Midwest States' Regional Pooled Fund Research Program Fiscal Years 2000-2001, 2003-2004, 2005-2006, 2007-2008 (Years 11, 14, 16, 18) Research Project Number SPR-3(017) NDOR Sponsoring Agency Code RPFP-01-05, RPFP-04-01, RPFP-06, RPFP-08-02

DESIGN AND EVALUATION OF HIGH-TENSION CABLE MEDIAN BARRIER HARDWARE

Submitted by

Jeffrey C. Thiele Graduate Research Assistant

Ronald K. Faller, PhD, P.E. Research Assistant Professor

John R. Rohde, Ph.D., P.E. Associate Professor

Karla A. Polivka, M.S.M.E., E.I.T. Research Associate Engineer Robert W. Bielenberg, M.S.M.E., E.I.T. Research Associate Engineer

> Dean L. Sicking, Ph.D., P.E. Professor and MwRSF Director

> > John D. Reid, Ph.D. Professor

James C. Holloway, M.S.C.E., E.I.T. Research Manager

MIDWEST ROADSIDE SAFETY FACILITY

University of Nebraska-Lincoln 527 Nebraska Hall Lincoln, Nebraska 68588-0529 (402) 472-0965

Submitted to

Midwest States' Regional Pooled Fund Program Nebraska Department of Roads 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-200-08

February 25, 2008

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2.	3. Recipient's Accession No.	
TRP-03-200-08			
4. Title and Subtitle		5. Report Date	
Design and Evaluation of Hig	h-Tension Cable Median	February 25, 2008	
Barrier Hardware		6.	
7. Author(s)		8. Performing Organization Report No.	
Thiele, J.C. Bielenberg, R.W.	, Faller, R.K., Sicking,	TRP-03-200-08	
D.L, Rohde, J.R., Reid, J.D., Holloway, J.C.	Polivka, K.A., and		
9. Performing Organization Name and Addr	ess	10. Project/Task/Work Unit No.	
Midwest Roadside Safety Fac	cility (MwRSF)		
527 Nebraska Hall Lincoln, Nebraska 68588-0529		11. Contract © or Grant (G) No.	
		SPR-3(017)	
12. Sponsoring Organization Name and Address		13. Type of Report and Period Covered	
Midwest States Regional Poo	led Fund Program	Final Report 2000-2008	
Nebraska Department of Road	as	14. Sponsoring Agency Code	
Lincoln, Nebraska 68502		RPFP-01-05, RPFP-04-01, RPFP-06, RPFP-	
15. Supplementary Notes			

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract (Limit: 200 words)

Static and dynamic testing of components for use in the high-tension cable median barrier, accompanied by results and conclusions, are presented in this report. Components tested included cable-to-post attachments, end-fittings, and cable splices.

The cable-to-post attachment selected for use in the high-tension cable median barrier is a curved keyway bracket. This attachment was found capable of sustaining the target load of approximately 6,000 lbs when loaded laterally, while releasing the cable under vertical loads of approximately 1,000 lbs. These loads were selected as they develop the full capacity of the posts used in the median barrier and ensure that all of the cables are not pulled under the impacting vehicle as the posts deflect.

The Bennett Bolt Works, Inc. low-tension end-fitting with a 0.875-in. threaded rod and the Armor Flex cable splice were selected for use in the cable median barrier. These components were required to develop the full capacity of the 0.75-in. diameter, 3x7 wire rope used in the barrier, or a load of approximately 39 kips. Both of these components were found capable of meeting this criterion.

17. Document Analysis/Descriptors		18. Availability Statement		
High-tension, median, cable b crash test, highway safety, roa	parrier, cable hardware, adside appurtenances	No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161		
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price	
Unclassified Unclassified		195		

DISCLAIMER STATEMENT

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views nor policies of the State Highway Departments participating in the Midwest States' Regional Pooled Fund Research Program nor the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

ACKNOWLEDGMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Midwest States' Regional Pooled Fund Program funded by the Connecticut Department of Transportation, Illinois Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Roads, New Jersey Department of Transportation, Ohio Department of Transportation, South Dakota Department of Transportation, Texas Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgment is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Associate Engineer C.L. Meyer, B.S.M.E., E.I.T., Research Engineer II A.T. Russell, B.S.B.A., Laboratory Mechanic II K.L. Krenk, B.S.M.A, Field Operations Manager A.T. McMaster, Laboratory Mechanic I Undergraduate and Graduate Assistants

Connecticut Department of Transportation

Dionysia Oliveira, Transportation Engineer 3

Illinois Department of Transportation

David Piper, P.E., Highway Policy Engineer

Iowa Department of Transportation

David Little, P.E., Assistant District Engineer Deanna Maifield, Methods Engineer Chris Poole, Transportation Engineer Specialist

Kansas Department of Transportation

Ron Seitz, P.E., Bureau Chief Rod Lacy, P.E., Road Design Leader Scott King, P.E., Road Design Leader

Minnesota Department of Transportation

Mohammad Dehdashti, P.E., Design Standard Engineer Michael Elle, P.E., Design Standard Engineer

Missouri Department of Transportation

Joseph G. Jones, P.E., Technical Support Engineer

Nebraska Department of Roads

Amy Starr, Research Engineer Phil TenHulzen, P.E., Design Standards Engineer Jodi Gibson, Research Coordinator

New Jersey Department of Transportation

Kiran Patel, P.E., P.M.P., C.P.M., Deputy State Transportation Engineer

Ohio Department of Transportation

Dean Focke, P.E., Standards Engineer

South Dakota Department of Transportation

David Huft, Research Engineer Bernie Clocksin, Lead Project Engineer Paul Oien, Project Engineer

Wisconsin Department of Transportation

John Bridwell, Standards Development Engineer Erik Emerson, Standards Development Engineer

Wyoming Department of Transportation

William Wilson, P.E., Standards Engineer

Federal Highway Administration

John G. Perry, P.E., Nebraska Division Office Danny Briggs, Nebraska Division Office

Bennett Bolt Works, Inc.

Donald Bennett, President James Sincerbeaux, Manufacturing Manager

Armor Flex

Dallas James

Brifen USA

Richard Butler Jerry Emerson

TABLE OF CONTENTS

P	'age
Technical Report Documentation Page	i
Disclaimer Statement	ii
Acknowledgments	iii
Table of Contents	vi
List of Figures	ix
List of Tables	xiii
1 Introduction	1
1.1 Background	1
1.2 Objective	2
2 Literature Review	4
2.1 Patented Attachment Systems	4
2.1.1 Trinity Highway Safety Products, Inc.	4
2.1.2 Gibraltar Cable Barrier Systems, L.P.	6
2.1.3 Nucor Marion Steel, Inc.	8
2.1.4 Blue Systems AB	9
2.1.5 Brifen USA, Inc.	. 13
3 Cable Attachment Design Details	. 15
3.1 Introduction	. 15
3.2 S3x5.7 Steel Post Jigs	. 15
3.3 Slotted Bracket Attachments	. 16
3.3.1 Uniform Slot Brackets	. 16
3.3.2 Flat Keyway Brackets	. 17
3.3.3 Angled Slot Brackets	. 19
3.3.4 Bent Keyway Brackets	. 20
3.3.5 Curved Keyway Brackets	. 21
3.4 U-Bolt Attachments	. 23
3.4.1 Welded and Notched J-Bolts	. 23
3.4.2 U-Bolts with Nut Combinations	. 24
3.4.3 U-Bolts with Keyway Slots	. 26
3.4.4 U-Bolts with Upper Slots	. 27
3.4.5 U-Bolts with Spacers	. 28
3.4.6 U-Bolts with Double Slots	. 29
3.4.7 U-Bolts with Oversized Upper Holes	. 30
3.4.8 Bolts with Clips	. 31
4 Cable Attachment Static Testing	. 34
4.1 Test Facility	. 34
4.2 Data Acquisition Systems	. 34
4.2.1 MTS 810	. 34
4.2.2 Digital Photography	. 34
5 Cable Attachment Static Testing Results	. 35
5.1 Results	. 35
5.2 Slotted Bracket Attachments	. 35

5.2.1 Uniform Slot Brackets	
5.2.2 Flat Keyway Brackets	
5.2.3 Angled Slot Brackets	40
5.2.4 Bent Keyway Brackets	
5.2.5 Curved Keyway Brackets	44
5.3 U-Bolt Attachments	
5.3.1 Welded and Notched J-Bolts	
5.3.2 U-Bolts with Nut Combinations	
5.3.3 U-Bolts with Keyways	
5.3.4 U-Bolts with Upper Slots	
5.3.5 U-Bolts with Spacers	
5.3.6 U-Bolts with Double Slots	
5.3.7 U-Bolts with Oversized Upper Holes	
5.3.8 Bolts with Clips	59
5.4 Discussion	61
6 Cable Attachment Dynamic Testing	
6.1 Purpose	
6.2 Scope	
6.3 Test Facility	
6.4 Test Apparatus	
6.5 Equipment and Instrumentation	
6.5.1 Bogie	
6.5.2 Accelerometers	
6.5.3 Load Cell	
6.5.4 High-Speed Digital Photography	
6.5.5 Digital Photography	
7 Attachment Dynamic Testing Results and Discussion	
7.1 Results	
7.1.1 Test No. SBB-1	
7.1.2 Test No. SBB-2	
7.1.3 Test No. SBB-3	80
7.1.4 Test No. SBB-4	
7.1.5 Test No. SBB-5	
7.1.6 Test No. SBB-6	89
7.1.7 Test No. SBB-7	
7.1.8 Test No. SBB-8	
7.1.9 Test No. SBB-9	
7.1.10 Test No. SBB-10	100
7.1.11 Test No. SBB-11	
7.1.12 Test No. SBB-12	
7.1.13 Test No. SBB-13	
7.1.14 Test No. SBB-14	
7.2 Discussion of Results	
8 Splice and End-Fitting Dynamic Testing	
8.1 Purpose	

. 0
8
8
8
9
9
20
21
21
21
24
26
27
29
31
34
35
36
37
38
52
52
58

List of Figures

F	Page
Figure 1. CASS Web-Slot Connection	5
Figure 2. CASS Locking Hook Bolt Attachment (Texas A&M Patent)	6
Figure 3. Gibraltar Hairpin and Lock-plate Attachment	7
Figure 4. Gibraltar J-Bolt Attachment	8
Figure 5. Nucor Marion Locking Hook Bolt Attachment (Texas A&M Patent)	9
Figure 6. Blue Systems Safence Channel Connection	. 10
Figure 7. Blue Systems Safence Bent Hook Connection	. 11
Figure 8. Blue Systems Hook and Keyway Connection	. 12
Figure 9. Blue Systems Curved, Angled Slot Connection	. 12
Figure 10. Blue Systems Safence I-Shaped Post Connection	. 13
Figure 11. Brifen Attachment System	. 14
Figure 12. Uniform Slot Bracket, Test No. SB-8	. 17
Figure 13. Flat Keyway Bracket	. 18
Figure 14. Angled Slot Bracket	20
Figure 15. Bent Keyway Bracket	21
Figure 16. Curved Keyway Bracket	22
Figure 17. Welded, Notched J-Bolts	24
Figure 18. U-Bolt with Nut Combination, Test UB-6	. 25
Figure 19. U-Bolt with Keyway	26
Figure 20. U-Bolt with Upper Slot	27
Figure 21. U-Bolt with Spacer	29
Figure 22. U-Bolt with Double Slots	. 30
Figure 23. U-Bolt with Oversized Upper Hole	. 31
Figure 24. U-Bolt Clip, Style 1	32
Figure 25. U-Bolt Clip, Style 2	33
Figure 26. Lateral Testing Force-Deflection Curves for Uniform Slot Brackets	36
Figure 27. Lateral Testing Force-Deflection Curves for Uniform Slot Brackets, Continued	. 37
Figure 28. Vertical Testing Force-Deflection Curves for Uniform Slot Brackets	37
Figure 29. Vertical Testing Force-Deflection Curves for Uniform Slot Brackets, Continued	. 38
Figure 30. Lateral Force-Deflection Curves for Flat Keyway Brackets	. 39
Figure 31. Vertical Force-Deflection Curves for Flat Keyway Brackets	. 40
Figure 32. Lateral Force-Deflection Curves for Angled Slot Brackets	. 41
Figure 33. Vertical Force-Deflection Curves for Angled Slot Brackets	. 41
Figure 34. Lateral Force-Deflection Curves for Bent Keyway Brackets	43
Figure 35. Vertical Force-Deflection Curves for Bent Keyway Brackets	43
Figure 36. Lateral Force-Deflection Curves for Curved Keyway Brackets	45
Figure 37. Vertical Force-Deflection Curves for Curved Keyway Brackets	45
Figure 38. Lateral Force-Deflection Curves for Welded, Notched J-Bolts	. 47
Figure 39. Vertical Force-Deflection Curves for Double J-Bolts	. 47
Figure 40. Lateral Force-Deflection Curves for U-Bolts with Nut Combinations	. 49
Figure 41. Vertical Force-Deflection Curves for U-Bolts with Nut Combinations	. 49
Figure 42. Vertical Force-Deflection Curves for U-Bolts with Keyways	. 50

Figure 43.	Vertical Force-Deflection Curves for U-Bolts with Nut Combinations	. 52
Figure 44.	Vertical Force-Deflection Curves for U-Bolts with Spacers	. 54
Figure 45.	Vertical Force-Deflection Curves for U-Bolts with Spacers, Continued	. 54
Figure 46.	Vertical Force-Deflection Curves for U-Bolts with Spacers, Continued	. 55
Figure 47.	Vertical Force-Deflection Curves for U-Bolts with Spacers, Continued	. 55
Figure 48.	Vertical Force-Deflection Curves for U-Bolts with Spacers, Continued	. 56
Figure 49.	Vertical Force-Deflection Curves for U-Bolts with Spacers, Dynamic	56
Figure 50.	Lateral Force-Deflection Curves for U-Bolts with Spacers, Dynamic	. 57
Figure 51.	Lateral Force-Deflection Curves for U-Bolts with Oversized Holes	. 58
Figure 52.	Vertical Force-Deflection Curves for U-Bolts with Oversized Holes	. 59
Figure 53.	Lateral Force-Deflection Curves for Bolts with Clips	60
Figure 54.	Vertical Force-Deflection Curves for Bolts with Clips	61
Figure 55.	Standard and Shoulder Bolt Bracket Installation	. 67
Figure 56.	Test Setup for Test Nos. SBB-1 Through SBB-10	. 68
Figure 57.	Test Setup for Test Nos. SBB-11 Through SBB-14	. 69
Figure 58.	Bogie and Test Setup	. 71
Figure 59.	Pre-Test and Post-Test Photographs for Test No. SBB-1	. 74
Figure 60.	Sequential Photographs, Test No. SBB-1	. 75
Figure 61.	Force-Time Data for Test No. SBB-1	. 76
Figure 62.	Pre-Test and Post-Test Photographs for Test No. SBB-2	. 77
Figure 63.	Sequential Photographs, Test No. SBB-2	. 78
Figure 64.	Force-Time Data for Test No. SBB-2	. 79
Figure 65.	Pre-Test and Post-Test Photographs for Test No. SBB-3	. 80
Figure 66.	Sequential Photographs, Test No. SBB-3	. 81
Figure 67.	Force-Time Data for Test No. SBB-3	. 82
Figure 68.	Pre-Test and Post-Test Photographs for Test No. SBB-4	. 83
Figure 69.	Sequential Photographs, Test No. SBB-4	. 84
Figure 70.	Force-Time Data for Test No. SBB-4	. 85
Figure 71.	Pre-Test and Post-Test Photographs for Test No. SBB-5	. 86
Figure 72.	Sequential Photographs, Test No. SBB-5	. 87
Figure 73.	Force-Time Data for Test No. SBB-5	. 88
Figure 74.	Pre-Test and Post-Test Photographs for Test No. SBB-6	. 89
Figure 75.	Sequential Photographs, Test No. SBB-6	. 90
Figure 76.	Force-Time Data for Test No. SBB-6	. 91
Figure 77.	Pre-Test and Post-Test Photographs for Test No. SBB-7	. 92
Figure 78.	Sequential Photographs, Test No. SBB-7	. 93
Figure 79.	Pre-Test and Post-Test Photographs for Test No. SBB-8	. 94
Figure 80.	Sequential Photographs, Test No. SBB-8	. 95
Figure 81.	Force-Time Data for Test No. SBB-8	. 96
Figure 82.	Pre-Test and Post-Test Photographs for Test No. SBB-9	. 97
Figure 83.	Sequential Photographs, Test No. SBB-9	. 98
Figure 84.	Force-Time Data for Test No. SBB-9	. 99
Figure 85.	Pre-Test and Post-Test Photographs for Test No. SBB-10	100
Figure 86.	Sequential Photographs, Test No. SBB-10	101
Figure 87.	Force-Time Data for Test No. SBB-10	102

Figure 88. Pre-Test and Post-Test Photographs for Test No. SBB-11	103
Figure 89. Sequential Photographs, Test No. SBB-11	104
Figure 90. Force-Time Data for Test No. SBB-11	105
Figure 91. Pre-Test and Post-Test Photographs for Test No. SBB-12	106
Figure 92. Sequential Photographs, Test No. SBB-12	107
Figure 93. Force-Time Data for Test No. SBB-12	108
Figure 94. Pre-Test and Post-Test Photographs for Test No. SBB-13	109
Figure 95. Sequential Photographs, Test No. SBB-13	110
Figure 96. Force-Time Data for Test No. SBB-13	111
Figure 97. Pre-Test and Post-Test Photographs for Test No. SBB-14	112
Figure 98. Sequential Photographs, Test No. SBB-14	113
Figure 99. Force-Time Data for Test No. SBB-14	114
Figure 100. Test Setup for Test Nos. 4CTB-1, 2, 3, 4, 5, and 6	117
Figure 101. Bogie and Test Setup	118
Figure 102. Bogie Used in Dynamic Testing	119
Figure 103. End-Fitting and Splice, Test No. 4CTB-1	122
Figure 104. Sequential Photographs, Test No. 4CTB-1	123
Figure 105. Pre-Test and Post-Test Photographs of End-Fitting, Test No. 4CTB-2	124
Figure 106. Sequential Photographs, Test No. 4CTB-2	125
Figure 107. End-Fitting and Splice, Test No. 4CTB-3	126
Figure 108. Cable-to-Bogie Connection, Test No. 4CTB-3	126
Figure 109. Pre-Test and Post-Test Photographs of Cable Splice, Test No. 4CTB-4	127
Figure 110. Sequential Photographs, Test No. 4CTB-4	128
Figure 111. Pre-Test and Post-Test Photographs of End-Fitting, Test No. 4CTB-5	129
Figure 112. Sequential Photographs, Test No. 4CTB-5	130
Figure 113. Pre-Test and Post-Test Photographs of End-Fitting, Test No. 4CTB-6	131
Figure 114. Cable Splice, Test No. 4CTB-6	131
Figure 115. Armor Flex Self-Swaging End-Fitting	132
Figure 116. Sequential Photographs, Test No. 4CTB-6	133
Figure A-1. J-Bolt Material Specifications	139
Figure A-2. U-Bolt Material Specifications, Continued	140
Figure A-3. U-Bolt Material Specifications, Continued	141
Figure A-4. U-Bolt Material Specifications, Continued	142
Figure A-5. U-Bolt Material Specifications, Continued	143
Figure A-6. Bennett Bolt End-Fitting Material Specifications	144
Figure A-7. Bennett Bolt End-Fitting Material Specifications, Continued	145
Figure A-8. Bennett Bolt End-Fitting Material Specifications, Continued	146
Figure A-9. Bennett Bolt End-Fitting Material Specifications, Continued	147
Figure A-10. Bennett Bolt End-Fitting Material Specifications, Continued	148
Figure A-11. Bennett Bolt End-Fitting Material Specifications, Continued	149
Figure A-12. Armor Flex End-Fitting Rod Materials Specifications	150
Figure A-13. Armor Flex End-Fitting Rod Materials Specifications, Continued	151
Figure B-1. Uniform Slot Brackets - Test Nos. SB-12, SB-14: Vertical Loading	153
Figure B-2. Uniform Slot Brackets – Test No. SB-9: Lateral Loading	153
Figure B-3. Flat Keyway Brackets - Test No. SB-19: Vertical Loading	154

Figure B-4. Flat Keyway Brackets - Test No. SB-21: Lateral Loading	154
Figure B-5. Angled Slot Brackets - Test No. SB-24: Vertical Loading	155
Figure B-6. Angled Slot Brackets - Test Nos. SB-25, SB-26: Lateral Loading	155
Figure B-7. Bent Keyway Brackets - Test Nos. SB-27, SB-30: Vertical Loading	156
Figure B-8. Bent Keyway Brackets - Test Nos. SB-28, SB-29: Lateral Loading	156
Figure B-9. Curved Keyway Brackets - Test Nos. SB-31, SB-32: Vertical Loading	157
Figure B-10. Curved Keyway Brackets - Test Nos. SB-33, SB-34: Lateral Loading	157
Figure B-11. U-Bolts with Nuts - Test Nos. UB-1, UB-7: Vertical Loading	158
Figure B-12. U-Bolts with Nuts - Test Nos. UB-8, UB-9: Lateral Loading	158
Figure B-13. U-Bolts with Keyways - Test Nos. UB-11, UB-12: Vertical Loading	159
Figure B-14. U-Bolts with Slots - Test Nos. UB-14, UB-15: Vertical Loading	159
Figure B-15. U-Bolts with Spacers - Test Nos. UB-17, UB-26: Vertical Loading	160
Figure B-16. U-Bolts with OVS Holes - Test No. UB-30: Vertical Loading	160
Figure B-17. U-Bolts with OVS Holes - Test Nos. UB-27, UB-29: Lateral Loading	161
Figure C-1. Test No. 4CTB-2 Results	163
Figure C-2. Test No. 4CTB-3 Results	164
Figure C-3. Test No. 4CTB-4 Results	165
Figure C-4. Test No. 4CTB-5 Results	166
Figure C-5. Test No. 4CTB-6 Results	167
Figure D-1. Cable Median Barrier Post-to-Attachment Connection	169
Figure D-2. Curved Keyway Bracket, Final Design (V4)	170
Figure D-3. Curved Keyway Bracket (V3)	171
Figure D-4. Shoulder Bolt Assembly	172
Figure D-5. Hex Shoulder Bolt	173
Figure D-6. Washer for Use with Shoulder Bolts	174
Figure D-7. Hex Nut for Use with Shoulder Bolts	175
Figure D-8. SBB Test Jig and Mounting Plate	176
Figure D-9. SBB Test Jig Mounting Plate	177
Figure D-10. SBB Test Plate Washers	178
Figure D-11. SBB Test Cable Guide	179
Figure D-12. SBB Test Cable Guide Mounting Plate	180
Figure D-13. SBB Test Cable Guide Angle Iron	181

List of Tables

	Page
Table 1. Slotted Bracket Concepts and Test Numbers	16
Table 2. Uniform Slot Bracket Test Information	17
Table 3. Keyway Bracket Test Information	18
Table 4. Angled Slot Bracket Test Information	19
Table 5. Bent Keyway Bracket Test Information	20
Table 6. Curved Keyway Bracket Test Information	22
Table 7. U-Bolt Concepts and Test Numbers	23
Table 8. Welded and Notched J-Bolt Test Information	24
Table 9. U-Bolts with Nut Combinations Test Information	25
Table 10. U-Bolts with Keyways Test Information	26
Table 11. U-Bolts with Upper Slots Test Information	27
Table 12. U-Bolts with Spacers Information	28
Table 13. U-Bolt with Double Slots Test Information	29
Table 14. U-Bolts with Oversized Upper Holes Information	31
Table 15. U-Bolt Clip Information	32
Table 16. Uniform Slot Bracket Test Results	36
Table 17. Flat Keyway Bracket Test Results	39
Table 18. Angled Slot Bracket Test Results	40
Table 19. Bent Keyway Bracket Test Results	42
Table 20. Curved Keyway Bracket Test Results	44
Table 21. Welded, Notched U-Bolt Test Results	46
Table 22. U-Bolts with Nut Combinations Test Results	48
Table 23. U-Bolts with Keyways Test Results	50
Table 24. U-Bolts with Upper Slots Test Results	51
Table 25. U-Bolts with Spacers Test Results	53
Table 26. U-Bolts with Oversized Upper Holes Test Results	58
Table 27. Bolts with Clips Test Results	60
Table 28. Dynamic Bracket Test Summary	67
Table 29. Dynamic Testing Results	73
Table 30. Cable End-Fitting and Splice Test Data	116
Table 31. Dynamic Testing of Splices and End-Fittings Results	121

1 INTRODUCTION

1.1 Background

The Midwest Roadside Safety Facility (MwRSF) was contracted to develop a nonproprietary, high-tension, cable median barrier. This barrier was to be developed for use at any point in a median with up to a 4:1 sloped V-ditch. Due to the nature of this type of design, the cable barrier hardware used in the system needed to be re-evaluated when compared to traditional cable barrier hardware. Traditional cable-to-post attachments were not feasible. Roadside cable barriers load the posts by pushing the cables toward the post when they are impacted. However, for a median cable system, the vehicle interaction with the cable can potentially pull the cable away from the post or push the cable towards the post. Thus, the cable attachment must be capable of developing the full moment capacity of the post when loaded laterally in order to ensure that the posts effectively function in the impact event. Additionally, the cable attachments must release the cable vertically under much lower loads in order to ensure that the cables do not remain attached to the post as it bends over, which would compromise the cable position and capture of the vehicle. The cables must also release vertically to ensure that they are not locked down on the A-pillar of small passenger vehicles, thus creating a potential for a cable to cut through the A-pillar and into the occupant compartment. Thus, a new cable attachment design was needed for the high-tension, cable median barrier.

Cable end-fitting and cable splice designs are also affected when one transitions from traditional cable barrier hardware to a high-tension cable median barrier. Many current endfittings and splice designs are based on previous low-tension cable hardware. This hardware may not be sufficient to deal with the increased loads expected in a high-tension barrier due to the higher cable preload and lower deflections. As such, it was necessary to evaluate and verify the capacity of the end-fitting and splice hardware to ensure it was sufficient.

Beginning in June 2005, the MwRSF designed and tested a variety of cable attachment hardware for a high-tension, 4-cable median barrier to be placed at any point across a V-ditch with a 4-to-1 slope. Additionally, dynamic tests were performed to identify a cable end-fitting and cable splice with sufficient capacity for use with the high-tension cable barrier system. The end-fittings and cable splices were required to develop the ultimate load capacity of the 0.75-in. diameter, 3x7 wire rope used in the barrier.

1.2 Objective

The first objective of the research was to design a cable attachment for the high-tension cable median barrier that would satisfy predetermined loading conditions. These loading conditions differed between the lateral and vertical directions. To allow the post to develop its strength, the attachment had to withstand a lateral load of 6,000 lbs before failure. In the vertical direction, it was required that the attachment fail under a load of only 1,000 lbs or less.

Other desired aspects in the attachment were affordability and constructability. Additionally, the attachment system had to be designed without infringing on current cable-topost connection patents.

To meet the design requirements, two basic attachment concepts were conceived: slotted brackets and U-bolt connections. Several different styles of each concept were designed. Each attachment underwent a static load test, in which a tensile testing machine applied an increasing load until the attachment failed. Each attachment was statically tested for both lateral and vertical load capacities. Once static testing had identified a candidate design, dynamic component testing was conducted to insure proper function of the connection. The second objective of the research was to identify cable end-fittings and splices that could be used in the high-tension, cable median barrier. These components were required to have sufficient strength to fully develop the capacity of the cable, or approximately 39,000 lbs. Existing cable end-fittings designed by Bennett Bolt and Armor Flex and splices designed by Bennett Bolt and Armor Flex were tested dynamically to evaluate their potential performance in the median barrier system.

2 LITERATURE REVIEW

2.1 Patented Attachment Systems

As several proprietary, high-tension cable barrier systems have previously been designed, it was deemed appropriate to review current patents to avoid any possible infringements. The existing relevant barrier designs that were found and their corresponding patents are presented in this section.

2.1.1 Trinity Highway Safety Products, Inc.

Trinity Highway Safety Systems currently produces the Cable Safety System (CASS). Two attachments from the CASS were considered relevant to the development of a new system.

The first connection, used in line posts, utilizes a steel member that serves as the post. Sections used for the post are typically C-shaped or I-shaped, but the relevant patents also claim N-shaped, Z-shaped, V-shaped, and M-shaped members. A slot is cut into the post that begins at its top and extends downward into the post. The width of the slot is either uniform or varies between three wider sections, through which the cables pass, and three narrow sections. Plastic spacers are used to keep the cables separated, and plastic caps are placed over the tops of posts that hold the cables and spacers in place. The Trinity Corporation has claim to this connection in U.S. Patent No. 6,962,328 B2 and U.S. Patent Application No. 2005/0284695 A1. Figure 1 shows the CASS slot connection (images taken from Patent No. 6,962,328 B2).

Figure 1. CASS Web-Slot Connection

The second connection, used in terminal posts, consists of a locking hook bolt that attaches the cable to the post. The locking hook bolts are U-shaped with one arm bent at a 90-degree angle that passes through the post to hold the bolt in place. The other arm of the bolt is threaded and also passes through the post, where it is held in place by a nut. Texas A&M University holds claim to the locking hook bolt attachment in U.S. Patent No. 6,948,703 B2. Figure 2 shows the locking hook bolt connection (images taken from Patent No. 6,948,703 B2).

Figure 2. CASS Locking Hook Bolt Attachment (Texas A&M Patent) 2.1.2 Gibraltar Cable Barrier Systems, L.P.

The Gibraltar Cable Barrier System consists of a C-shaped post that is attached to the cable through a hairpin and lock-plate connection. The hairpin is a bent rod that features three U-shaped portions through which the cables pass. In between, the U-shaped sections are straight segments. The hairpin is positioned through a slot in the post such that the U-shaped portions are to the exterior of the post, housing the cables, while the straight portions are held within the post by a lock-plate apparatus. This lock plate spans the opening in the post, bearing against the post on either side. At the top of the hairpin, an additional bent section allows the hairpin to rest on top of the post on the side opposite the cables. Gibraltar has applied for a U.S. patent for the hairpin and lock-plate assembling in U.S. Patent Application 2007/0007501 A1. Figure 3 shows

the Gibraltar hairpin and lock-plate attachment (image taken from Patent Application No. 2007/0007501 A1).

Figure 3. Gibraltar Hairpin and Lock-plate Attachment

The Gibraltar System uses a different connection for the posts near the terminals of the barrier. These connections consist of a J-shaped bolt that passes through the entire post, bent at a right angle on the cable-side of the post. The bolt is held in place by a nut on the opposite side. This connection is also claimed in U.S. Patent Application 2007/0007501 A1. Figure 4 shows the Gibraltar J-bolt connection (image taken from Patent Application No. 2007/0007501 A1).

Figure 4. Gibraltar J-Bolt Attachment

2.1.3 Nucor Marion Steel, Inc.

Nucor Marion Steel currently manufactures the U.S. High Tension Cable Barrier System. The post used in the system is a U-shaped, flanged channel that is connected to the cables through locking hook bolts. The locking hook bolts are U-shaped with one arm bent at a 90-degree angle that passes through the post to hold the bolt in place. The other arm of the bolt is threaded and also passes through the post, where it is held in place by a nut. A bolt with a larger hook is used to fasten the cable to the non-impact side of the post while a bolt with a smaller hook is used to fasten the cable to the impact side of the flange. The locking hook bolts are proprietary technology of Texas A&M University, claimed in U.S. Patent No. 6,948,703 B2. Figure 5 shows the locking hook bolt attachment (image taken from Patent No. 6,948,703 B2).

Figure 5. Nucor Marion Locking Hook Bolt Attachment (Texas A&M Patent) 2.1.4 Blue Systems AB

Blue Systems developed the Safence Barrier that is currently marketed in America by Impact Absorption, Inc. The system uses several different attachments to attach the cables to the posts.

The first connection consists of a channel-shaped or tube-shaped post with two slots cut through the upper end. Cables pass through these slots with spacers inserted between them to maintain separation distance. This connection is claimed in U.S. Patent Application No. 2002/0014620 A1. Figure 6 shows this connection in a channel application (image taken from Patent Application No. 2002/0014620 A1).

Figure 6. Blue Systems Safence Channel Connection

Another connection in the Safence Barrier connects the cable to channel-shaped or tubeshaped posts via slots cut into the posts at the height of the cable. These slots have an angled opening at their upper end and are used to support U-shaped hooks through which the cable passes. The ends of these hooks are bent approximately 90 degrees, such that when the hook is positioned to support the cable, the ends are parallel to the cable. The ends are bent in perpendicular directions, allowing the hook to be inserted into the post and through the keywayslot with a twisting motion. This connection is claimed in U.S. Patent Application No. 2002/0014620 A1. Figure 7 shows the bent hook connection (images taken from Patent Application No. 2002/0014620 A1). Blue Systems also has applied a similar connection under the same patent application, differing slightly by the shape of the hook (not shown).

Figure 7. Blue Systems Safence Bent Hook Connection

Another Safence connection utilizes openings cut into the posts that are larger and keyway-shaped at their upper end and smaller at their lower end. U-shaped attachments with balled ends that capture the cable are inserted into the keyways and pushed downward such that the smaller openings prevent the hooks from releasing the cable when loaded laterally. This connection is claimed in U.S. Patent Application No. 2002/0014620 A1. Figure 8 shows the keyway connection (images taken from Patent Application No. 2002/0014620 A1).

Figure 8. Blue Systems Hook and Keyway Connection

Blue Systems also uses a connection in their barrier that is formed by cutting a curved, angled slot into the cable-side of the post. The cable is then inserted into this slot, which is shaped such that it prevents the cable from being released unless a vertical force is applied on it. This connection is claimed in U.S. Patent Application No. 2002/0014620 A1. Figure 9 shows the curved, angled slot connection (image taken from Patent Application No. 2002/0014620 A1).

Figure 9. Blue Systems Curved, Angled Slot Connection

The Safence Barrier also has a connection design used for end posts. This design consists of an I-shaped member, which is used as the post, which has a slot cut through its web at its upper end. The cables are passed through this slot and separated by spacers. This connection is claimed in U.S. Patent No. 6,902,151 B1. Figure 10 shows the I-shaped post slot connection (image taken from Patent No. 6,902,151 B1).

Figure 10. Blue Systems Safence I-Shaped Post Connection

2.1.5 Brifen USA, Inc.

Brifen USA manufactures the Wire Rope Safety Fence (WRSF). The WRSF uses either S-shaped or Z-shaped members as posts. Cables are attached to the posts through one of several methods. The top cable passes through slots cut into the top of the posts, with a cap placed over the top of the member to close the slot. Lower cables are held in place on the post either by pegs that the cables rest upon or by other means. Brifen claims these connections in U.S. Patent No. 5,039,066. Figure 11 shows the Brifen connection system (image taken from Patent No. 5,039,066).

Figure 11. Brifen Attachment System

3 CABLE ATTACHMENT DESIGN DETAILS

3.1 Introduction

Development of a cable attachment for the high-tension, cable median barrier system required design and evaluation of several attachment concepts. The design of the cable attachment was required to develop 6,000 lbs of load laterally in order to fully develop the lateral resistance of the line posts. The attachment also needed to be able to release the cable under loads of 1,000 lbs or less to prevent the cable from being pulled down by deformed posts or cutting through the A-pillar of the vehicle.

The cable attachment concepts fell into two main categories; (1) Slotted brackets; and (2) U-bolt attachments. The following sections detail the various concepts that were developed, and subsequent sections of the report detail the testing and evaluation of the concepts.

3.2 S3x5.7 Steel Post Jigs

The standard post used in the high-tension cable median barrier is an S3x5.7 section. The post is manufactured from ASTM A36 steel and has a cross section in accordance with A6M standards. The post primarily consists of three major components: two flanges and the connecting web. The flanges are 2.33-in. wide and 0.26-in. thick, while the web is 0.17-in. thick.

The cables used in the barrier are attached to the flanges of the posts with the previously described attachments. Four cables are used, with two cables attached to the impact side and two cables attached to the non-impact side of each post. The cables utilize 0.75-in. diameter, 3x7 wire rope.

Test jigs, fabricated from S3x5.7 posts, were used for all tests performed in this study. Several different jigs were used in the tests to provide for the different connections between the cable attachments and the post.

3.3 Slotted Bracket Attachments

This section describes the different attachment designs that were developed and tested. A summary of slotted bracket concepts and tests performed is presented in Table 1.

	Slotted Brackets Designs					
	Uniform Slots	Flat Keyways	Angled Slots	Bent Keyways	Curved Keyways	
	SB-1	SB-19	SB-23	SB-27	SB-31	
	SB-2	SB-20	SB-24	SB-28	SB-32	
	SB-3	SB-21	SB-25	SB-29	SB-33	
	SB-4	SB-22	SB-26	SB-30	SB-34	
	SB-5					
	SB-6					
	SB-7					
	SB-8					
Tost No	SB-9					
Test No.	SB-10					
	SB-11					
	SB-12					
	SB-13					
	SB-14					
	SB-15					
	SB-16					
	SB-17					
	SB-18					

Table 1. Slotted Bracket Concepts and Test Numbers

3.3.1 Uniform Slot Brackets

Tests of the first slotted bracket concept utilized slots of uniform width. Bolts passed through these slots to fasten the bracket to the post, and the cable passed through a curved section at the middle of the bracket. The design intent was for the bracket to only release the cable upon rupture near the bolts under lateral loading, while vertical loading would cause the bracket to release the bolt through the slot, thus resulting in a lesser failure load. All brackets were cut from A36 plate steel. Several different variations were investigated using different bracket thicknesses and slot widths and lengths. All brackets were fastened to the test jig with 0.375-in. diameter, Grade 5 bolts, tightened with a torque wrench set to 275 lb-in. A total of nine

uniform slotted brackets were tested for both lateral and vertical strength. Table 2 summarizes test information for the uniform slot bracket concept, and Figure 12 shows a typical uniform slot bracket.

Test	Width	Length	Gago	Thickness	Slot Width	Slot Length	Load	Torque
No.	(in.)	(in.)	Gaye	(in.)	(in.)	(in.)	Direction	(lb-in.)
SB-1	1.01	5.55	12	0.101	0.3845	1.364	Horizontal	275
SB-2	1.01	5.546	12	0.102	0.4375	1.485	Horizontal	275
SB-3	1.034	5.6	10	0.1345	0.375	1.37	Horizontal	275
SB-4	1.033	5.58	10	0.135	0.4825	1.495	Horizontal	275
SB-5	1.01	5.58	12	0.1015	0.39	1.425	Vertical	275
SB-6	1.0065	5.55	12	0.1015	0.482	1.4945	Vertical	275
SB-7	1.035	5.56	10	0.1345	0.3765	1.393	Vertical	275
SB-8	1.032	5.57	10	0.13425	0.474	1.495	Vertical	275
SB-9	1.02	5.53	16	0.0605	0.5065	1.53	Horizontal	275
SB-10	1.02	5.54	16	0.0605	0.515	1.54	Vertical	275
SB-11	1.016	5.57	16	0.0605	0.49	1.547	Horizontal	275
SB-12	1.017	5.55	16	0.0605	0.494	1.55	Vertical	275
SB-13	1.017	5.43	14	0.745	0.49	1.565	Horizontal	275
SB-14	1.012	5.58	14	0.74	0.483	1.55	Vertical	275
SB-15	1.02	5.58	14	0.74	0.494	0.1545	Horizontal	275
SB-16	1.015	5.54	14	0.74	0.496	1.55	Vertical	275
SB-17	1.272	5.6	14	0.74	0.748	1.54	Horizontal	275
SB-18	1.267	5.57	14	0.74	0.75	1.51	Vertical	275

Table 2. Uniform Slot Bracket Test Information

Figure 12. Uniform Slot Bracket, Test No. SB-8

3.3.2 Flat Keyway Brackets

The second slotted bracket concept was similar to the uniform slotted brackets but featured keyways instead of uniform slots. The keyways were located immediately to the interior of the fastening bolts and were intended to facilitate the release of the bolts under vertical loading, with a minimal decrease in lateral strength. All brackets were fastened to the test jig with 0.375-in. diameter, Grade 5 bolts. These bolts were tightened with a torque of 275 lb-in. for two of tests and were not tightened for two tests. Two vertical and two lateral tests were performed on flat keyway brackets. Table 3 summarizes test information for the flat keyway bracket concept, and Figure 13 shows a typical keyway bracket.

Test	Width	Length	Gage	Thickness	Slot Width (in.)	Slot Length	Load	Torque
No.	(in.)	(in.)	3-	(in.)	,	(in.)	Direction	(lb-in.)
SB-10	1 3125	55	10	0 1354	Keyway 0.375" -	0.625 center	Vertical	275
30-19 1.0	1.5125	5.5	10	0.1554	0.75"	to center	ventical	215
CD 20	1 2125	E E	10	0 1 2 5 4	Keyway 0.375" -	0.625 center	Vartical	0
30-20	1.3125	5.5	10	0.1354	0.75"	to center	ventical	0
SD 21	1 21 25	5 5	10	0 1254	Keyway 0.375" -	0.625 center	Horizontol	275
30-21	1.3125	5.5	10	0.1354	0.75"	to center	Holizofilai	275
SB-22	1.3125	5.5	10	0.1354	Keyway 0.375" -	0.625 center	Horizontal	0
					0.75"	to center		0

Table 3. Keyway Bracket Test Information

Figure 13. Flat Keyway Bracket

3.3.3 Angled Slot Brackets

The next series of bracket tests were performed on brackets featuring angled slots through which bolts passed to fasten the bracket to the post. The slots were inclined at an angle of 60 degrees from the bracket's vertical orientation and extended through the edge of the bracket. They were intended to release the bolt under vertical loading without requiring the bracket to rupture. These openings were located on opposite sides of the bracket. All brackets were fastened to the test jig with 0.375-in. diameter, Grade 5 bolts. These bolts were tightened with a torque of 275 lb-in. for two tests and were not tightened for two tests. A total of four tests were performed on the slotted brackets, with two tests performed in each loading orientation. Table 4 summarizes test information for the angled slot bracket concept, and Figure 14 shows a typical angled slot bracket.

Test No.	Width (in.)	Length (in.)	Gage	Thickness (in.)	Slot Width (in.)	Slot Length (in.)	Load Direction	Torque (Ib-in.)
SB-23	1.3125	5.5	10	0.1354	0.375" wide x 60 deg. angled slot	NA	Vertical	275
SB-24	1.3125	5.5	10	0.1354	0.375" wide x 60 deg. angled slot	NA	Vertical	0
SB-25	1.3125	5.5	10	0.1354	0.375" wide x 60 deg. angled slot	NA	Horizontal	275
SB-26	1.3125	5.5	10	0.1354	0.375" wide x 60 deg. angled slot	NA	Horizontal	0

Table 4. Angled Slot Bracket Test Information

Figure 14. Angled Slot Bracket

3.3.4 Bent Keyway Brackets

Another bracket concept that was tested also consisted of a bracket with keyway openings. These keyways were positioned on the bent portion of the bracket through which the cable passed and were intended to further facilitate the release of the bolt under vertical loading. Bolts also fastened these brackets to the post, near the exterior edge of the keyway portion. These bolts were 0.375-in. diameter, Grade 5 bolts that were fastened snugly but not tightened down with a torque wrench. Four tests were performed on this concept. Table 5 summarizes test information for the bent keyway bracket concept, and Figure 15 shows a typical bent keyway bracket.

Test No.	Width (in.)	Length (in.)	Gage	Thickness (in.)	Slot Width (in.)	Slot Length (in.)	Load Direction	Torque (Ib-in.)
SB-27	1.4375	3.5464	10	0.1354	Keyway 0.375"-1.0"	0.5762	Vertical	0
SB-28	1.4375	3.5464	10	0.1354	Keyway 0.375"-1.0"	0.5762	Horizontal	0
SB-29	1.4375	3.5464	10	0.1354	Keyway 0.375"-1.0"	0.5762	Horizontal	0
SB-30	1.4375	3.5464	10	0.1354	Keyway 0.375"-1.0"	0.5762	Vertical	0

Table 5. Bent Keyway Bracket Test Information

Figure 15. Bent Keyway Bracket

3.3.5 Curved Keyway Brackets

The final bracket concept to be tested was the curved keyway bracket, which differed from the bent keyway bracket by utilizing a smooth curve to accommodate the cable rather than a 90-degree bend. The curved design was chosen to reduce the deformation required for the bracket to reach its peak load and to aid in the release of the cable under vertical loading. These brackets were connected to the test jig with 0.375-in. diameter, Grade 5 bolts that passed through the brackets near the exterior edge of the keyway portion. The bolts were not tightened past snug with any torque. The curved keyway bracket concept was tested twice laterally and twice vertically. Table 6summarizes test information for the curved keyway bracket concept, and Figure 16 shows a typical curved keyway bracket.

Test No.	Width (in.)	Length (in.)	Gage	Thickness (in.)	Slot Width (in.)	Slot Length (in.)	Load Direction	Torque (Ib-in.)
SB-31	1.5	4	10	0.1354	Keyway 0.375"-1.0"	NA	Vertical	0
SB-32	1.5	4	10	0.1354	Keyway 0.375"-1.0"	NA	Vertical	0
SB-33	1.5	4	10	0.1354	Keyway 0.375"-1.0"	NA	Horizontal	0
SB-34	1.5	4	10	0.1354	Keyway 0.375"-1.0"	NA	Horizontal	0

 Table 6. Curved Keyway Bracket Test Information

Figure 16. Curved Keyway Bracket
3.4 U-Bolt Attachments

This section describes the different U-bolt cable attachment designs that were developed and tested. A summary of U-bolt concepts and tests performed is presented in Table 7.

	U-Bolt Attachment Designs							
	Welded,	Nut		Slotted		Double	Oversized	Bolts w/
	Notched Bolts	Combinations	Keyways	Top Holes	Spacers	Slots	Holes	Clips
	UBLSH (1)	UB-1	UB-11	UB-13	UB-16	UB-18	UB-27	UB-43
	UBLMH (2)	UB-2	UB-12	UB-13B	UB-17		UB-28	UB-44
	UBLLH (3)	UB-3		UB-14	UB-19		UB-29	UB-45
	UBHSH (4)	UB-4		UB-15	UB-20		UB-30	UB-46
	UBHMH (5)	UB-5			UB-21		UB-31	UB-47
	UBHLH (6)	UB-6			UB-22		UB-32	UB-48
	UBLSV (7)	UB-7			UB-23			UB-49
	UBLMV (8)	UB-8			UB-24			UB-50
	UBLLV (9)	UB-8B			UB-25			UB-51
Tost No	UBHSV (10)	UB-9			UB-26			UB-52
Test NO.	UBHMV (11)	UB-9B			UB-33			UB-53
	UBHLV (12)				UB-34			
					UB-35			
					UB-36			
					UB-37			
					UB-38			
					UB-39			
					UB-40			
					UB-41			
					UB-42			

Table 7. U-Bolt Concepts and Test Numbers

3.4.1 Welded and Notched J-Bolts

Testing of the first U-bolt concept consisted of two J-bolts welded together such that they resembled a U-bolt with the threaded portion of each bolt forming a leg of the U-shape. Holes in the post were offset to accommodate the bolts which were fastened in place with nuts. Notches were cut into the interior threading of the bolts that were intended to localize the stress in the bolt when loaded vertically. It was hoped that this would result in failure at much lower loads than when loaded laterally. Bolt Grades C1018 and C1038 steel were used to create these connections. Material information on these grades of steel, as well as other grades mentioned later in the text, can be found in Appendix A. A total of twelve connections were tested that

varied by both weld and notch sizes. Table 8 summarizes test information for the welded and notched J-bolts concept, and Figure 17 shows a typical welded and notched J-bolt.

Test No.	Diameter	Grade	Weld	Notch	Notch	Notch	Notch	Load
	(in.)	0.000	Size	Depth (in.)	Width (in.)	Depth (in.)	Width (in.)	Direction
UBLSH (1)	0.375	C1038 (plain)	small	0.2365	0.216	0.221	0.212	Horizontal
UBLMH (2)	0.375	C1038 (plain)	medium	0.167	0.1905	0.2055	0.22	Horizontal
UBLLH (3)	0.375	C1038 (plain)	large	0.174	0.216	0.17	0.2175	Horizontal
UBHSH (4)	0.375	C1018 (red)	small	0.2165	0.2295	0.182	0.23	Horizontal
UBHMH (5)	0.375	C1018 (red)	medium	0.2005	0.211	0.1825	0.1815	Horizontal
UBHLH (6)	0.375	C1018 (red)	large	0.2235	0.229	0.204	0.2415	Horizontal
UBLSV (7)	0.375	C1038 (plain)	small	0.2315	0.314	0.2025	0.231	Vertical
UBLMV (8)	0.375	C1038 (plain)	medium	0.2025	0.23	0.2055	0.208	Vertical
UBLLV (9)	0.375	C1038 (plain)	large	0.1935	0.226	0.1985	0.227	Vertical
UBHSV (10)	0.375	C1018 (red)	small	0.214	0.215	0.209	0.213	Vertical
UBHMV (11)	0.375	C1018 (red)	medium	0.2455	0.219	0.214	0.208	Vertical
UBHLV (12)	0.375	C1018 (red)	large	0.2255	0.2035	0.2265	0.209	Vertical

Table 8. Welded and Notched J-Bolt Test Information

Figure 17. Welded, Notched J-Bolts

3.4.2 U-Bolts with Nut Combinations

The next U-bolt concept consisted of U-bolts connected to the post with different combinations of nuts and washers. One nut was used on each end of the U-bolts to fasten them to the post. Additional nuts were used on the top arm of the U-bolts, on the cable-side of connection, to vary the stiffness and failure properties of the U-bolt. These additional nuts were intended to extend the moment arm on the top arm of the U-bolts when loaded vertically and to increase the bending stress in the bolt and cause failure at comparatively lower loads than when loaded laterally. These nuts were attached either individually or welded together. Twelve different tests were performed on U-bolt and nut combination connections. Table 9 summarizes test information for the U-bolts with nut combinations concept, and Figure 18 shows a typical U-bolt and nut combination connection.

Test No.	Diameter (in.)	Grade	Load Direction	Attachment
UB-1	0.25	C1018	Vertical	single nut bottom - 1+2 nut top
UB-2	0.25	C1018	Vertical	single nut bottom - 1+1 nut top
UB-3	0.25	C1018	Vertical	1+1 nut bottom - 1+1 nut top
UB-4	0.25	C1018	Vertical	1+1 nut bottom - 1+3 nut top
UB-5	0.25	C1018	Vertical	single nut bottom - 1+3 nut top
UB-6	0.25	C1018	Vertical	single nut bottom - 1+3 welded nut top
UB-7	0.25	C1018	Vertical	1+1 nut bottom - 1+3 welded nut top
UB-8	0.25	C1018	Horizontal	1+1 nut bottom - 1+1 nut top
UB-8B	0.25	C1018	Horizontal	1+1 nut bottom - 1+1 nut top
UB-9	0.25	C1018	Horizontal	single nut bottom - single nut top
UB-9B	0.25	C1018	Horizontal	single nut bottom - single nut top

Table 9. U-Bolts with Nut Combinations Test Information

Figure 18. U-Bolt with Nut Combination, Test UB-6

3.4.3 U-Bolts with Keyway Slots

The second U-bolt concept employed a keyway opening in the post through with the top arm of a U-bolt passed. This concept would allow the upper arm of the U-bolt to be released from the post, through the keyway, under lower vertical loads. Failure under lateral loading would require the bolt to fail in tension, presumably only possible with much higher loads. A standard bolt hole was used to attach the bottom leg of the U-bolt. Two different tests were performed on this concept. Table 10 summarizes test information for the U-bolts with keyways concept, and Figure 19 shows a typical U-bolt and keyway connection.

Test No.	Diameter (in.)	Grade	Load Direction	Attachment
UB-11	0.25	C1018	Vertical	Keyway - single nut bottom - single nut top
UB-12	0.25	C1018	Vertical	Keyway - 1+1 nut bottom - 1+1 nut top

Table 10. U-Bolts with Keyways Test Information

Figure 19. U-Bolt with Keyway

3.4.4 U-Bolts with Upper Slots

The next U-bolt concept utilized a slotted opening in the post through with the upper arm of a U-bolt passed. This slot was intended to release the bolt under vertical loading while preserving the lateral strength of the connection. A standard bolt hole was used for the bottom arm of the U-bolt. Two different tests were also performed on this concept. Table 11 summarizes test information for the U-bolts with upper slots concept, and Figure 20 shows a typical U-bolt and upper slot arrangement.

Test No.	Diameter (in.)	Grade	Load Direction	Attachment
UB-13	0.25	C1018	Vertical	Notched top hole - single nut bottom - single nut top
UB-13B	0.25	C1018	Vertical	Notched top hole - single nut bottom - single nut top
UB-14	0.25	C1018	Vertical	Notched top hole - single nut bottom - single nut top
UB-15	0.25	C1018	Vertical	Notched top hole - single nut bottom - single nut top

Table 11. U-Bolts with Upper Slots Test Information

Figure 20. U-Bolt with Upper Slot

3.4.5 U-Bolts with Spacers

The next U-bolt concept also consisted of U-bolts attached to the post with nuts, but utilized spacers that intended to keep the cable near the curved end of the U-bolt. This concept attempted to use the tensile strength of the bolt to satisfy the lateral load requirement while reducing the vertical load capacity by increasing the moment arm of the cable on the bolt. This larger moment arm would create a larger moment in the bolt, resulting in higher bending stresses and lower failure loads. The materials used for the spacer blocks included wood and high-density polyethylene (HDPE). A total of 20 different tests were performed on this concept. Table 12 summarizes test information for the U-bolts with spacers concept, and Figure 21 shows a typical U-bolt and spacer connection.

Test No.	Diameter (in.)	Grade	Load Direction	Attachment
UB-16	0.25	C1018	Vertical	5/8" spacer - single nut bottom - single nut top
UB-17	0.25	C1018	Vertical	5/8" spacer - single nut bottom - single nut top
UB-19	0.25	C1018	Vertical	3/4"x1" spacer - single nut bottom - single nut top
UB-20	0.25	C1018	Vertical	3/4"x1" spacer - single nut bottom - single nut top
UB-21	0.25	C1018	Vertical	3/4"x1" spacer - 1+1 nut bottom - 1+1 nut top
UB-22	0.25	C1018	Vertical	3/4"x1" spacer - 1+1 nut bottom - 1+1 nut top
UB-23	0.25	C1018	Vertical	1"x1" spacer - single nut bottom - single nut top
UB-24	0.25	C1018	Vertical	1"x1" spacer - single nut bottom - single nut top
UB-25	0.25	C1018	Vertical	1"x1" spacer - single nut bottom - single nut top
UB-26	0.25	C1018	Vertical	1"x1" spacer - 1+1 nut bottom - 1+1 nut top
UB-33	0.25	C1038	Vertical	1"x1" spacer - single nut bottom - single nut top
UB-34	0.25	C1018	Vertical	1"x1" HDPE spacer - single nut bottom - single nut top
UB-35	0.25	C1018	Vertical	1"x1" HDPE spacer - single nut bottom - single nut top
UB-36	0.25	C1018	Vertical	1"x1" HDPE spacer - single nut bottom - single nut top
UB-37	0.25	C1018	Vertical	1"x1" HDPE spacer - single nut bottom - single nut top
UB-38	0.25x3.5x1.5	Grade 2	Vertical	2" HDPE spacer - single nut bottom - single nut top
UB-39	0.25x3.5x1.5	Grade 2	Vertical	2" HDPE spacer - single nut bottom - single nut top
UB-40	0.25x3.5x1.5	Grade 2	Horizontal	2" HDPE spacer - single nut bottom - single nut top
UB-41	0.25x3.5x1.5	Grade 2	Vertical	2"X2.5"X.875" HDPE spacer - single nut bottom - single nut top
UB-42	0.25x3.5x1.5	Grade 2	Vertical	2"X2.5"X.875" HDPE spacer - single nut bottom - single nut top

 Table 12. U-Bolts with Spacers Information

Figure 21. U-Bolt with Spacer

3.4.6 U-Bolts with Double Slots

Another concept that was tested consisted of a U-bolt attached to a post through two slots angled at 60 degrees. These slots extended through the end of the post and were designed to release the bolts when loaded vertically while preserving the connection's lateral load capacity. One test was performed on this concept. Table 13 summarizes test information for the U-bolt with double slots concept, and Figure 22 shows a U-bolt with double slots connection.

 Table 13. U-Bolt with Double Slots Test Information

Test No.	Diameter (in.)	Grade	Load Direction	Attachment
UB-18	0.25	C1018	Vertical	double slots in post flange

Figure 22. U-Bolt with Double Slots

3.4.7 U-Bolts with Oversized Upper Holes

The next U-bolt concept consisted of a U-bolt attached to the post through an oversized upper bolt hole and a lower standard bolt hole. Nuts were used at each hole to hold the bolts in place, with the nut at the upper hole partially supported by the post and partially overhanging the hole. The size of the hole was varied. In two of the tests, a washer was used at the top hole to better anchor the U-bolt. A total of six tests were performed on this concept. Table 14 summarizes test information for the U-bolts with oversized upper holes concept, and Figure 23 shows a the U-bolt with oversized upper hole connection.

Test No.	Diameter (in.)	Grade	Load Direction	Attachment
UB-27	0.25	C1018	Horizontal	large hole prototype - 0.5625 dia single nut bottom - single nut top
UB-28	0.25	C1018	Horizontal	large hole prototype - 0.625 dia single nut bottom - single nut top
UB-29	0.25	C1018	Horizontal	large hole prototype - 0.625 dia single nut + washers bottom & top
UB-30	0.25	C1018	Vertical	large hole prototype - 0.625 dia single nut + washers bottom & top
UB-31	0.25	C1038	Vertical	large hole prototype - 0.5625 dia single nut bottom - single nut top
UB-32	0.25	C1038	Vertical	large hole prototype - 0.625 dia single nut bottom - single nut top

Table 14. U-Bolts with Oversized Upper Holes Information

Figure 23. U-Bolt with Oversized Upper Hole

3.4.8 Bolts with Clips

Two different bolt and clip arrangements were tested. The first consisted of a clip that was attached to the post with a single bolt. Slot-like openings at either end of the clip allowed a U-bolt to pass through, which was held in place with nuts. These openings extended to the edge of the clip to allow the cable to be released under vertical loads while preserving the lateral capacity of the connection. A total of eleven tests were performed on this concept. Table 15 summarizes U-bolt clip test information, and Figure 24 and Figure 25 show typical U-bolt clips for both of the aforementioned styles.

Test No.	Diameter (in.)	Grade	Load Direction	Attachment
UB-43	0.25	C1018	Vertical	U-Bolt Clip
UB-44	0.25	C1018	Vertical	U-Bolt Clip
UB-45	0.25	C1018	Vertical	U-Bolt Clip
UB-46	0.25	C1018	Horizontal	U-Bolt Clip
UB-47	0.25	C1018	Horizontal	U-Bolt Clip
1 IR-/18	0.25	Grada 5	Vertical	U-Bolt Clip Plate with two 0.25"
06-40 0.25	0.25	Graue J	ventical	dia. x 2.0" long grade 5 bolts
1 IB-49	0.25	Grade 5	Vertical	U-Bolt Clip Plate with two 0.25"
00 40	0.20	Orace 5	Vertiour	dia. x 2.5" long grade 5 bolts
UB-50	0.25	Grade 5	Vertical	U-Bolt Clip Plate with two 0.25"
00.00	0.20			dia. x 2.5" long grade 5 bolts
LIB-51	0.25	Grade 5	Vertical	U-Bolt Clip Plate with two 0.25"
00.01	0.20			dia. x 2.5" long grade 5 bolts
LIB-52	0.25	Grade 5	Horizontal	U-Bolt Clip Plate with two 0.25"
00-52	0.25	Orace J	Tionzontai	dia. x 2.5" long grade 5 bolts
LIB-53	0.25	Grade 5	Horizontal	U-Bolt Clip Plate with two 0.25"
00-00		State J	rionzontal	dia. x 2.5" long grade 5 bolts

 Table 15. U-Bolt Clip Information

Figure 24. U-Bolt Clip, Style 1

Figure 25. U-Bolt Clip, Style 2

4 CABLE ATTACHMENT STATIC TESTING

4.1 Test Facility

Static testing was performed at the University of Nebraska-Lincoln's Mechanical Engineering Materials Lab, located in the Walter Scott Engineering Center.

4.2 Data Acquisition Systems

A self-contained material testing system was utilized for static testing. This system was equipped with a load cell and displacement transducer that collected the data needed to evaluate the attachment systems. Additionally, cameras were used to collect visual documentation of the tests.

4.2.1 MTS 810

The Material Testing System (MTS) 810 was used to test the cable attachments under static loads. A 20-kip load cell measured the force placed on each attachment, while displacement transducers measured the corresponding deflection. Most of the tests that were performed loaded the attachments at a rate of 0.2 in./min, but for several systems, the machine was used to simulate dynamic loading. This was done by setting the MTS to its maximum speed of approximately 8 in./sec to demonstrate how the attachments would behave in releasing the cable in dynamic situations.

4.2.2 Digital Photography

Digital photographs were taken of the samples before and after static testing. These were taken with a Nikon Coolpix 8800 digital camera.

Video footage of the static tests was also collected. A Canon Mini digital video camera was used to capture video onto tape, which was later converted into digital format.

5 CABLE ATTACHMENT STATIC TESTING RESULTS

5.1 Results

The instrumentation used in the tests produced data for the force and corresponding displacement until failure for each cable attachment system. Concepts were tested both vertically and laterally, and the results were compared to the target loads of 1,000 lbs for vertical load-orientation and 6,000 lbs for lateral load-orientation.

5.2 Slotted Bracket Attachments

Thirty-four static tests were conducted on the various slotted bracket concepts, as detailed below.

5.2.1 Uniform Slot Brackets

Test nos. SB-1 through SB-18 demonstrated that uniform slot brackets were capable of satisfying the lateral load requirements but not the vertical load requirements. In several tests, the brackets actually demonstrated a higher vertical strength than lateral strength. The first group of tests, nos. SB-1 through SB-9, demonstrated high lateral strength as the brackets held until fracture. However, the brackets were unable to properly release the bolt for the corresponding vertical tests and failed in fracture, thus creating much higher loads than desired. Test nos. SB-9 through SB-18, which featured larger slots, were more successful at releasing the bolt under vertical loads, but were unable to resist the required lateral loads. Table 16 shows uniform slot bracket test results, and the corresponding force-deflection curves are presented in Figure 26 through Figure 29.

Test No.	Load Orientation	Maximum Load (Ibs)	Failure Notes/Other Notes
SB-1	Horizontal	4566	fractured on side of slot
SB-2	Horizontal	2655	fractured on side of slot (both slots)
SB-3	Horizontal	6966	fractured on side of slot
SB-4	Horizontal	5769	fractured on side of slot
SB-5	Vertical	8047	bent/fractured top bolt
SB-6	Vertical	4554	bolt head slipped out of slot
SB-7	Vertical	7836	bent/fractured top bolt
SB-8	Vertical	5461	bent/fractured top bolt
SB-9	Horizontal	1158	Fractured clip on side of slot
SB-10	Vertical	1688	Bolt pullout of top slot
SB-11	Horizontal	1309	Bolt pullout with partial tear of clip on side of slot
SB-12	Vertical	2174	Bolt pullout of top slot
SB-13	Horizontal	1728	Fractured clip on side of slot
SB-14	Vertical	2062	Bolt pullout of top slot
SB-15	Horizontal	1662	Fractured clip on side of slot
SB-16	Vertical	2478	Bolt pullout of top slot
SB-17	Horizontal	-	Couldn't test because slots wouldn't contain the bolts
SB-18	Vertical	2319	Bolt pullout of top slot

Table 16. Uniform Slot Bracket Test Results

Figure 26. Lateral Testing Force-Deflection Curves for Uniform Slot Brackets

Figure 27. Lateral Testing Force-Deflection Curves for Uniform Slot Brackets, Continued

Figure 28. Vertical Testing Force-Deflection Curves for Uniform Slot Brackets

Figure 29. Vertical Testing Force-Deflection Curves for Uniform Slot Brackets, Continued 5.2.2 Flat Keyway Brackets

The flat keyway brackets investigated in test nos. SB-19 through SB-22 met the lateral load requirements, and did so more consistently than the uniform slot brackets. Test nos. SB-21 and SB-22 each withstood the required load of 6,000 lbs before failure. The vertical tests showed mixed results. In test no. SB-19, the bolt did not exit through the keyhole until the load was far greater than the desired 1,000-lb load. Test no. SB-20 performed much better, failing as the bolt exited the keyway under a loading of 971 lbs, but the bolts were loose prior to loading. These results suggested that the behavior of the bracket under vertical loading was highly dependent on bolt torque and preloading. Lower torque and preloading levels enabled the brackets to release under lighter loads while not adversely affecting the lateral capacity of the bracket. Table 17

presents flat keyway bracket test results, and Figure 30 and Figure 31 present the corresponding force-deflection curves.

Test No.	Load Orientation	Maximum Load (lbs)	Failure Notes/Other Notes
SB-19	Vertical	6207	Bolt head did not slide down initially, but did exit keyway
SB-20	Vertical	971	Loose bolts, head slid cleanly out of keyway
SB-21	Horizontal	6646	Bracket fractured on the side
SB-22	Horizontal	6511	Bolt tore through the bracket in bearing failure

Table 17. Flat Keyway Bracket Test Results

Figure 30. Lateral Force-Deflection Curves for Flat Keyway Brackets

Figure 31. Vertical Force-Deflection Curves for Flat Keyway Brackets

5.2.3 Angled Slot Brackets

The angled slot brackets failed to meet either load requirement. When laterally loaded, test nos. SB-25 and SB-26 fractured under loads well short of the 6,000-lb requirement. The brackets also developed more strength when vertically loaded than was desired. Table 18 summarizes the angled slot bracket test results, and Figure 32 and Figure 33 present corresponding force-deflection curves.

Test No.	Load Orientation	Maximum Load (lbs)	Failure Notes/Other Notes
SB-23	Vertical	1917	Bottom leg of bracket bent around bolt head and fractured
SB-24	Vertical	1555	Bolt exited slot but still tore the bottom leg
SB-25	Horizontal	2069	Bracket fractured on both sides
SB-26	Horizontal	1825	Bracket fractured on both sides

Table 18. Angled Slot Bracket Test Results

Figure 32. Lateral Force-Deflection Curves for Angled Slot Brackets

Figure 33. Vertical Force-Deflection Curves for Angled Slot Brackets

5.2.4 Bent Keyway Brackets

Test nos. SB-27 through SB-30 evaluated the bent keyway brackets with moderate success. When loaded vertically, the brackets in test nos. SB-27 and SB-30 each failed by releasing the bolt at loads of less than 1,000 lbs. However, in each test, the bar then became caught between the bracket and the cable, causing the load to increase to at least 1,700 lbs. This snagging on the bolt upon exit was not believed to be representative of the behavior of an actual cable, but it did suggest that the release could be made cleaner. In the lateral load tests, the brackets withstood a moderate load, but fell short of the requirement to develop the full strength of the post. It was believed that the lateral load could easily be increased by increasing the tensile area of the bracket. Table 19 summarizes bent keyway bracket test results, and Figure 34 and Figure 35 present corresponding load-deflection curves.

Test No.	Load Orientation	Maximum Load (Ibs)	Failure Notes/Other Notes
SB-27	Vertical	1700	Bolt exited the keyway cleanly with approx. 640 lbs, but the cable then got caught sliding between the bracket and bolt casuing a load increase
SB-28	Horizontal	3200	Bracket fracture at miniumum tensile area at the bend
SB-29	Horizontal	4334	Dynamic - Bracket fracture at miniumum tensile area at the bend
SB-30	Vertical	1860	Dynamic - Bolt exited the keyway cleanly with approx. 780 lbs, but the cable then got caught sliding between the bracket and bolt casuing a load increase

Table 19. Bent Keyway Bracket Test Results

Figure 34. Lateral Force-Deflection Curves for Bent Keyway Brackets

Figure 35. Vertical Force-Deflection Curves for Bent Keyway Brackets

5.2.5 Curved Keyway Brackets

The curved keyway brackets were designed to provide cleaner vertical release and more lateral capacity than the bent keyway brackets. As such, the curved keyway brackets displayed the best performance of all slotted bracket concepts tested. When vertically loaded, test nos. SB-31 and SB-32 released the bolts at a 775-lb load. While the bar was then caught between the bracket and the bolt, thus causing a load increase, it was believed that this would not occur in service as the cable would be able to rotate and slip free. Laterally, the keyways developed the desired strength before fracturing. Table 20 summarizes curved bracket test results, and Figure 36 and Figure 37 present corresponding load-deflection curves.

Test No.	Load Orientation	Maximum Load (lbs)	Failure Notes/Other Notes
SB-31	Vertical	1870	Bolt exited the keyway cleanly with approx. 775 lbs, but the cable then got caught sliding between the bracket and bolt casuing a load increase
SB-32	Vertical	2550	Dynamic - Bolt exited the keyway cleanly with approx. 775 lbs, but the cable then got caught sliding between the bracket and bolt casuing a load increase
SB-33	Horizontal	6200	Bracket fracture at miniumum tensile area
SB-34	Horizontal	6630	Dynamic - Bracket fracture at miniumum tensile area

Table 20. Curved Keyway Bracket Test Results

Figure 36. Lateral Force-Deflection Curves for Curved Keyway Brackets

Figure 37. Vertical Force-Deflection Curves for Curved Keyway Brackets

5.3 U-Bolt Attachments

Sixty-seven different tests were conducted on the various U-bolt attachment concepts, as detailed below.

5.3.1 Welded and Notched J-Bolts

The first U-Bolt concept consisted of welded and notched J-bolts. Though these attachments could withstand large lateral loads, most of the tests did not reach the 6,000-lb requirement before fracturing at their notches. Additionally, the welded and notched J-bolts did not release the bar at 1,000 lbs of vertical load. In test no. UBLMV (8), the connection developed a vertical load of over 9,500 lbs, nearly ten times the required limit. Table 21 shows a summary of these attachments' performance, and Figure 38 and Figure 39 show the corresponding load-deflection curves.

Test No.	Load Orientation	Maximum Load (Ibs)	Failure Notes/Other Notes
UBLSH (1)	Horizontal	4002	fractured at notch
UBLMH (2)	Horizontal	5500	fractured at notch
UBLLH (3)	Horizontal	7400	fractured at notch
UBHSH (4)	Horizontal	4001	fractured at notch
UBHMH (5)	Horizontal	4700	fractured at notch
UBHLH (6)	Horizontal	3301	fractured at notch
UBLSV (7)	Vertical	6602	fractured at notch
UBLMV (8)	Vertical	9547	fractured at both notches
UBLLV (9)	Vertical	N/A	N/A
UBHSV (10)	Vertical	4500	fractured at notch
UBHMV (11)	Vertical	2100	fractured at notch
UBHL V (12)	Vertical	3128	fractured at notch

Table 21. Welded, Notched U-Bolt Test Results

Force-Deflection for Welded, Notched J-Bolts Static Testing - Vertical 10000 9000 8000 7000 6000 Force (lbs) 5000 4000 3000 2000 1000 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Displacement (in.) UBLSV(7) Clip Type: Double J-Bolt Grade: C1038 Diameter: 0.375" Weld Size: Small - UBLMV(8) Clip Type: Double J-Bolt Grade: C1038 Diameter: 0.375" Weld Size: Medium -UBHSV(10) Clip Type: Double J-Bolt Grade: C1018 Diameter : 0.375" Weld Size: Small - UBHMV(11) Clip Type: Double J-Bolt Grade: C1018 Diameter: 0.375" Weld Size: Medium - UBHLV(12) Clip Type: Double J-Bolt Grade: C1018 Diameter: 0.375" Weld Size: Large

Figure 38. Lateral Force-Deflection Curves for Welded, Notched J-Bolts

Figure 39. Vertical Force-Deflection Curves for Double J-Bolts

5.3.2 U-Bolts with Nut Combinations

The U-bolts with different combinations of nuts also failed to meet the design requirements of the attachments. These bolts were able to support a lateral load of over 6,000 lbs, but failed to release the bar when subjected to a 1,000-lb vertical load. The majority of tests required between 2,000 and 2,500 lbs of load before the cable was released. Results are presented in Table 22, and load-deflection curves are presented in Figure 40 and Figure 41.

Test No.	Load Orientation	Maximum Load (Ibs)	Failure Notes/Other Notes
UB-1	Vertical	2400	fractured between two nuts on front
UB-2	Vertical	4300	fractured at base of the top nut
UB-3	Vertical	3600	fractured at base of the top nut
UB-4	Vertical	2500	fractured between the nut closest to the flange and the second nut on front
UB-5	Vertical	2250	fractured between the nut closest to the flange and the second nut on front
UB-6	Vertical	2455	fractured at base of the nut
UB-7	Vertical	2586	fractured at base of the nut
UB-8	Horizontal	6529	fractured at base of the nut
UB-8B	Horizontal		Bending test after fracture of the u-bolt
UB-9	Horizontal	6717	fractured at base of the nut
UB-9B	Horizontal		Bending test after fracture of the u-bolt

Table 22. U-Bolts with Nut Combinations Test Results

Figure 40. Lateral Force-Deflection Curves for U-Bolts with Nut Combinations

Figure 41. Vertical Force-Deflection Curves for U-Bolts with Nut Combinations

5.3.3 U-Bolts with Keyways

Test nos. UB-11 and UB-12 measured the vertical load capacity of the U-bolts with keyways concept. Lateral testing was not performed as the lateral capacity of the U-bolts had been demonstrated in test nos. UB-8 and UB-9. In both vertical tests, the connection failed when the U-bolt slipped through the keyway. Both bolts tested released the bar at loads of less than 500 lbs and were considered successful. Table 23 and presents test summary information, and Figure 42 presents the corresponding load-deflection curves.

 Table 23. U-Bolts with Keyways Test Results

Test No.	Load Orientation	Maximum Load (Ibs)	Failure Notes/Other Notes
UB-11	Vertical	454	bolt bent and slipped through keyway
UB-12	Vertical	490	bolt bent and slipped through keyway

Figure 42. Vertical Force-Deflection Curves for U-Bolts with Keyways

5.3.4 U-Bolts with Upper Slots

The U-bolt concept that utilized slotted upper holes was tested in test nos. UB-13 through UB-15. Test no. UB-13 was deemed invalid as side plates on the test jig did not allow the bolt to exit the slot. Otherwise, all of these tests, which applied vertical loads to the U-bolts, failed when the upper end of the bolt cleanly exited the slot. The failure loads were approximately equal to the target load of 1,000 lbs. Table 24 presents summarized test results, and Figure 43 presents the corresponding load-deflection curves.

Test No.	Load Orientation	Maximum Load (Ibs)	Failure Notes/Other Notes
UB-13	Vertical	-	side plates on load jig did not allow bolt to exit cleanly rerun as 13B
UB-13B	Vertical	1100	reurn of 13 with only top of load jig (no side plates) - bolt slipped out end of slot
UB-14	Vertical	681	reurn of 13B with only top of load jig (no side plates) - bolt slipped out end of slot
UB-15	Vertical	900	reurn of 14 with only top of load jig (no side plates) - bolt slipped out end of slot

Table 24. U-Bolts with Upper Slots Test Results

Figure 43. Vertical Force-Deflection Curves for U-Bolts with Nut Combinations 5.3.5 U-Bolts with Spacers

A large number of tests were performed on U-bolts with spacers. During the majority of these tests, the connection failed when the upper arm of the U-bolt fractured near the flange of the post. However, in some tests the bolt fractured at a greater distance from the post, and in several tests, the U-bolt partially or completely fractured at more than one location. Wooden spacers were used at first but were often crushed when the U-bolt deformed due to vertical loading. This allowed a reduction in the length of the moment arm that caused variation in the loads required for failure to occur, ranging from 1,018 lbs in test no. UB-26 to 2,170 lbs in test no. UB-17. The substitution of high density polyethylene spacers (HDPE) improved the uniformity of the test results. For the two tests that featured HDPE spacers, the failures occurred

at loads of 1440 lbs and 1300 lbs. Table 25 presents a summary of the test results, and Figure 44 through Figure 50 show the corresponding force-displacement curves.

Test No.	Load	Maximum	Failure Notes/Other Notes	
	Orientation	Load (lbs)	Failure Notes/Other Notes	
UB-16	Vertical	1241	spacer block welds broke	
	Vortiool	2170	spacer not welded - lost extended moment arm when cable	
00-17	ventical	2170	deformed past the spacer width	
UB-19	Vertical	1975	Bolt fractured at top arm	
UB-20	Vertical	1882	Bolt fractured at top arm	
UB-21	Vertical	1639	Bolt fractured at top arm outside of jam nut	
UB-22	Vertical	1754	Bolt fractured at top arm outside of jam nut	
	Vertical	4500	Bolt fractured near end of the thread, wooden spacer	
UB-23	ventical	1500	crushed significantly causing reduction of moment arm	
			Bolt fractured near end of the thread - 1300 lbs - wooden	
UB-24	Vertical	1300	spacer crushed significantly causing reduction of moment	
			arm	
	Vertical	4054	Bolt fractured near end of the thread, wooden spacer	
UB-25	ventical	1054	crushed significantly causing reduction of moment arm	
	Vertical	1018	Bolt fractured near on outside of jam nut, wooden spacer	
UB-20	ventical		crushed significantly causing reduction of moment arm	
UB-33	Vertical	-	Bent vertical mounting jig - need to refabricate and reinforce	
		Bent vertical mounting jig - need to refabricate and reinforce -		
00-34	ventical	-	make out of S3x5.7 - stopped test	
UB-35	Vertical	2030	Bolt fractured at top arm	
UB-36	Vertical	2140	Bolt fractured at top arm	
UB-37	Vertical	2300	Dynamic - Bolt fractured at top arm	
	Vertical	1440	HDPE Spacer pivots on top edge - Top arm of bolt fractured	
00-30			at peak load	
	Vertical	1300	HDPE Spacer pivots on top edge - Top arm of bolt fractured	
00-39			at peak load	
	Horizontal	4850	Bent web prior to fracture of bolt due to torsion of section -	
06-40			Bolt fractured at peak load = 4850 lbs	
UB-41			Bottom arm of u-bolt fractured - Peak load = ??? - fracture of	
	Vertical	-	lower arm is in tension (both arms contributing so we are not	
			isloating the bending enough to get the 6:1 ratio)	
		-	Bottom arm of u-bolt fractured - Peak load = ??? - fracture of	
UB-42	Vertical		lower arm is in tension (both arms contributing so we are not	
			isloating the bending enough to get the 6:1 ratio)	

Table 25. U-Bolts with Spacers Test Results

Figure 44. Vertical Force-Deflection Curves for U-Bolts with Spacers

Figure 45. Vertical Force-Deflection Curves for U-Bolts with Spacers, Continued

Figure 46. Vertical Force-Deflection Curves for U-Bolts with Spacers, Continued

Figure 47. Vertical Force-Deflection Curves for U-Bolts with Spacers, Continued

Figure 48. Vertical Force-Deflection Curves for U-Bolts with Spacers, Continued

Figure 49. Vertical Force-Deflection Curves for U-Bolts with Spacers, Dynamic

Figure 50. Lateral Force-Deflection Curves for U-Bolts with Spacers, Dynamic 5.3.6 U-Bolts with Double Slots

Only one test was performed on a U-bolt connected through double slotted holes in the post. Test no. UB-18 demonstrated that the connection was unable to develop any significant vertical load before failure. No further tests were conducted.

5.3.7 U-Bolts with Oversized Upper Holes

Test nos. UB-27 through UB-32 utilized U-bolts connections with oversized upper holes. Three tests were performed with lateral loads, and failure occurred when the bolt bent and allowed the nut to escape through the oversized upper hole. Three other tests were performed with vertically oriented loads. During these tests, the nuts did not exit cleanly through the oversized holes. Instead, failure occurred when the bolt fractured and allowed the bar to escape. Table 26 shows summarized test results, and Figure 51 and Figure 52 show the corresponding load-deflection curves.

Tost No	Load	Maximum	Failura Notos/Other Notos
Test NO.	Orientation	Load (lbs)	Failure Notes/Other Notes
UB-27	Horizontal	1900	Bolt bent allowing nut to escape large hole on top
UB-28	Horizontal	2200	Bolt bent allowing nut to escape large hole on top
UB-29	Horizontal	2955	Bolt bent allowing nut to escape large hole on top
UB-30	Vertical	2669	Nut and washer could not exit hole - bolt fractured
UB-31	Vertical	3083	Nut did not exit hole cleanly, bolt fractured
UB-32	Vertical	2608	Nut did not exit hole cleanly, bolt fractured

Table 26. U-Bolts with Oversized Upper Holes Test Results

Figure 51. Lateral Force-Deflection Curves for U-Bolts with Oversized Holes

Figure 52. Vertical Force-Deflection Curves for U-Bolts with Oversized Holes 5.3.8 Bolts with Clips

Arrangements of U-bolt clips were tested last. The first set of tests, which used actual Ubolts, performed much like the U-bolts with keyways concept. When loaded laterally, the bolts fractured in tension, releasing the bar at loads of 6,530 lbs and 6,660 lbs. Under vertical loads, the U-bolts deflected through the side of the clip, allowing the bar to release at loads of less than 500 lbs. The second U-bolt concept, which consisted of two straight bolts connected by a clip, performed in a similar manner. When loaded laterally, the connections failed as the bolts either stripped their threads or fractured in tension, sustaining loads of over 5,000 lbs. Vertical loads caused the bolts to deflect, releasing the clips and the bar at loads of less than 1,000 lbs. Table 27 presents test results, and Figure 53 and Figure 54 present corresponding force-deflection curves.

Test No.	Load Orientation	Maximum Load (lbs)	Failure Notes/Other Notes
UB-43	Vertical	470	Smooth exit of top arm from clip
UB-44	Vertical	406	Smooth exit of top arm from clip
UB-45	Vertical	-	top arm snagged in the top hole on jig - problem with the jig - invalid test
UB-46	Horizontal	6530	Fracture of u-bolt in tension
UB-47	Horizontal	6660	Fracture of u-bolt in tension
UB-48	Vertical	3743	Bolt fractured due to shear
UB-49	Vertical	410	Started test with cable max distance from flange - Bolt bent releasing the clip plate and cable
UB-50	Vertical	968	Started test with cable next to flange - Bolt bent releasing the clip plate and cable
UB-51	Vertical	754	Started test with cable next to flange - Bolt bent releasing the clip plate and cable
UB-52	Horizontal	5400	Stripped threads - No clip plate deformatiion
UB-53	Horizontal	5264	Bolt broke in tension - No clip plate deformatiion

Table 27. Bolts with Clips Test Results

Figure 53. Lateral Force-Deflection Curves for Bolts with Clips

Figure 54. Vertical Force-Deflection Curves for Bolts with Clips

5.4 Discussion

Many of the concepts designed for the cable attachments proved incapable of developing the ideal lateral to vertical load ratio, 6,000 lbs to 1,000 lbs. The uniform slot brackets, the first tested concept, developed very similar lateral and vertical failure loads. Brackets featuring narrow slots satisfied the lateral load criteria but developed too much resistance when loaded vertically. Brackets with larger slots tended to satisfy the vertical load requirement better, but were unable to withstand large lateral loads.

The flat keyway bracket concept was an improvement over the uniform slot bracket, but was considered to be unreliable in meeting the vertical load requirement. Though both brackets tested laterally sustained loads over 6,000 lbs, the vertically tested brackets failed at loads of 6,207 lbs and 971 lbs. The larger load was caused by the bolt failing to slide into the bracket's keyway, and the smaller load was largely due to the bolts being installed loosely.

Brackets with angled slots failed to satisfy either loading criteria. The brackets failed under vertical loads that were larger than, but within reasonable range of the target loads. However, the brackets failed under lateral loads of approximately 2,000 lbs, or one-third the target load. As the brackets' failure ratio was not within reasonable limits of the design ratio, it was decided to abandon this concept.

The bent keyway brackets performed adequately, releasing the bar before vertical loads reached 1,000 lbs. The bar then became caught between the bracket and the bolt, resulting in an increased load. However, this was considered unimportant as in practice the cable will be free to rotate, increasing the likelihood that the cable can free itself from any snags. The bent keyway bracket's primary shortcoming was its inability to withstand the required lateral load. In the two tests performed, it failed under loads of 3,200 lbs and 4,334 lbs.

The final slotted bracket concept, the curved keyway bracket, improved on the lateral load capacity of the bent keyway bracket while maintaining its vertical load performance. Both tests performed using lateral loads surpassed the required 6,000 lb load, and in both vertical tests the brackets released the bar before the load reached 1,000 lbs. Though the load increased as the bar became caught between the bolt and the bracket, this was not considered an issue as a cable's ability to rotate would help prevent this from happening in actual field applications. The curved keyway bracket was deemed the overall best connection and was the only one to be subsequently tested under dynamic loading. A drawing of the final design of the curved keyway bracket is presented in Appendix D.

The first U-bolt concept tested, the welded and notched J-bolts, were unable to create the desired loading ratio. Under lateral loading, the capacities of the bolts varied widely and the average failure load, 4,818 lbs, was less than the requirement of 6,000 lbs. Additionally, the bolts developed more than the desired vertical strength, requiring much more than 1,000 lbs to release the bar.

Various U-bolts and nut combinations were tested next. Although these bolts were able to withstand the required lateral load, the bolts did not satisfy the vertical loading requirements. All of the vertical tests required loads of over 2,000 lbs to release the bar.

The U-bolt concepts which featured keyways and slotted upper holes in the post performed quite well. Testing confirmed that these concepts were consistent in releasing the cable within the desired load range. However, review of existing patent applications revealed a similar system, which created the possibility of future patent infringement if a patent were issued. As a result, these U-bolt concepts were discontinued in favor of other attachment systems.

A large number of tests were performed on U-bolt connections that utilized spacers, which were intended to increase the moment arm of the cable's force on the bolt. While some of the vertical tests did fail near the target load of 1,000 lbs, the tests did not demonstrate reliable results. When wood spacers were used, the deflection of the U-bolt tended to crush the block, allowing the cable to slide nearer to the post. This in turn reduced the moment arm, which lowered the bending stress in the bolt and increased the load required for failure. HDPE spacers were substituted to avoid this, but the deflection of the bolt still allowed the bar to move closer to the post. Larger spacers were used, including several that extended beyond the arms of the bolt, but they rotated about the bolt, also allowing the bar to move closer to the post. Overall, the U-

bolts with spacers tended to satisfy the lateral load requirements, but most vertical tests required at least 1,500 lbs to fail. Due to the inconsistent failure of the connection when loaded vertically, it was eventually decided to discontinue the spacer concept.

Only one test was performed on the U-bolt concept that connected to the post through two inclined slots. In test no. UB-18, the bolt failed without developing any significant vertical load. Additionally, there was concern that this concept might infringe upon an existing patent. As a result, it was decided to not pursue this concept further.

The concept featuring oversized holes for the upper portion of the U-bolt connection was unable to develop the required load ratio. When loaded laterally, the bolt bent and allowed the nut to escape at loads of less than 3,000 lbs, far below the desired 6,000-lb load. Vertical tests showed that the nut and washer, when applicable, were unable to exit the hole cleanly. Failure occurred when the bolt fractured, which required over 2,500 lbs to occur. Additionally, this concept was thought to possibly infringe upon existing patent applications, so it was not pursued further.

The final U-bolt concepts tested, which utilized clips, were successful in creating the desired load ratio. The first clip concept tested, in which the U-bolts were fastened to a clip that was bolted to the post, developed lateral loads of over 6,000 lbs and failed under vertical loads of less than 1,000 lbs. However, the clip required for this concept had to be cast, which increased the price of each attachment. The second clip concept, which utilized two separate bolts connected by a clip, was developed to avoid this problem, as its clip could be inexpensively produced through stamping. Laterally, the tests showed that the attachment wasn't quite able to develop 6,000-lb loads but did sustain loads in the low 5,000-lb range. Vertical tests were largely successful as three of the four tests released the bar at loads of less than 1,000 lbs. One test, UB-

48, did not release the bar until the bolt fractured in shear, which occurred at a load of 3,743 lbs. While the second clip concept performed well, it was decided against based on serviceability issues. Though the clips were held in place by the bolts, they were allowed to move slightly due to space between the clips themselves and the bolts. There was concern that the clips might slip out due to this movement, rendering the attachment ineffective. It was decided, based on these reasons, to not further test the clip concepts.

6 CABLE ATTACHMENT DYNAMIC TESTING

6.1 Purpose

Upon completion of the static testing of the cable attachment concepts for the hightension, cable median barrier, the curved keyway bracket was identified as the best option for the cable attachment. However, it was desired to evaluate the connection under dynamic load conditions prior to its use in a full-scale crash test. These tests would demonstrate the performance of the bracket when used with an actual cable and when loaded at speeds similar to those observed in full-scale tests.

6.2 Scope

A series of 14 dynamic tests were performed on the curved keyway bracket concept. These tests consisted of attaching one end of a cable to a bogie and the other end to the bracket, which was attached to an adjustable plate. The bogie was then set in motion, away from the bracket, placing a dynamic load on the on the bracket until failure. The tests were performed through different orientations relative to the bracket that simulated lateral, vertical, and inclined loads.

Two different styles of bolts were used to fasten the brackets to the plate. For the first nine tests, standard 0.375-in. diameter, Grade 5 bolts were used. These bolts fastened the brackets to the post but were only hand tightened to prevent the brackets from failing to release vertically due to bolt preload. Because specification of hand-tight torque is difficult for actual installation, 0.375-in. diameter, Grade 5 shoulder bolts were developed for use in the actual system. The heads of these bolts prevented the bracket from detaching from the post while the shoulders, which passed through the brackets, were tightened directly against the post, not impeding the vertical release of the cable. Simulated shoulder bolts were created by passing

standard bolts through a short section of steel tube, which served as the shoulder, and tightening the entire apparatus against the post. The simulated shoulder bolts were tested in test SBB-10. Prototype shoulder bolts were later fabricated and tested in tests SBB-11 through SBB-14. Figure 55 shows the bracket and shoulder bolt installations, and a summary of the dynamic bracket tests is presented in Table 28. The test setups used for test nos. SBB-1 through SBB-10 and test nos. SBB-11 through SBB-14 are presented in Figure 56 and Figure 57, respectively.

Standard BoltsShoulder BoltsFigure 55. Standard and Shoulder Bolt Bracket Installation

Test No.	Angle* (deg)	Bolt Type	Method
SBB-1	0	Standard	Hand
SBB-2	90	Standard	Hand
SBB-3	90	Standard	Hand
SBB-4	45	Standard	Hand
SBB-5	45	Standard	Hand
SBB-6	0	Standard	Hand
SBB-7	30	Standard	Hand
SBB-8	30	Standard	Hand
SBB-9	15	Standard	Hand
SBB-10	90	Shoulder	Wrench
SBB-11	90	Shoulder	Wrench
SBB-12	90	Shoulder	Wrench
SBB-13	30	Shoulder	Wrench
SBB-14	0	Shoulder	Wrench

Table 28. Dynamic Bracket Test Summary

*Measured from bracket's vertical orientation

89

Figure 56. Test Setup for Test Nos. SBB-1 Through SBB-10

Figure 57. Test Setup for Test Nos. SBB-11 Through SBB-14

69

6.3 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest (NW) side of the Lincoln Municipal Airport and is approximately 8.0 km (5 mi.) NW of the University of Nebraska-Lincoln.

6.4 Test Apparatus

The test apparatus consisted of a plate to which the attachments were fastened, which could be adjusted to incline the bracket at various angles. This plate was connected through a steel tube to a stationary barrier. The steel tube was attached to a mounting plate by a cylindrical joint which allowed a tension load cell to be used to measure loads. A cable was then looped through the attachment and tied to a bogie that was set in motion, away from the attachment, at a speed of approximately 6 mile per hour, placing a dynamic load on the attachment. Drawings of the test apparatus are presented in Appendix D.

6.5 Equipment and Instrumentation

A variety of equipment and instrumentation was used to record and collect data. It was important to gather correct data using accurate instrumentation in order to understand and derive meaningful conclusions from the dynamic tests. The main equipment and instruments used for the tests were:

- Bogie
- Accelerometer
- Load Cell
- Photography Cameras

6.5.1 Bogie

A rigid frame bogie, constructed under the direction of Dr. John Rohde, was used to test the attachments under dynamic loads. The weight of the bogie, not including the weight of the cable, was 1,353 lbs. The bogie is shown in Figure 58.

Figure 58. Bogie and Test Setup

6.5.2 Accelerometers

Two triaxial piezoresistive accelerometer systems, described below, were used to measure the acceleration in the longitudinal, lateral, and vertical directions. These were mounted on the bogie at approximately its center of gravity.

Principle EDR:

- Model EDR-4M6 Instrumented Sensor Technology (IST) of Okemos, MI
- ± 200 g's
- 10,000 Hz Sample Rate
- 3 Differential Channels, 3 Single-Ended Channels
- 6 MB RAM Memory
- 1,500 Hz low-pass filter

Secondary EDR:

- Model EDR-3 Instrumented Sensor Technology (IST) of Okemos, MI
- ± 200 g's
- 3,200 Hz Sample Rate
- 256 kB RAM Memory
- 1,120 Hz low-pass filter

A laptop computer downloaded the raw acceleration data immediately following each test. Computer software "DynaMax 1 (DM-1)" and "DADiSP," was used to analyze and plot the accelerometer data. The data was processed as per the SAE J211/1 specifications.

6.5.3 Load Cell

A load cell was placed within the testing apparatus to measure the force exerted on the attachment until failure. This load cell was placed in tension, between the attachment and the stationary barrier, and had a maximum capacity of 50 kips.

6.5.4 High-Speed Digital Photography

Two high-speed AOS VITcam video cameras with operating speeds of 500 frames/sec, designated AOS-1 and AOS-2, were used to record video imagery of the dynamic testing. Camera AOS-1 was placed above of the attachment, facing downward, while camera AOS-2 was placed at the same height as the attachment, perpendicular to the test jig.

6.5.5 Digital Photography

Two JVC digital video cameras, designated JVC-1 and JVC-2, were used to film the dynamic tests. These cameras operated at a speed of 29.97 frames/sec. Camera JVC-1 was positioned at the same height as the attachment, perpendicular to the test jig, while camera JVC-2 was positioned above the attachment, facing downward.

A digital still camera was also used to record images of the dynamic tests. This camera was a Nikon D50.

7 ATTACHMENT DYNAMIC TESTING RESULTS AND DISCUSSION

7.1 Results

A series of fourteen dynamic tests were performed on the slotted bracket. Vertical, lateral, and inclined loads were applied to the brackets to test its load capacity under all load orientations. Standard bolts were used to fasten the bracket for the first nine tests, and shoulder bolts were used for the remainder of the tests. Results for all tests performed are presented in the following sections. A summary of these results is presented in Table 29.

Test No.	Angle	Peak Load	Release/ Failure Mode
SBB-1	(ucg) 0	0.805919	bolt head slid through keyway
SBB-2	90	6.838486	rupture of bracket near bolt head allowing bolt to release
SBB-3	90	6.885669	rupture of bracket near bolt head allowing bolt to release
SBB-4	45	5.33188	rupture of minimum tensile area
SBB-5	45	4.540741	rupture of minimum tensile area
SBB-6	0	0.872944	bolt head slid through keyway
SBB-7	30	no load cell	bolt head slid through keyway
SBB-8	30	1.966965	bolt head slid through keyway
SBB-9	15	0.882381	bolt head slid through keyway
SBB-10	90	7.028065	rupture of minimum tensile area
SBB-11	90	5.228548	bolt installed wrong - rupture of minimum tensile area
SBB-12	90	5.721919	bolt failed prior to failure of bracket
SBB-13	30	1.167267	bolt head slid through keyway
SBB-14	0	2.819096	bolt head slid through keyway - cable caught on bolt head causing extra load

Table 29. Dynamic Testing Results

7.1.1 Test No. SBB-1

For test no. SBB-1, the cable applied a load to the bracket along its vertical axis. The bracket was fastened using standard bolts and released the cable at a load of 806 lbs. The cable then became caught on the bolt, but rotated free. Pre-test and post-test photographs are presented in Figure 59. Sequential photographs for test no. SBB-1 are presented in Figure 60, and force-time data is presented in Figure 61.

Pre-Test Post-Test Figure 59. Pre-Test and Post-Test Photographs for Test No. SBB-1

Time = 0ms

Time = 100ms

Time = 110ms

Time = 114msTime=130msFigure 60. Sequential Photographs, Test No. SBB-1

Figure 61. Force-Time Data for Test No. SBB-1

7.1.2 Test No. SBB-2

For test no. SBB-2, the cable applied a load to the bracket along its lateral axis. The bracket was fastened using standard bolts and released the cable when the bracket ruptured near the bolt connections at a load of 6,838 lbs. Pre-test and post-test photographs are presented in Figure 62. Sequential photographs for test no. SBB-2 are presented in Figure 63, and force-time data is presented in Figure 64.

Pre-Test Post-Test Figure 62. Pre-Test and Post-Test Photographs for Test No. SBB-2

Time = 0ms

Time = 100ms

Time = 110ms

Time = 140msTime = 150msFigure 63. Sequential Photographs, Test No. SBB-2

Figure 64. Force-Time Data for Test No. SBB-2

7.1.3 Test No. SBB-3

For test no. SBB-3, the cable applied a load to the bracket along its lateral axis. The bracket was fastened using standard bolts and released the cable when the bracket ruptured near the bolt connections at a load of 6,886 lbs. Pre-test and post-test photographs are presented in Figure 65. Sequential photographs for test no. SBB-3 are presented in Figure 66, and force-time data is presented in Figure 67.

Pre-Test Post-Test Figure 65. Pre-Test and Post-Test Photographs for Test No. SBB-3

Time = 0ms

Time = 90ms

Time = 110msTime = 120msFigure 66. Sequential Photographs, Test No. SBB-3

Figure 67. Force-Time Data for Test No. SBB-3

7.1.4 Test No. SBB-4

For test no. SBB-4, the cable applied a load at an angle of 45 degrees to the bracket's vertical axis. The bracket was fastened using standard bolts and released the cable when the bracket ruptured at the minimum tensile area, near the bolt connections, at a load of 5,332 lbs. Pre-test and post-test photographs are presented in Figure 68. Sequential photographs for test no. SBB-4 are presented in Figure 69, and force-time data is presented in Figure 70.

Pre-Test Post-Test Figure 68. Pre-Test and Post-Test Photographs for Test No. SBB-4

Time = 100ms

Figure 69. Sequential Photographs, Test No. SBB-4

Figure 70. Force-Time Data for Test No. SBB-4

7.1.5 Test No. SBB-5

For test no. SBB-5, the cable applied a load at an angle of 45 degrees to the bracket's vertical axis. The bracket was fastened using standard bolts and released the cable when the bracket ruptured at the minimum tensile area, near the bolt connections, at a load of 4,541 lbs. Pre-test and post-test photographs are presented in Figure 71. Sequential photographs for test no. SBB-5 are presented in Figure 72, and force-time data is presented in Figure 73.

Pre-Test Post-Test Figure 71. Pre-Test and Post-Test Photographs for Test No. SBB-5

Time = 120ms

Time = 122ms

Time = 124ms

Time = 126ms

Figure 72. Sequential Photographs, Test No. SBB-5

Figure 73. Force-Time Data for Test No. SBB-5

7.1.6 Test No. SBB-6

For test no. SBB-6, the cable applied a load to the bracket along its vertical axis. The bracket was fastened using standard bolts and released the cable which then became caught on the bolt, rotating free at a load of 873 lbs. Pre-test and post-test photographs are presented in Figure 74. Sequential photographs for test no. SBB-6 are presented in Figure 75, and force-time data is presented in Figure 76.

Pre-Test Post-Test Figure 74. Pre-Test and Post-Test Photographs for Test No. SBB-6

Time = 0ms

Time = 124ms

Time = 130ms Time = $\overline{140}$ ms

Figure 75. Sequential Photographs, Test No. SBB-6

Figure 76. Force-Time Data for Test No. SBB-6

7.1.7 Test No. SBB-7

For test no. SBB-7, the cable applied a load to the bracket at an angle of 30 degrees relative to its vertical axis. The bracket was fastened using standard bolts and released the cable cleanly under the dynamic load. However, a load cell was not installed for this test, to the failure load is unknown. Pre-test and post-test photographs are presented in Figure 77. Sequential photographs for test no. SBB-7 are presented in Figure 78.

Pre-Test Post-Test Figure 77. Pre-Test and Post-Test Photographs for Test No. SBB-7

Time = 0ms

Time = 84ms

Time = 118ms

Time = 122msTime = 128msFigure 78. Sequential Photographs, Test No. SBB-7

7.1.8 Test No. SBB-8

For test no. SBB-8, the cable applied a load to the bracket at an angle of 30 degrees relative to its vertical axis. The bracket was fastened using standard bolts and released the cable cleanly under a load of 1,967 lbs. Pre-test and post-test photographs are presented in Figure 79. Sequential photographs for test no. SBB-6 are presented in Figure 80, and force-time data is presented in Figure 81.

Pre-TestPost-TestFigure 79. Pre-Test and Post-Test Photographs for Test No. SBB-8

Time = 0ms

Time = 90ms

Time = 108ms

Time = 116msTime = 122msFigure 80. Sequential Photographs, Test No. SBB-8

Figure 81. Force-Time Data for Test No. SBB-8

7.1.9 Test No. SBB-9

For test no. SBB-9, the cable applied a load to the bracket at an angle of 15 degrees relative to its vertical axis. The bracket was fastened using standard bolts and released the cable cleanly under a load of 882 lbs. Pre-test and post-test photographs are presented in Figure 82. Sequential photographs for test no. SBB-9 are presented in Figure 83, and force-time data is presented in Figure 84.

Pre-Test Post-Test Figure 82. Pre-Test and Post-Test Photographs for Test No. SBB-9

Time = 0ms

Time = 80ms

Time = 110ms

Time = 116ms

Time = 122msTime = 132msFigure 83. Sequential Photographs, Test No. SBB-9

Figure 84. Force-Time Data for Test No. SBB-9

7.1.10 Test No. SBB-10

For test no. SBB-10, the cable applied a load to the bracket at an angle of 90 degrees relative to its vertical axis. The bracket was fastened using shoulder bolts and released the cable at a load of 7,028 lbs. Pre-test and post-test photographs are presented in Figure 85. Sequential photographs for test no. SBB-10 are presented in Figure 86, and force-time data is presented in Figure 87.

Pre-TestPost-TestFigure 85. Pre-Test and Post-Test Photographs for Test No. SBB-10

Time = 0ms

Time = 100ms

Time = 110msTime = 114msFigure 86. Sequential Photographs, Test No. SBB-10

Figure 87. Force-Time Data for Test No. SBB-10

7.1.11 Test No. SBB-11

For test no. SBB-11, the cable applied a load to the bracket at an angle of 90 degrees relative to its vertical axis. The bracket was fastened using shoulder bolts; however, the bolts were installed incorrectly such that the shoulder entered the bolt hole and the bolt head applied a preload to the bracket. The cable was released when the bracket ruptured in tension at a load of 5,229 lbs. Pre-test and post-test photographs are presented in Figure 88. Sequential photographs for test no. SBB-11 are presented in Figure 89, and force-time data is presented in Figure 90. Note that the bracket is mislabeled as SBB-10.

Pre-Test Post-Test Figure 88. Pre-Test and Post-Test Photographs for Test No. SBB-11

Time = 0ms

Time = 92ms

Time = 100ms

Time = 108ms

Time = 114msTime = 120msFigure 89. Sequential Photographs, Test No. SBB-11

Figure 90. Force-Time Data for Test No. SBB-11

7.1.12 Test No. SBB-12

For test no. SBB-12, the cable applied a load to the bracket at an angle of 90 degrees relative to its vertical axis. The bracket was fastened using shoulder bolts and released the cable as one of the shoulder bolts fractured when the load reached 5,722 lbs. Pre-test and post-test photographs are presented in Figure 91. Sequential photographs for test no. SBB-12 are presented in Figure 92, and force-time data is presented in Figure 93.

Pre-TestPost-TestFigure 91. Pre-Test and Post-Test Photographs for Test No. SBB-12

Time = 0ms

Time = 92ms

Time = 108ms Time = 110ms Figure 92. Sequential Photographs, Test No. SBB-12

Figure 93. Force-Time Data for Test No. SBB-12

7.1.13 Test No. SBB-13

For test no. SBB-13, the cable applied a load to the bracket at an angle of 30 degrees relative to its vertical axis. The bracket was fastened using shoulder bolts and released the cable cleanly under a load of 1,167 lbs. Pre-test and post-test photographs are presented in Figure 94. Sequential photographs for test no. SBB-13 are presented in Figure 95, and force-time data is presented in Figure 96.

Pre-TestPost-TestFigure 94. Pre-Test and Post-Test Photographs for Test No. SBB-13

Time = 104ms Time = 108ms Figure 95. Sequential Photographs, Test No. SBB-13

Figure 96. Force-Time Data for Test No. SBB-13

7.1.14 Test No. SBB-14

For test no. SBB-14, the cable applied a load to the bracket along its vertical axis. The bracket was fastened using shoulder bolts that allowed the bracket to behave as expected, releasing the cable under a vertical load of 1,169 lbs. However, the cable then snagged one of the shoulder bolts, preventing it from releasing until the bolt ruptured at a load of 2,819 lbs. Pre-test and post-test photographs are presented in Figure 97. Sequential photographs for test no. SBB-14 are presented in Figure 98, and force-time data is presented in Figure 98.

Pre-Test Post-Test Figure 97. Pre-Test and Post-Test Photographs for Test No. SBB-14

Time = 0ms

Time = 136ms Time = 146ms Figure 98. Sequential Photographs, Test No. SBB-14

Figure 99. Force-Time Data for Test No. SBB-14

7.2 Discussion of Results

The results of the dynamic testing confirmed that the curved keyway bracket satisfied the initial design criteria. With the addition of shoulder bolts to attach the bracket to the post, the system proved that it could develop the desired load ratios reliably under dynamic loads. Laterally, the bracket test with shoulder bolts failed at 5,723 lbs. While this is slightly less than the original design specifications, the design of the cable posts had changed to compensate for this effect. The brackets were moved 8.5 in. higher on the posts, which reduced the required bracket strength for developing the full post capacity. Vertically, the bracket test with shoulder bolts allowed the brackets to release the cable near the target load of 1,000 lbs.

Tests which subjected the bracket to loads at other angles also had positive results. Test no. SBB-13, which inclined the cable 30 degrees from the bracket's vertical orientation, resulted in the bracket releasing the cable at a load of 1,167 lbs. This value was considered to be in the ideal range for optimal system performance.

8 SPLICE AND END-FITTING DYNAMIC TESTING

8.1 Purpose

Dynamic tests were performed on a variety of existing cable end-fittings and splices to evaluate their potential performance in the cable median barrier. It was desired to identify an end-fitting and a splice that could develop the full capacity of the cable, or a load of 39,000 lbs. End-fitting designs from Bennett Bolt and Brifen were tested along with cable splice designs from Bennett Bolt and Armor Flex.

8.2 Scope

Dynamic cable pull-tests were performed on several different cable release terminals through use of a bogie. These tests were performed by attaching one end of a cable to the bogie and anchoring the other end to a cable terminal. The cable was passed over a concrete barrier near the end-fitting to align the cable with an axis normal to the terminal. The cable was initially slack as the bogie was set in motion away from the terminal. As the bogie moved, the cable was pulled taut and a dynamic tensile load was placed on the cable and its connections. Six different dynamic tests were performed on the cable end-fittings and splices. A layout of the test setup is presented in Figure 100, and a summary of the tests performed is presented in Table 30. Photographs of the test setup are presented in Figure 101.

Test No.	End-Fitting	Rod Diameter	Rod Grade	Splice
4CTB-1	Bennett Bolt low-tension	0.75 in.	ASTM A449	Bennett low-tension
4CTB-2	Bennett Bolt low-tension	0.75 in.	ASTM A449	Bennett low-tension
4CTB-3	Bennett Bolt high-tension	0.875 in.	ASTM A449	Bennett low-tension
4CTB-4	Bennett Bolt high-tension	0.875 in.	ASTM A449	Bennett low-tension
4CTB-5	Bennett Bolt high-tension	0.875 in.	ASTM A449	None
4CTB-6	Armor Flex self-swaging	0.945 in.	Grade K 1040	Armor Flex

Table 30. Cable End-Fitting and Splice Test Data

Figure 100. Test Setup for Test Nos. 4CTB-1, 2, 3, 4, 5, and 6

Figure 101. Bogie and Test Setup

8.3 Testing Facility

High-tension cable terminal bogie testing was performed at the MwRSF's outdoor testing facility at Lincoln Airpark, on the northwest side of the Lincoln Municipal Airport.

8.4 Equipment and Instrumentation

A variety of equipment and instrumentation was used to record and collect data. It was important to gather correct data using accurate instrumentation in order to understand and derive meaningful conclusions from the dynamic tests. The main equipment and instruments used for the tests were:

- Bogie
- Accelerometer
- Photography Cameras

8.4.1 Bogie Vehicle

A rigid-frame bogie was used to apply a dynamic load for the cable pull tests. The weight of the bogie was 4,622 lbs.

A pickup truck with a reverse cable tow system was used to propel the bogie. When the bogie reached the end of the guidance system, it was released from the tow cable, allowing it to

be free rolling as the cable was pulled taut. A remote braking system was installed on the bogie, thus allowing it to be safely brought to rest after the test.

A picture of the bogie used in dynamic testing is presented in Figure 102.

Figure 102. Bogie Used in Dynamic Testing

8.4.2 Accelerometer

A tri-axial piezo-resistive accelerometer system with a range of ± 200 g's was mounted on the frame of the bogie at approximately the center of gravity. It measured the accelerations in the longitudinal, lateral, and vertical directions. The accelerometer system, known as the Model EDR-3, was used previously for the cable attachment dynamic testing. Details for the EDR-3 are presented in Section 6.5.1.

A laptop computer downloaded the raw acceleration data immediately following each test. Computer software "DynaMax 1 (DM-1)" and "DADiSP," was used to analyze and plot the accelerometer data. The data was processed as per the SAE J211/1 specifications.

8.4.3 High-Speed Digital Photography

Four high-speed AOS VITcam video cameras, designated AOS-1, AOS-2, AOS-3, and AOS-4, were used over the course of dynamic testing to record video imagery of the system.

These cameras, which operated at 500 frames/sec, were focused on the cable end-fittings, splices, and other portions of the system.

8.4.4 Digital Photography

Three JVC digital video cameras, designated JVC-3, JVC-4, and JVC-5, were also used to film the dynamic tests. These cameras, which operated at a speed of 29.97 frames/sec, were focused on the cable end-fittings, splices, and other portions of the system.

A digital camera was used to record still images of the dynamic tests. This camera was a Nikon D50.

9 SPLICE AND END-FITTING DYNAMIC TESTING RESULTS AND DISCUSSION

9.1 Results

A series of six dynamic tests were performed on cable end-fittings and splices. The results of those tests are presented in the following sections. A summary of the tests and their results is presented in Table 31. Summary sheets for the dynamic tests are presented in Appendix C.

Test No.	End-Fitting	End-Fitting	Splice Type	Initial Speed	Peak Force	Comments
	Туре	Rod		(mph)	(kips)	
4CTB-1	Bennett low-	0.75-in. dia. Grade A449	Bennett low-	20.00	N/A	End fitting released from
4CTB-2	Bennett low-	0.75-in. dia.	Bennett low-	20.14	24.38	End-fitting cracked,
	Bennett high-	0.875-in. dia.	Bennett low-	10.22	16 20	Cable clamps on bogie
4010-5	tension	Grade A449	tension	19.55	10.30	released, invalid results
4CTB-4	Bennett high- tension	0.875-in. dia. Grade A449	Bennett low- tension	19.87	33.63	Splice cracked, released cable
4CTB-5	Bennett high- tension	0.875-in. dia. Grade A449	none	22.26	41.25	End-fitting sustained desired load before failure
4CTB-6	Armor Flex self-swaging	0.945-in. dia. Grade K 1040	Armor Flex self-swaging	21.10	39.07	End-fitting and splice sustained desired load

Table 31. Dynamic Testing of Splices and End-Fittings Results

9.1.1 Test No. 4CTB-1.

Test no. 4CTB-1 featured a Bennett Bolt low-tension cable end-fitting with a 0.75-in. diameter, Grade A449 rod and a Bennett Bolt low-tension cable splice. During the test, the end-fitting bent the keeper rod and was released from the terminal, invalidating the results. As such, the test was repeated in test no. 4CTB-2 with a modified keeper rod. Photographs of the end-fitting and splice used in test no. 4CTB-1 are presented in Figure 103. Sequential photographs are shown in Figure 104.

Figure 103. End-Fitting and Splice, Test No. 4CTB-1

Time = 0ms

Time = 148ms

Time = 156ms

Time = 162 msTime = 170msFigure 104. Sequential Photographs, Test No. 4CTB-1

9.1.2 Test No. 4CTB-2

Test no. 4CTB-2 utilized the same components as test no. 4CTB-1, including a Bennett Bolt low-tension cable end-fitting with a 0.75-in. diameter, Grade A449 rod and a Bennett Bolt low-tension cable splice. The end-fitting cracked and released the cable when the load reached 24.38 kips. As the end-fitting failed before reaching the target load of 39 kips, additional testing was deemed necessary. Pre-test and post-test photographs of the end-fitting used in test no. 4CTB-2 are presented in Figure 105, and sequential photographs are shown in Figure 106.

Pre-Test Post-Test Figure 105. Pre-Test and Post-Test Photographs of End-Fitting, Test No. 4CTB-2

Time = 0ms

Time = 50ms

Time = 100ms

Time = 110ms

Time = 120msTime = 130msFigure 106. Sequential Photographs, Test No. 4CTB-2

9.1.3 Test No. 4CTB-3

Test no. 4CTB-3 was performed using a Bennett Bolt high-tension end-fitting. The new end-fitting used a stronger body casting and the size of the threaded rod was increased to 0.875 in. Another Bennett Bolt low-tension cable splice was also included in the test. During the test, the connection between the bogie and the cable failed at a load of 16.30 kips, invalidating the results. As such, the test was repeated in test no. 4CTB-4. Photographs of the end-fitting and splice used in test no. 4CTB-3 are presented in Figure 107, and a photograph of the cable-to-bogie connection is presented in Figure 108.

Figure 107. End-Fitting and Splice, Test No. 4CTB-3

Figure 108. Cable-to-Bogie Connection, Test No. 4CTB-3

9.1.4 Test No. 4CTB-4

Test no. 4CTB-4 utilized the same components as test no. 4CTB-3, including a Bennett Bolt high-tension cable end-fitting with a 0.875-in. diameter, Grade A449 rod and a Bennett Bolt low-tension cable splice. The cable splice cracked and released one of the cables when the load reached 33.63 kips. As the splice failed before sustaining the target load of 39 kips, additional testing was deemed necessary. Pre-test and post-test photographs of the cable splice used in test no. 4CTB-4 are presented in Figure 109, and sequential photographs are shown in Figure 110.

Pre-Test

Figure 109. Pre-Test and Post-Test Photographs of Cable Splice, Test No. 4CTB-4

Time = 0ms

Time = 112ms

Time = 114ms

Time = 116msTime = 118msFigure 110Segmential Photography Test No. 4CTP 4

Figure 110. Sequential Photographs, Test No. 4CTB-4

9.1.5 Test No. 4CTB-5

Test no. 4CTB-5 was performed using a Bennett Bolt high-tension end-fitting without a cable splice. This was done to explicitly determine the capacity of the end-fitting. During the test, the cable slipped out of the end-fitting at a load of 41.25 kips, which surpassed the target load of 39 kips. Pre-test and post-test photographs of the end-fitting used in test no. 4CTB-5 are presented in Figure 111, and sequential photographs of test no. 4CTB-5 are presented in Figure 111.

Pre-Test

Post-Test

Figure 111. Pre-Test and Post-Test Photographs of End-Fitting, Test No. 4CTB-5

Time = 0ms

Time = 100ms

Time = 102ms

Time = 104msTime = 106msFigure 112. Sequential Photographs, Test No. 4CTB-5
9.1.6 Test No. 4CTB-6

Test no. 4CTB-6 was performed using an Armor Flex self-swaging end-fitting with a 0.945-in. diameter, Grade K 1045 rod and an Armor Flex cable splice. During the test, the cable slipped out of the end-fitting at a load of 39.07 kips, which satisfied the target load of 39 kips. Therefore, the performances of both the end-fitting and cable splice were considered adequate. Pre-test and post-test photographs of the end-fitting used in test no. 4CTB-6 are presented in Figure 113, and a photograph of the cable splice is presented in Figure 14. A drawing of the end-fitting is presented in Figure 115, and sequential photographs of test no. 4CTB-6 are presented in Figure 116.

Pre-Test Post-Test Figure 113. Pre-Test and Post-Test Photographs of End-Fitting, Test No. 4CTB-6

Figure 114. Cable Splice, Test No. 4CTB-6

Figure 115. Armor Flex Self-Swaging End-Fitting

Time = 0ms

Time = 100ms

Time = 104ms

Time = 108ms

Time = 112msTime = 114msFigure 116. Sequential Photographs, Test No. 4CTB-6

9.2 Discussion

The results of the dynamic testing indicated that certain components were suitable for use in the high-tension cable median barrier while others were not.

The Bennett Bolt low-tension end-fitting with a 0.75-in. diameter, Grade A449 threaded rod was not capable of developing the target load of 39 kips. However, both the Bennett Bolt high-tension end-fitting with a 0.875-in. diameter, Grade A449 threaded rod and the Armor Flex self-swaging end-fitting with a 0.945-in. diameter, Grade K 1045 rod did develop loads greater than the target prior to failure. Based on anecdotal evidence that the Armor Flex end-fitting could release from the terminal early under conditions of cable whip, it was decided to select the Bennett high-tension end-fitting as the end-fitting for the high-tension cable median barrier.

Testing of the two cable splice options revealed that only one was suitable for use in the high-tension cable median barrier. While the Bennett Bolt low-tension slice was not capable of developing the target load of 39 kips, the Armor Flex splice was found capable. As such, the Armor Flex splice was selected for use in the high-tension, cable median barrier.

10 SUMMARY AND CONCLUSIONS

Components for the high-tension, cable median barrier were selected through the process of static and dynamic testing of various alternatives. End-fittings, splices, and cable-to-post attachments were all selected based on the results of the research.

Through development and testing of many slotted-bracket and U-bolt cable-to-post attachment concepts, the curved keyway bracket with shoulder bolts was determined to be the best option for use in the cable median barrier. The bracket was required to develop lateral loads of 6,000 lbs prior to failure while releasing the cable at loads of approximately 1,000 lbs when loaded vertically. Preliminary static testing indicated that the curved keyway bracket was capable of meeting these criteria, and dynamic testing confirmed that, with the use of shoulder bolts to fasten the bracket to the post, it was capable of performing as desired. Therefore, it was selected as the cable-to-post attachment for the barrier.

Dynamic testing was performed on various existing end-fittings and cable splices to identify optimal components for use in the high-tension, cable median barrier. These components were required to develop the full strength of 0.75-in. diameter, 3x7 wire rope used in the barrier, or a load of approximately 39 kips. End-fittings manufactured by Bennett Bolt Works, Inc. and Armor Flex were found capable of sustaining this load, and based on anecdotal evidence, the Bennett high-tension end-fitting with a 0.875-in. diameter, Grade A449 threaded rod was selected for use in the barrier. Of the two cable splices tested, only the Armor Flex splice was able to sustain the target load. Therefore, it was selected for use in the barrier.

11 REFERENCES

- 1. Bergendahl, Peter. "Cable Safety System." U.S. Patent No. 6,962,328 B2. 8 November 2005.
- 2. Bergendahl, Peter. "Cable Safety System." U.S. Patent Application No. 2005/0284695 A1. 29 December 2005.
- 3. Alberson, Dean C., et al. "Locking Hook Bolt and Method for Using Same." U.S. Patent No. 6,948,703 B2. 27 September 2005.
- Neusch, William H. "Cable Barrier System." U.S. Patent Application 2007/0007501 A1. 11 January 2007.
- Nilsson, Hakan. "Side Guard Fence." Patent Application No. 2002/0014620 A1. 7 February 2002.
- 6. Nilsson, Hakan. "Wire Rope Safety Barrier." U.S. Patent No. 6,902,151 B1. 7 June 2005.
- 7. Stacey, Andrew G. "Safety Fences." U.S. Patent No. 5,039,066. 13 August 1991.

12 APPENDICES

APPENDIX A – Material Information

Figure A-1. J-Bolt Material Specifications	139
Figure A-2. U-Bolt Material Specifications, Continued	140
Figure A-3. U-Bolt Material Specifications, Continued	141
Figure A-4. U-Bolt Material Specifications, Continued	142
Figure A-5. U-Bolt Material Specifications, Continued	143
Figure A-6. Bennett Bolt End-Fitting Material Specifications	144
Figure A-7. Bennett Bolt End-Fitting Material Specifications, Continued	145
Figure A-8. Bennett Bolt End-Fitting Material Specifications, Continued	146
Figure A-9. Bennett Bolt End-Fitting Material Specifications, Continued	147
Figure A-10. Bennett Bolt End-Fitting Material Specifications, Continued	148
Figure A-11. Bennett Bolt End-Fitting Material Specifications, Continued	149
Figure A-12. Armor Flex End-Fitting Rod Materials Specifications	150
Figure A-13. Armor Flex End-Fitting Rod Materials Specifications, Continued	151

Page 1 of 1

Ronald K. Faller

From:<BennettBolt@aol.com>To:<rfaller1@unl.edu>Sent:Thursday, November 06, 2003 3:48 PMAttach:HOOKBOLT.pdfSubject:QUOTATION

Pricing on hook bolts and nuts follows. Please see attached drawing in pdf file.

700 pcs 3/8-16 x 1 3/4 J Hook Bolt C1038 Heat Treated Galvanized B695 CL55 $I \stackrel{\mbox{0}}{\mbox{CC}}$, \$2.65 each

700 pcs 3/8-16 x 1 3/4 J Hook Bolt C1018 Galvanized B695 CL55 \$2.40 each

100 ea.

2800 pcs 3/8-16 Hex Nut A563 Grade A Galvanized B695 CL55 \$.08 each

1 Freight Charge: \$85.00

FOB: Jordan, New York 13080 Ship Via: FedEx Freightways Delivery: 3 weeks

Sincerely, Don

Bennett Bolt Works, Inc. 12 Elbridge Street PO Box 922 Jordan, NY 13080 315-689-3981 Phone 315-689-3999 Fax bennettbolt@aol.com Email www.bennettbolt.com Website

11/6/2003

Figure A-1. J-Bolt Material Specifications

Service in Metals Since 1953

BAR and TUBING SPECIALISTS Murphy and Nolan, Inc. www.murphynolan.com P.O. BOX 6689, 340 PEAT ST. 55 INDUSTRIAL PARK CIRCLE SYRACUSE, N.Y. 13217-6689. ROCHESTER, N.Y. 14624-2493 (315) 474-8203 (585) 426-1420 1-800-836-6385 1-800-333-0827 07/26/05 FAX (315) 474-8208 FAX (585) 247-1962 BENNETT BOLT WORKS Order Number: 325647 Your PO: 75210 P.O. BOX 922 Ship Date: JORDAN, NY 13080 Fax Number: 315-689-3999 Ln. Description Heat Number Certificate of Mill Test Reports CARBON STEEL ROUND BAR 1018 C F ASTM A108 (RED) 8 PC(S) (16#) 1/4" RD x 10/12' R/L Heat Number: A78762 Chemical Composition C SI MN P S 0.1700 0.1700 0.6700 0.0080 0.0110 AL 0.0050 Mechanical Properties Yield Strng Tensile Strng % Elong Brinell Hardness 54,000 64,000 15 ness 126

Figure A-2. U-Bolt Material Specifications, Continued

CETO, NOTO AND FA	STENER PRODUCTS	F/	ASTENE	R TEST R	EPORT		0	-			
		(THIS DOCUMEN	NT MAY BE RE	PRODUCED, BU	ONLY IN ITS	ENTIRETY)	"5	lace	00		
1001 ENNETT BOLT WO	ORKS INC			PART NO.				DATE	2002-	09-19	
12 ELBRIDGE ST - PO BOX 922					CUSTOMER P.O. NO.				REFERENCE NO.		
13080-				INVOICE D	INVOICE DATE INVOICE NO.).	502870		
DESCRIPTION HEX HD CAP SCREW GR5 UNC					2002-09-19 I.F.C. 331761			331761			
SIZE	1/4-20 X 6 1/	2	GRADE	SAE 1036M						QUANTITY	
			HEAT CHE	MICAL ANA	YSIS					52,700	
HEAT NO.	C %	Mn %	Р%	S %	Si %						
A54613	0.36	1.04	0.010	0.012	0.22				5		
METHOD	ASTM F606	ASTM F606	5	ASTM F606	ASTM	F606	ASTA	F606	AS	STM E384	
SAMPLES SELECTED 3Y: 0011	PROOF LOAD (psi)	WEDGE TENS STRENGT (psi)	ILE SHE 'H	EAR STRENGTH	SURFACE I (R	HARDNESS 30N)	CORE HA	ARDNESS (WELL)	MICR	O HARDNESS	
SPEC. MIN. SPEC. MAX:	85,000	120,00	0		54	.0	C 2 C 3	5.0 4.0			
SAMPLE NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8	85,000	135,00 134,00 137,00 136,00	0 0 0		50 51 50 51 50 51 51 50 51	.7 .2 .8 .2 .3 .7 .5 .6	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.6 8.0 7.8 8.3 8.1 8.2 8.4 7.9			
THE ABOVE TEST THEY COMPLY IN SAE J-429, ASM	ED SAMPLES HAVE ALL RESPECTS WI E B18.2.1, THREAD	BEEN INSPE TH THE FOI DS PER ASME	ECTED FOR LOWING SI E B1.1 CL	VISUAL DIS PECS: ASS 2A, UNLI	CONTINUI SCONTINUI	TIES AND WISE	FOUND	ACCEPTA	BLE.		
aw material used to steners is mercury asteners were tester	manufacture and asbestos-free. d in the bare metal con	dition.					Xe	Udile	h		
ANUFACTURED BY: INI	PASCO										

Figure A-3. U-Bolt Material Specifications, Continued

Service in Metals Sin Murphy and	l Nolan, In	c.	BAR and TUBING SPECIALISTS
P.O. BOX 6689, 340 PEA SYRACUSE, N.Y. 13217 (315) 474-8203 1-800-836-6385 FAX (315) 474-8208	T ST. -6689 . -	07/26/05	WWW.murphynolan.com 55 INDUSTRIAL PARK CIRCLE ROCHESTER, N.Y. 14624-2493 (585) 426-1420 1-800-333-0827 FAX (585) 247-1962
BENNETT BOLT WOR P.O. BOX 922 JORDAN, NY 13080 Ln. Description Heat Number	RKS Certificate of	Order Nu Your, PO: Ship Date Fax Numbe Mill Test Report	mber: 325647 75210 e: er: 315-689-3999
CARBON STEEL ROUND 8 PC(S) (25#) 5/16 Heat Number: C5340 Chemical Compositi C 0.1900 SN 0.0050 N 0.0032 Mechanical Properti Yield Strng 54.000) BAR 1018 C F A " RD × 10/12' R 5 on MN 0.9000 0 CU 0.0900 0 V 0.0010 es Tensile Strng 64.000	ETM A108 (RED) /L .0100 0.00 NI CR .0100 0.030 // Elong 15	S SI 90 0.2000 MO 00 0.0060 Brinell Hard- Hardness ness 126

Figure A-4. U-Bolt Material Specifications, Continued

2-05 14:13	FROM-						T-094 P.	02/03 F-1	76
1			ranpon ¹	ATION					
	WWW		M						
	311-	-777-34		TEST REPO	AT			13001 ATHENS / CLEVELAND, OMK T 210 521 1800 F 210 228 4520	WENUE 0 44 107
AREWROD OPERATIC INS	5	SAE 54299	(3×1" code 5	AZY RU	DRMATION	ly Bold		3281 VVF57 CON FRAMEFORT, INDA T 705 054 0477 T 705 054 0857	NIT ROAD - INS AVA 4004 - 0900
	Date:	03/15/01							
	Certi	fication#: LE	23743300	300500733	27	Cust PD:	194802		
				4-6466-33.		Lot Nbr:	0023313	37	
						Quantity:		534 Piece	25
	KANE 153 0AKL	EHRIDGE CORPO BAUER DRIVE AND	RATION NJ	07436-31	50				
			P	ART INFOR	MATION				
Part Numbe Bescriftio Finish: ZI	NC 0.0	112CH5L 5 5/15-18 X 7 0015" MIN.	,		HEX CAP SC	REW LE 3	RADIALS		
Steel Heat	Nbr :	CR137370	RAW	MATERIAL	ANALYSIS				
Steel Sipp	lier:	CHARTER STEE	L		Steel Grad	e: LESC 4	1037M (1) 15 1	
0.37	0.80	0.01	0-012	0.29	0.32 0.		7 0	Ni	A1
6			MEC	HANICAL PR	OPERTIES				
10 ⁰ Wedge	Tensile Psi	e Strenath	froo Lbs	f Load Tes Elon	t q	Supe	cficial 30N	Core Rc	•
Law Avg	136000					54	1.0 8.0 9.6	30.0 25.0 28.0	
CERTIFICATIO	DN TEST	RESULTS INCL AKEWOOD LAB	LUDE THOS	E REPORTE	D BY THE FOL	LOWING AC	CREDITE	DLABORAT	ORIE:
Applicatle	Standa	rds. Specific	ations.	and Sampl	ing Schemes				
SAE J425 Gr	ade 5.	ASTM FOOE, P	8. E18,	F1470, AS	HE 818.18.7	1			
The listed on the date	standa of ma	rds, specific nufacture unl	ations. ess note	and sample d otherwise	ing schemes	are of the	e revisi	ion in ef	fect
			DEVIATIO	NS FROM TE	ST METHODS				
This lot ha specificati	s been ons.	found to con	form to	the requir	ements of t	he above s	tandard	is and	
Certificatio	on Mail	led to Bill-t	o address	5					
te centry The product i manage and above and web uses first So draw Corporations to page re arco he safe report research to be re- marked by and of was a mem	0 By Laws Ene & Refer (2010)orangin'y Ref villude general Gérmones salayo e	стани Согранданов ника пакадиаскано 1 Олимпу Малици и аптиса на брати и 1404 и кили от јарла Еле Scraw Соду Кокиња Тама, Бикинајаса рађу сиву ри	KL, BANGHOL, Majad, Bry Bia Oj manusaauja "Jhu Hanaji & Aztu Baazaaya Taghachadaj u Akijaraa a	a Wepected in accuration and accurate fragment discorración Statastica Indicatastica fragmentes Indicatastica de la superatoria	नाम देख स्वयुत्तिरामेंड भोद स्वरूद्धात स्वर्धकाद्य न्द्रोलंड दिव्युत्तेय कु स्वरू राज्यस्व (द्वार्य्य क्रिका स्वरूप्त	socia + Ens La	ke Erie S	icrow Corp	oratio 1
Avelled in this Operations . Laws and the second se	Che Screw Corpo	navenus network until settore a be- navenus network until setore a be-	HALON OF WER OF THE GOD INCOMPARTISATION, WALTH STALLAR PHILIPONE	crimes and greatings whe	на и роль наят сона та рирс на и ролькаха Еланда в ела зватит, «Такова влатона, ипри	ad 01 (014), (01	0	Jurry Ming	

Figure A-5. U-Bolt Material Specifications, Continued

Figure A-6. Bennett Bolt End-Fitting Material Specifications

· 09/27/2007 10:02 3156893999

BENNETT BOLT WORKS

SEPT 21,2007

PAGE 02

BENNETT BOLT WORKS, INC.

12 Elbridge Street P.O. Box 922 Jordan, New York 13080

PH 315-689-3981 FX 315-689-3999

MIDWEST ROADSIDE SAFETY FACILITY UNIV. OF NEBRASKA 1901 Y STREET BLDG C LINCOLN, NE 68588-0501 (402) 472-9064 ATTN: BOB BIELENBERG

CABLE FITTINGS FOR TL3-TL4 GUARDRAIL CABLE CRASH TEST

4 EA CG 198N-H 87M TURNBUCKLE CABLE ASSEMBLY W/ 2 WEDGES 7/8-9 X 11" FLATTENED RODS A449

16 EA CG 184N-H 87M CABLE END ASSEMBLY W/ WEDGE 7/8-9 X 11" FLATTENED ROD A449

MANAGER QUALIT ASSURANCE

HT NO 734281

7/8-9 x 11" Flattened Rods A449 Mfg. - Southeastern Bolt & Screw, Birmingham, AL

Order NO 75410-75590

Malleable Iron Casting ASTM - A47 Grade 32510 Mfg. - Buck Co., Inc., Quarryville, PA

Order NO 6002236

Malleable Iron Casting Wedge ASTM - A47 Grade 32510 Mfg. - Buck Co., Inc., Quarryville, PA

Figure A-7. Bennett Bolt End-Fitting Material Specifications, Continued

. 09/27/2007 10:02 3156893999 BENNETT BOLT WORKS

PAGE 03 39622

Southeastern Bolt & Screw, Inc 1037 16th Avenue West Birmingham, AL 35204 (205) 328-4551

MATERIAL TEST REPORT

DATE: July 7, 2004

CUSTOMER P.O.: 013218

LAB REPORT NO .: 11065

CUSTOMER: Bennett Bolt Works, Inc.

QUANITY: 57

SIZE: 7/8-9 X 48 Double End Rod

SPECIFICATION: A449 Type 1

SURFACE COATING: A158 Class C

LOT NO.: L15532 (296489-01)

MARKINGS: SBS, Three Radial Lines

		_		C	HEMIST	Y			
.47	.75	.010	S .030	SI .20	V .013	Cb	CR	MO	

MATERIAL GRADE: 1045

HEAT NO.: 734281

MECHANICAL PROPERTIES

PROOF LOAD

Applied Tensile Force, lbf Length Measurement Differential, in

AXIAL TENSILE

Axial Tensile Load, lbf Failure Location

60,600 Threads

39,250 -0.0005

WEDGE TENSILE

10 Degree Wedge Tensile Load, lbf Failure Location

HARDNESS MEASUREMENTS

Rockwell C Scale

TEST METHODS: ASTM F606

We certify that the above test results do conform to the requirements of the specifications as shown. These test results relate only to the item tested. This document may be reproduced, but only in its entirety. All material was melted and manufactured

28

alled Jim W ell, Quality Assurance Manager

Figure A-8. Bennett Bolt End-Fitting Material Specifications, Continued

. 09/27/2007 10:02 3156893999	BENNETT BOLT WORKS PAGE 04
SEP-26-2007 10:13AM FROM-Buck Co. HR	717-284-4321 T-131 P.004/004 F-840
6	BUCK COMPANY, INC. 897 Lancaster Pike, Quarryville, PA 17566-9738 Phone (717) 284-4114 Fax (717) 284-(32)
MA'	w.buckeompany.com
Date 8-30-07 CUSTOMER PCANE	Form# CERT-7A Rev C 4-21-116
order number75 Pattern numberC_G	BBWTH REV
This is to certify that the casting with the drawing or ordered requirem requirements and / or supplementary data is on file and available upon req	s listed conform to the following specifications and comply in all respects nents. All Quality Assurance provisions and / or Quality Assurance Quality Assurance provisions have been completed and accepted. SPC juest.
Type Material:	leable Tron
Specifications: <u>ASTM</u>	1-14/
Grade or Class:3257	<u> </u>
Heat Number: <u>9</u> Q4	
MECHANICAL PROPERTIES	Total Carbon
Yield Str. PSI 45032	Silicon
Elongation 22	
PHYSICAL PROPERTIES	Chrome (2455 Magnesium (249)
Brinell Hardness 1/23	Copper
PCS SHIPPED 20	_ DATE SHIPPED 8-30-07

Quality Castings ISO 9001; 2000 CERTIFUED Ferritic and Pearlitic Malleable Iron, Gray and Duetile Iron, Bross, Aluminum

Nity Assurance Representative

_ of _

Figure A-9. Bennett Bolt End-Fitting Material Specifications, Continued

. 09/27/2007 10:02 3156893999	BENNETT BOLT WORKS PAGE 05
SEP-26-2007 10:13AM FROM-Buck Co. HR	717-284-4321 T-131 P.003/004 F-840
PLICE	K COL THE T
BUC	K COMPANY, INC.
897 Lancas	ter Pike, Quarryville, PA 17566-9738
www.buckcompany.c	717) 284-4114 Fax (717) 284-4321
MATERI	
	AL CERTIFICATION
Date 11/14/00 Form	Number CERT-7C REV. A
CUSTOMER:	H Polt links
ORDER NUMBER 77	410
	BRIT
PATTERN NUMBER	<u>ODH</u> REV.
This is to certify that the castin	gs listed conform to the following specifications and
provisions and / or Quality Assuran	ving or ordered requirements. All Quality Assurance
Assurance provisions have been con	impleted and accepted. SPC data is on file and
available upon request. Melted & M	lanufactured in the USA.
Type Material:	tabe Iron
Specifications: <u>AST</u>	-A47
Grade or Class:325	10
Heat Number: 0P5	
MECHANICAL PROPERTIES	
Tensile Str. PSI_57/12	- Total Carbon
Yield Str. PSI 3558L	Silicon
	Manganese 33
Elongation	Phosphorus .0/5
PHYSICAL PROPERTIES	Chrome
	Magnesium
Brinell Hardness	- Copper
PCS SHIPPED	DATE SHIPPED////4/0/0/
of	Quality Assurance Representative
d d	wality Castings
	SO 9007 CERTIFIED
Ferrus and Poorline Matte	able Iron, Qray and Ductile Iron - Brass - Aluminum

Figure A-10. Bennett Bolt End-Fitting Material Specifications, Continued

. 09/27/2007 10:02 3156893999 BENNETT	BOLT WORKS PAGE 06
PUCK COM	A NIX INTO
BUCK COMP	ANY, INC.
897 Lancaster Pike, Quarry	ville, PA 17566-9738
Phone (717) 284-4114	Fax (717) 284-4321
· · · · · · · · · · · · · · · · · · ·	rearcasungs@ouckcompany.com
MATERIAL CERTIF	ICATION
N. 1.807	
Date (01)/	Form# CERT-7A Rev C 4-21-06
CUSTOMER CELIPETT - DOIT UDAS_	UC.
ORDER NUMBER <u>COURSE</u>	
PATTERN NUMBER_WICOGC	REV. DOG
This is to certify that the castings listed conform to the follow with the drawing or ordered requirements. All Quality Assurance requirements and / or supplementary Quality Assurance provision data is on file and available upon request.	ing specifications and comply in all respects provisions and / or Quality Assurance s have been completed and accepted. SPC
Type Material: Malleable Tron	
Specifications: ASTM-A47	
Grade or Class: 32510	
Heat Number: 109	
MECHANICAL PROPERTIES CHEMICAL	ANALYSIS,)
Viald Str. por (30, 27,3 Silicon	7.59
$Manganese_{1/}$	
Elongation/QPhosphorus	. 030
PHYSICAL PROPERTIES Magnesium	-763:
Brinell Hardness 121 Copper	.1.34
PCS SHIPPED DATE SHIPPED	in 1-8-07 (1
of DATE Some	Xing This I. of A
Quality Casting ISO 9001: 2000 CERTIFIED Ferritic and Pearlitic Malleable Iron. Gray and Ductile	Quality Assurance Representative
Signature and Duchie	non, Brass, Aluminum

Figure A-11. Bennett Bolt End-Fitting Material Specifications, Continued

Page 1 of 2

Ronald K. Faller

From: Dallas [djames@armorflex.co.nz] Sent: Monday, August 20, 2007 10:22 PM

To: Ronald K. Faller

Subject: Re: self swaging fitting

Ron.

Hope this makes sense.

Cone - grade 4140 Spring - stainless steel 316 Threaded rod and Hub - Grade K 1040 Jaws - grade XS 1112 then case hardened 0.4 -0.6 mm deep to 63 RC.

corrosion protection - threaded rod and hub - HDG - cone - Dacromet

We ran a test down here last week using those fittings and strongbacks in the contact area. All funtioned very well. We did note a little more sheet metal damage to the side of the car but not much.

Cheers DALLAS

----- Original Message -----From: <u>Ronald K. Faller</u> To: '<u>Dallas</u>' Sent: Tuesday, August 21, 2007 5:23 AM Subject: RE: self swaging fitting

Dallas:

I have been asked to add the material specification to our CAD detail for the stud anchors and strongbacks. Can you tell which steel specifications were used for the various materials? We have drawn your parts into our system and will be using them. Thus, we need to know what they conform to. Thanks!

Ron

Ronald K. Faller, Ph.D., P.E. Research Assistant Professor

Midwest Roadside Safety Facility (MwRSF) University of Nebraska-Lincoln 527 Nebraska Hall Lincoln, Nebraska 68588-0529

(402) 472-6864 (phone) (402) 472-2022 (fax) rfaller1@unl.edu

From: Dallas [mailto:djames@armorflex.co.nz] Sent: Monday, July 30, 2007 10:57 PM

1/4/2008

Figure A-12. Armor Flex End-Fitting Rod Materials Specifications

Page 2 of 2

To: Ronald K. Faller Subject: Fw: self swaging fitting

Ron, Assume you use dxf files. If not let me know, we can export to pretty much any format. Cheers DALLAS

1/4/2008

APPENDIX B – Static Tests: Post-Failure Photographs

Figure B-1. Uniform Slot Brackets – Test Nos. SB-12, SB-14: Vertical Loading	153
Figure B-2. Uniform Slot Brackets – Test No. SB-9: Lateral Loading	153
Figure B-3. Flat Keyway Brackets - Test No. SB-19: Vertical Loading	154
Figure B-4. Flat Keyway Brackets - Test No. SB-21: Lateral Loading	154
Figure B-5. Angled Slot Brackets - Test No. SB-24: Vertical Loading	155
Figure B-6. Angled Slot Brackets - Test Nos. SB-25, SB-26: Lateral Loading	155
Figure B-7. Bent Keyway Brackets - Test Nos. SB-27, SB-30: Vertical Loading	156
Figure B-8. Bent Keyway Brackets - Test Nos. SB-28, SB-29: Lateral Loading	156
Figure B-9. Curved Keyway Brackets - Test Nos. SB-31, SB-32: Vertical Loading	157
Figure B-10. Curved Keyway Brackets - Test Nos. SB-33, SB-34: Lateral Loading	157
Figure B-11. U-Bolts with Nuts - Test Nos. UB-1, UB-7: Vertical Loading	158
Figure B-12. U-Bolts with Nuts - Test Nos. UB-8, UB-9: Lateral Loading	158
Figure B-13. U-Bolts with Keyways - Test Nos. UB-11, UB-12: Vertical Loading	159
Figure B-14. U-Bolts with Slots - Test Nos. UB-14, UB-15: Vertical Loading	159
Figure B-15. U-Bolts with Spacers - Test Nos. UB-17, UB-26: Vertical Loading	160
Figure B-16. U-Bolts with OVS Holes - Test No. UB-30: Vertical Loading	160
Figure B-17. U-Bolts with OVS Holes - Test Nos. UB-27, UB-29: Lateral Loading	161

Figure B-1. Uniform Slot Brackets – Test Nos. SB-12, SB-14: Vertical Loading

Figure B-2. Uniform Slot Brackets – Test No. SB-9: Lateral Loading

Figure B-3. Flat Keyway Brackets – Test No. SB-19: Vertical Loading

Figure B-4. Flat Keyway Brackets – Test No. SB-21: Lateral Loading

Figure B-5. Angled Slot Brackets – Test No. SB-24: Vertical Loading

Figure B-6. Angled Slot Brackets – Test Nos. SB-25, SB-26: Lateral Loading

Figure B-7. Bent Keyway Brackets – Test Nos. SB-27, SB-30: Vertical Loading

Figure B-8. Bent Keyway Brackets – Test Nos. SB-28, SB-29: Lateral Loading

Figure B-9. Curved Keyway Brackets – Test Nos. SB-31, SB-32: Vertical Loading

Figure B-10. Curved Keyway Brackets – Test Nos. SB-33, SB-34: Lateral Loading

Figure B-11. U-Bolts with Nuts – Test Nos. UB-1, UB-7: Vertical Loading

Figure B-12. U-Bolts with Nuts – Test Nos. UB-8, UB-9: Lateral Loading

Figure B-13. U-Bolts with Keyways – Test Nos. UB-11, UB-12: Vertical Loading

Figure B-14. U-Bolts with Slots – Test Nos. UB-14, UB-15: Vertical Loading

Figure B-15. U-Bolts with Spacers – Test Nos. UB-17, UB-26: Vertical Loading

Figure B-16. U-Bolts with OVS Holes – Test No. UB-30: Vertical Loading 160

Figure B-17. U-Bolts with OVS Holes – Test Nos. UB-27, UB-29: Lateral Loading

APPENDIX C – Dynamic Cable Pull Testing Summary Sheets

Figure C-1. Test No. 4CTB-2 Results	163
Figure C-2. Test No. 4CTB-3 Results	
Figure C-3. Test No. 4CTB-4 Results	165
Figure C-4. Test No. 4CTB-5 Results	166
Figure C-5. Test No. 4CTB-6 Results	167

Figure C-1. Test No. 4CTB-2 Results

Figure C-3. Test No. 4CTB-4 Results

Figure C-4. Test No. 4CTB-5 Results
Midwest Roadside Safety Facility

Figure C-5. Test No. 4CTB-6 Results

APPENDIX D – Supplementary Drawings

Figure D-1. Cable Median Barrier Post-to-Attachment Connection

Figure D-2. Curved Keyway Bracket, Final Design (V4)

Figure D-3. Curved Keyway Bracket (V3)

Figure D-4. Shoulder Bolt Assembly

Figure D-5. Hex Shoulder Bolt

Figure D-6. Washer for Use with Shoulder Bolts

Figure D-7. Hex Nut for Use with Shoulder Bolts

Figure D-8. SBB Test Jig and Mounting Plate

Figure D-9. SBB Test Jig Mounting Plate

Figure D-10. SBB Test Plate Washers

Figure D-11. SBB Test Cable Guide

Figure D-12. SBB Test Cable Guide Mounting Plate

Figure D-13. SBB Test Cable Guide Angle Iron