strong Axis g Bogie Acceleration vs. Time
|Soil Prop erties 7
radation: HA
Moisture Content A 8
Compaction Method A o 5
Soil Density, yd: MA Ea
|Bogie Properties g 3 Avl\q,—
Tnpact Velomty. T2 7mph (274 Tps)  Sdmk T, NN
Impact Height 24 8751 63.2em . ""\
Bogie Mass: 1837 1bs 8332kg 1 \_\
. o]
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Acceleration Data: EDER-3 ] -1
CameraData AOS-2 Perpenchcular - 36 4 o 0.05 Tigillsl 0.15 0.2
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Figure A-12. Results of UBSP-13 (EDR3)
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Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBSP-14 Max Deflection: 17.0 1n
Test Date: 17-Tun-2008 Peak Force: 83k
Failure Type: Post Falure Inihial Linear Stffness: 6.6 kin
Total Energy. 249 k-in
|Post Properties
Post Type: CET Waood Pest
Post Size 6" x 8" 152mmx 203 mm
Past Length: T2in. 1829 cm
Embedment Depth: 40, ) 1016 cm
Crientation. Strong Axis 7 Bugie Acceleration vs. Time
|Soil Prop erties P
radation: HA
Moisture Content A -5
Compaction Method A o
Soil Density, yd: A Té' 4
|Bogie Properties g =
Impact Velccity: 19 mph (27 %9fps) 85mfs w2
Impact Height 24 8751 63.2em . ]
Bogie Mass: 1837 1bs 8332kg
 LAAAA
|Data Acquired v V
Acceleration Data: EDER-3 ] -1
CameraData AOS-5Perpenchcular - 36 2 o 0.05 Tigglsl 0.15 0.2
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Figure A-13. Results of UBSP-14 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: UBSP-15 Max Deflection: 441 1n,
Test Date: 17-Tun-2008 Peak Force: 111k
Failure Type: Post Eotation Inihial Linear Stffness: 7.0 kin
Total Energy. 2049 k-n
|Post Properties
Post Type: CET Waood Pest
Post Size 6" x 8" 152mmx 203 mm
Past Length: T2in. 1829 cm
Embedment Depth 40, ) 1016 cm
Orientation: Strong Axis 7 Bogie Acceleration vs. Time
|Soil Prop erties P
radation: HA
Moisture Content A -5
Compaction Method A o
Soil Density, yd: A I
‘E 3 P A"M-ﬂ
|Bogie Properties = V v “\
Impact Velccity: 20 5mph (3001 fps) 9Z2mfs w2
Tmpact Height 24 875 1n §32em g e
Bogie Mass: 1837 1bs 8332kg 1 \_\
. 0
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Figure A-14. Results of UBSP-15 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBRSP-16 Max Deflection: 0.2 1n,
Test Date: 18-Tun-2008 Peak Force: 94 k
Failure Type: Post Rotation Inihial Linear Stffness: 6.1 kin
Total Energy. 1931 k-in
|Post Properties
Post Type: CET Waood Pest
Post Size 6" x 8" 152mmx 203 mm
Past Length: T2in. 1829 cm
Embedment Depth 40, 1016 cm
Orientation: Weak Aws 7 Bogie Acceleration vs. Time
|Soil Prop erties P
radation: HA
Moisture Content A -5
Compaction Method A o
Soil Density, yd: A Té' 4
: . B3
|Bogie Properties = (‘ ....Nw\-
Impact Velccity: 20 2mph (296 fps) Ymfs % 2 \
Impact Height 24 8751 63.2em .
Bogie Mass: 1827 1bs 8287 kg 1
0
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Figure A-15. Results of UBSP-16 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBSP-17 Max Deflection: 171 1n
Test Date: 18-Tun-2008 Peak Force: 86 k
Failure Type: Post Falure Inihial Linear Stffness: 58 kin
Total Energy. 40.4 k-in
|Post Properties
Post Type: CET Waood Pest
Post Size 6" x 8" 152mmx 203 mm
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Crientation. Weak fzs 7 Bugie Acceleration vs. Time
|Soil Prop erties P
radation: HA
Moisture Content A -5
Compaction Method  HA o l
Soil Density, yd: A Té' 4
|Bogie Properties g =
Impact Velccity: 20 6mph (302 fps) 9Z2mfs T2 ¥
Tmpact Height 24 875 n 632cm g |
Bogie Mass: 1827 1bs 8287 kg 1
o] —m
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Figure A-16. Results of UBSP-17 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBSP-18 Max Deflection: 378 1n
Test Date: 18-Tun-2008 Peak Force: 86 k
Failure Type: Post Rotation Inihial Linear Stffness: 4.6 kin
Total Energy. 2257 kAin
|Post Properties
Post Type: CET Waood Pest
Post Size 6" x 8" 152mmx 203 mm
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Orientation: 45 Degrees 7 Bogie Acceleration vs. Time
|Soil Prop erties P
radation: HA
Moisture Content A -5
Compaction Method  HA o MI\
; =2 S
Sail Density, yd: HMA E 4 N
: . &3
|Bogie Properties =
Impact Velccity: 20 mph (29 2fps) 2% mfs % 2 ‘\N\
Tmpact Height 24 875 n 632cm g \
Bogie Mass: 1827 1bs 8287 kg 1 V\
. o]
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Acceleration Data: EDER-3 -1
CameraData AOS-2 Perpenchcular - 36 2'
o.os Tiagls] 0.15 0.2
. Force vs. Deflection At Impact Location 15 Bogie Velocity vs. Time
10 30
& WA s \
I
= ¢ ’\‘V'\AI\A"_\ 220 \\_\\
g o z
E E: \ E 13 ‘h\.—:“—-—-
X
2 ‘\ * 10
o 5
-2 0
o 10 30 Al S0 el
Deflection {in.] 0.05 Tlnq'el[ s) 015 02
— Energy vs. Deflection At Impact Location o Deflection at Impact Location vs. Time
200 W 50
_ A0
£ = -
= . o 5 /
] / = 30 ——
5 100 I /
& y / 220 >
=0 10 7
o] 4]
0 10 20 30 40 50 &0 0.05 0.1 0.15 0.2
Deflection (in.) Time ()

Figure A-17. Results of UBSP-18 (EDR3)

293



MwRSF Report No. TRP-03-218-09
August 3, 2009

MIDWEST ROADSIDE SAFETY FACILITY
Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TUBSP-19 Max Deflection: 40,5 1n,
Test Date: 19-Tun-2008 Peak Force: 82k
Failure Type: Post Rotation Inihial Linear Stffness: 37 kin
Total Energy. 191.0 k-in
|Post Properties
Post Type: CET Waood Pest
Post Size 6" x 8" 152mmx 203 mm
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Orientation: 45 Degrees 7 Bogie Acceleration vs. Time
|Soil Prop erties P
radation: HA
Moisture Content A -5
Compaction Method A o
Soil Density, yd: A 4 \
) . ‘E 3 P WA . Y I\V_A
|Bogie Properties = o v \H\_{\A
Impact Velccity: 20 mph (29 2fps) 2% mfs w2
Tmpact Height 24 875 n 632cm g L
Bogie Mass: 1827 1bs 8287 kg 1
o]
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CameraData AOS-2 Perpenchcular - 36 2'
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Figure A-18. Results of UBSP-19 (EDR3)
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Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: TBRSP-20 Max Deflection: 19.1 1n.
Test Date: 30-Tun-2008 Peak Force: WE k
Failure Type: Bolt Falure Inihial Linear Stffness: 5.9 kin
Total Energy. 236 k-in
|Post Properties
Post Type: Fracturing Belt
Post Size Woxd W152x134
Past Length: T2in. 1829 cm
Embedment Depth: 40, ) 1016 cm
Orientation: Strong Axis g Bogie Acceleration vs. Time
|Soil Prop erties
radation: HA 6
Moisture Content A -
Compaction Method A o
Soil Density, yd: A '§4
|Bogie Properties g E
Impact Velccity: 19 mph (27 %9fps) E5mls T 2
Impact Height 24 8751 63.2em .
Bogie Mass: 1827 1bs 8287 kg o N\ 1
v
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Figure A-19. Results of UBSP-20 (EDR3)
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Bogie Test Summary
Test Information Universal Breakaway Steel Post Test Results Summary
Test Number: UBSP-21 Max Deflection: 19.0 1n.
Test Date: 30-Tun-2008 Peak Force: 83k
Failure Type: Post Falure Inihial Linear Stffness: 29 kin
Total Energy. 52.2 kAdn
|Post Properties
Post Type: Fracturing Belt
Post Size Woxd W152x134
Past Length: T2in. 1829 cm
Embedment Depth: 40, 1016 cm
Orientation: 45 Degrees g Bogie Acceleration vs. Time
|Soil Prop erties 7
radation: HA
Moisture Content A 8
Compaction Method A o 5
Soil Density, yd: MA Ed A
|Bogie Properties g 3 I\/ ‘
Tnpact Veloaty, o bmph (227 fps)  Eome = ] 1
Impact Height 24.875n 63.2em g? {
Bogie Mass: 1827 1bs 8287 kg 1
o A AN
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Figure A-20. Results of UBSP-21 (EDR3)
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Appendix B. Occupant Compartment Deformation, Test USPBN-1
Figure B-1. Occupant Compartment Deformation Data, Set 1, Test USPBN-1
Figure B-2. Occupant Compartment Deformation Data, Set 2, Test USPBN-1

Figure B-3. Occupant Compartment Deformation Index (OCDI), Test USPBN-1
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VEHICLE PRE/POST CRUSH INFO

MwRSF Report No. TRP-03-218-09

Set-1
TEST: USPBN-1 Note: If impact is on driver side need to
VEHICLE: 2000 Chevy C2500 enter negative number for Y
POINT X Y Z X' Y' Z' DEL X DEL Y DEL Z
1 32.5 -30.25 -1.5 32.25 -30.25 -1.25 -0.25 0 0.25
2 36.25 -24.25 -0.25 36 -24 0 -0.25 0.25 0.25
3 36 -16.5 -0.5 36 -16.25 -0.25 0 0.25 0.25
4 28.75 -5.5 1 28.75 -5.5 0.5 0 0 -0.5
5 30.5 -30.5 -4.75 30.25 -30.5 -5 -0.25 0 -0.25
6 32 -24.5 -4.5 32 -24.5 -4.25 0 0 0.25
7 32.25 -17 -4.5 32.25 -17 -5 0 0 -0.5
8 28.5 -7.25 -2.75 28.5 -7.5 -3 0 -0.25 -0.25
9 26 -30.25 -7.75 26 -30.5 -7.75 0 -0.25 0
10 26.5 -25.25 -7.75 26.5 -25.25 -7.5 0 0 0.25
11 27 -19.75 -7.5 26.75 -19.75 -7.5 -0.25 0 0
12 25.5 -13 -7 25.5 -12.75 -7 0 0.25 0
13 23.25 -6.5 -3 23.25 -6.5 -3.25 0 0 -0.25
14 23 -1 -2.5 23 -1 -2.5 0 0 0
15 18.5 -30 -9.25 18.5 -30.25 -10 0 -0.25 -0.75
16 18.5 -23.25 -8.75 18.5 -23.5 -9 0 -0.25 -0.25
17 17.75 -16 -8.75 17.75 -16.25 -9 0 -0.25 -0.25
18 16 -6.25 -3.25 16 -6.25 -3.75 0 0 -0.5
19 15.75 -0.75 -3 15.75 -0.75 -3 0 0 0
20 12 -30 -9.25 12 -30.25 -10 0 -0.25 -0.75
21 12.5 -21.75 -8.75 12.25 -21.75 -9 -0.25 0 -0.25
22 12.25 -14 -8.5 12.25 -14.25 -9.5 0 -0.25 -1
23 9.5 -6 -3.75 9.5 -6 -4.25 0 0 -0.5
24 8.25 -0.75 -3.25 8.25 -0.75 -4 0 0 -0.75
25 1.25 -30 -9 1.25 -30.25 -9.75 0 -0.25 -0.75
26 0.5 -215 -8 0.5 -21.75 -75 0 -0.25 0.5
27 0.75 -15.25 -7.5 0.75 -15.5 -7.5 0 -0.25 0
28 1 -6.5 -4.25 1 -6.5 -4.5 0 0 -0.25
29 1 -1 -3.75 1 -1 -4 0 0 -0.25
30
DASHBOARD
2 3
14
DOOR DOOR
\ B /
24 N
)
. Y
A 4
7

Figure B-1. Occupant Compartment Deformation, Set 1
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VEHICLE PRE/POST CRUSH INFO

MwRSF Report No. TRP-03-218-09

Set-2
TEST: USPBN-1 Note: If impact is on driver side need to
VEHICLE: 2000 Chevy C2500 enter negative number for Y

POINT X Y z X Y z DEL X DEL Y DEL Z
1 52 -20.25 -1.25 51.75 -20.25 -1.5 -0.25 0 -0.25
2 55.75 -14.25 0 55.5 -14 0 -0.25 0.25 0
3 55.5 -6.5 -0.5 55.5 -6.25 -0.5 0 0.25 0
4 48.25 4.5 0.5 48.25 4.5 0.5 0 0 0
5 50 -20.5 -4.25 49.75 -20.5 -4.5 -0.25 0 -0.25
6 51.5 -14.5 -4.5 51.5 -14.5 -4.5 0 0 0
7 51.75 -7 -4.25 51.75 -7 -4.5 0 0 -0.25
8 48 2.75 -3 48 2.5 -3.5 0 -0.25 -0.5
9 455 -20.25 -7.25 455 -20.5 -7.75 0 -0.25 -0.5
10 46 -15.25 -7.25 46 -15.25 -7.75 0 0 -0.5
11 46.5 -9.75 -7.25 46.25 -9.75 -7.75 -0.25 0 -0.5
12 45 -3 -7 45 -2.75 -7.25 0 0.25 -0.25
13 42.75 3.5 -3.25 42.75 3.5 -3 0 0 0.25
14 425 9 -2.75 425 9 -2.25 0 0 0.5
15 38 -20 -8.75 38 -20.25 -9 0 -0.25 -0.25
16 38 -13.25 -8.5 38 -13.5 -8.75 0 -0.25 -0.25
17 37.25 -6 -8.5 37.25 -6.25 -9 0 -0.25 -0.5
18 35.5 3.75 -3.5 35.5 3.75 -4.25 0 0 -0.75
19 35.25 9.25 -3.25 35.25 9.25 -3.75 0 0 -0.5
20 31.5 -20 -8.75 315 -20.25 -8.5 0 -0.25 0.25
21 32 -11.75 -8.5 31.75 -11.75 -8.5 -0.25 0 0
22 31.75 -4 -8.5 31.75 -4.25 -9.5 0 -0.25 -1
23 29 4 -3.75 29 4 -4.75 0 0 -1
24 27.75 9.25 -3.5 27.75 9.25 -4.25 0 0 -0.75
25 20.75 -20 -8.25 20.75 -20.25 -9 0 -0.25 -0.75
26 20 -11.5 -7.5 20 -11.75 -7.25 0 -0.25 0.25
27 20.25 -5.25 -7.25 20.25 -5.5 -7 0 -0.25 0.25
28 20.5 3.5 -4.25 20.5 3.5 -4.25 0 0 0
29 20.5 9 -3.75 20.5 9 -3.5 0 0 0.25
30

Dﬁ SHBOARD
1 I 7

DDDR\

28 f29
\ /
\1 : /

Y

84 \
9 L 12 F
13| 1.
15 16 1
18{ 1
20 21 22
3

N

7

/DDDR

Figure B-2. Occupant Compartment Deformation, Set 2
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Occupant Compartment Deformation Index {OCDI)

USPBN-1
2000 Chevy G2500

Test No.
Vehicle Type:

OCDi = KRABCDEFGHI

X = location of occupant compartment deformation

A = distance between the dashboard and a reference point at the rear of the occupant compartment, such as the top of the rear seat or the rear of the cab on a pickup

B = distance between the roof and the floor panel

C = distance between a reference point at the rear of the occupant compartment and the motor panel

D = distance between the lower dashboard and the floor panel

E = interior width

F = distance between the lower edge of right window and the upper edge of left window

G = distance betwaan the lower adge of left window and the upper edge of right window

H= distance between bottom front comer and top rear comner of the passenger side window

I= distance between bottom frent corner and top rear comer of the driver side window

Severity Indice:

- if the reduction is less than 3%

'S

- if the reduction is greater than 3% and less than or equal fo 10 %

- if the reduction is greater than 20% and less than or equal fo 30 %

i}
1
2 - if the reduction is greater than 10% and less than or equal fo 20 %
3
4

- if the reduction is greater than 30% and less than or equal 10 40 %

MwRSF Report No. TRP-03-218-09
August 3, 2009

— ?—P.,C,B—'—

1'/7 -
PNt
O\ 12,3 —]
Q)
Nt/
where,
1 = Passenger Side
2 = Middle
3 = Driver Side
Location;
Measurement | Pre-Test (in.) [Post-Test (in.)[ Change (in.} | % Difference| Severity Index
Al 4675 46.50 -0.25 -0.53 0
A2 4725 47 50 025 053 0
A3 47.50 4775 0.25 0.53 0
B1 43.25 3a.50 4.75 -10.98 2
B2 3875 3375 -6.00 -15.08 2
B3 4450 41.00 -3.50 -T.AT 1
c1 69.25 60.00 0.75 1.27 0
cZ 5475 55.00 0.25 046 0
G3 58.25 5850 0.25 043 0
o1 2175 21.50 0.25 -1.15 0
iF] 1725 17.00 0.25 -1.45 0
D3 2225 2200 0.25 -1.12 0
E1 6225 6225 0.00 0.00 0
E3 63.50 63.50 0.00 0.00 0
F 54.25 54.00 0.25 -0.46 0
G 5750 58.00 0.50 0.87 0
H 4150 43.00 1.50 361 1
| 4125 4325 2.00 485 1
Final OCDI:

Note: Maximum sevrity index for each variable (A-1)
is used for determination of final OCDI value

Figure B-3. Occupant Compartment Deformation Index (OCDI)
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Appendix C. Accelerometer Data Analysis, Test USPBN-1
Figure C-1. Graph of Longitudinal Deceleration — Filtered Data, Test USPBN-1
Figure C-2. Graph of Longitudinal Occupant Impact Velocity — Filtered Data, Test USPBN-1
Figure C-3. Graph of Longitudinal Occupant Displacement — Filtered Data, Test USPBN-1
Figure C-4. Graph of Lateral Deceleration — Filtered Data, Test USPBN-1
Figure C-5. Graph of Lateral Occupant Impact Velocity — Filtered Data, Test USPBN-1
Figure C-6. Graph of Lateral Occupant Displacement — Filtered Data, Test USPBN-1

Figure C-7. Rate Transducer Data, Test USPBN-1
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Longitudinal Deceleration (EDR-3)
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Figure C-1. Graph of Longitudinal Deceleration — Filtered Data, Test USPBN-1
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Longitudinal Occupant Impact Velocity (EDR-3)
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Figure C-2. Graph of Longitudinal Occupant Impact Velocity — Filtered Data, Test

USPBN-1
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Longitudinal Occupant Displacement (EDR-3)
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Figure C-3. Graph of Longitudinal Occupant Displacement — Filtered Data, Test USPBN-1
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10
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R

Lateral Deceleration (EDR-3)
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Figure C-4. Graph of Lateral Deceleration — Filtered Data, Test USPBN-1
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Lateral OQccupant Impact Velocity (EDR-3)
LISPEM-1
35
30 /J D
25 P
@ 20
- f
2 15
(X}
$ w7
= 10 ‘Jp‘ WTW
5
a
4
0 05 1 148 2 25 3 35
Time (sec)
— CFC-180 Extracted Lateral changein welocity (ftiz)
Lateral Occupant Impact Velocity (DTS)
USPBMN-1
&0
a0 wj
A0
q //
= 30
z /
S 20
: J
1D Py .Y
0
-10
0 1 2 3 4 5 &
Time (sec)
| —— CFC-180 Extracted Lateral change inwelocity (fi's)

Figure C-5. Graph of Lateral Occupant Impact Velocity — Filtered Data, Test USPBN-1
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Lateral Occupant Displacement (EDR-3)
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Figure C-6. Graph of Lateral Occupant Displacement — Filtered Data, Test USPBN-1
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Appendix D. Summary of Test USPBN-1 in Metric Units

Figure D-1. Summary of Test Results and Sequential Photographs (Metric), Test USPBN-1
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