

Hawaii Department of Transportation Research Project Number 67167

CRASH TESTING AND EVALUATION OF THE HDOT 42-IN. TALL, AESTHETIC CONCRETE BRIDGE RAIL: MASH TEST DESIGNATION NOS. 3-10 AND 3-11

Submitted by

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Nathan T. Dowler, B.S.M.E. Graduate Research Assistant

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska–Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

HAWAII DEPARTMENT OF TRANSPORTATION

Aliiaimoku Building 869 Punchbowl Street Honolulu, Hawaii 96813

MwRSF Research Report No. TRP-03-424-20

January 9, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-424-20	2.		3. Recipient's Accession No.	
4. Title and Subtitle Crash Testing and Evaluation of the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail: MASH Test Designation Nos. 3-10 and 3-11		5. Report Date		
		January 9, 2020		
			6.	
7. Author(s)			8. Performing Organization Report No.	
Bielenberg, R.W., Dowler, N.T.,	Faller, R.K., and Ur	bank, E.L.	TRP-03-424-20	
9. Performing Organization Name	e and Address		10. Project/Task/Work Unit No.	
Midwest Roadside Safety Facility	' (MwRSF)			
Nebraska Transportation Center University of Nebraska–Lincoln				
Main Office:		Outdoor Test Site:	11 Contract (C) or Grant (G) No	
Prem S. Paul Research Center at	Whittier School	4630 N.W. 36th Street	Research Project Number 67167	
Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853		Lincoln, Nebraska 68524		
12. Sponsoring Organization Nam	ne and Address		13. Type of Report and Period Covered	
Hawaii Department of Transporta	tion		Final Report: 2018-2020	
Aliiaimoku Building 869 Punchbowl Street			14. Sponsoring Agency Code	
Honolulu, HI 96813				
15. Supplementary Notes				
Prepared in cooperation with U.S.	. Department of Tra	nsportation, Federal Highway	Administration.	
16. Abstract				
This report documents two ful	l-scale crash tests co	onducted in support of a study	to investigate the safety performance of the Bridge Bail system. The barrier system	
was 88 ft long and consisted of	two 11-ft long con	crete parapets and three 22-f	t long concrete parapets anchored to the	
concrete tarmac. Expansion joints	s between each seg	ment consisted of 24-in. long,	No. 8 ASTM A615 Grade 60 steel bars	
cast into the concrete and inserte	d into a PVC pipe	on the upstream side of the	expansion joint. Test nos. H42BR-1 and	
3 (TL-3) test designation nos. 3-1	0 and 3-11. respecti	velv.	o (MASH 2016) criteria using Test-Level	
In test no. H42BR-1, an 1100C	c small car impacted	the barrier at a speed of 63.2	mph and an angle of 24.9 degrees. In test	
no. H42BR-2, a 2270P quad cab	pickup truck impact	ted the barrier at a speed of 6	2.7 mph and an angle of 25.1 degrees. In	
both tests, the bridge rail success	stully contained and	I redirected the vehicle, and i	t did not penetrate or show potential for	
test nos. H42BR-1 and H42BR-2	successfully met the	e TL-3 safety performance crit	teria defined in MASH 2016.	
		V 1		

17. Document Analysis/Descriptors Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Aesthetic, Bridge Rail, and Concrete Parapet		 Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 		
19. Security Class (this report) Unclassified	20. Security Class (this page) Unclassified	21. No. of Pages 156	22. Price	

DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation and the Hawaii Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Hawaii Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Cody Stolle, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that contributed to this project: (1) the Hawaii Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor C.R. Song, Ph.D., A.E., M.ASCE, Associate Professor J.S. Steelman, Ph.D., P.E., Assistant Professor M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor S.A. Ranjha, Ph.D., Former Post-Doctoral Research Associate J.C. Holloway, M.S.C.E., E.I.T., Research Engineer & Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer J.D. Rasmussen, Ph.D., P.E., Research Assistant Professor C.S. Stolle, Ph.D., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I C.I. Sims, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Bridge Design Engineer Kimberly Okamura, Bridge Design Engineer

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	ix
1 INTRODUCTION 1.1 Background 1.2 Objectives 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	
3 DESIGN DETAILS	9
 4 TEST CONDITIONS	24 24 24 24 24 24 34 34 34 34 34 34 35
 5 FULL-SCALE CRASH TEST NO. H42BR-1 5.1 Weather Conditions 5.2 Test Description 5.3 Barrier Damage 5.4 Vehicle Damage 5.5 Occupant Risk 5.6 Barrier Loads 5 7 Discussion 	38 38 38 38 45 52 58 58 59 60

6 FULL-SCALE CRASH TEST NO. H42BR-2	62
6.1 Weather Conditions	62
6.2 Test Description	62
6.3 Barrier Damage	69
6.4 Vehicle Damage	78
6.5 Occupant Risk	84
6.6 Barrier Loads	85
6.7 Discussion	86
7 SUMMARY AND CONCLUSIONS	88 90
9 APPENDICES	91
Appendix A. Material Specifications	92
Appendix B. Vehicle Center of Gravity Determination	05
Appendix C. Vehicle Deformation Records	08
Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. H42BR-1 1	22
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. H42BR-21	39

LIST OF FIGURES

Figure 1. HDOT Standard Detail for the 42-in. Tall, Aesthetic Concrete Bridge Rail	2
Figure 2. HDOT Standard Detail for the 42-in. Tall, Aesthetic Concrete Bridge Rail	3
Figure 3. HDOT Standard Detail for the 42-in. Tall, Aesthetic Concrete Bridge Rail	4
Figure 4. Final Design Guidelines for Aesthetic Surface Treatments of Safety Shape	
Concrete Barriers	5
Figure 5. System Layout, Test Nos. H42BR-1	11
Figure 6. System Layout, Test Nos. H42BR-2	12
Figure 7. Section Details, Test Nos. H42BR-1 and H42BR-2	13
Figure 8. Reinforcement Detail, Test Nos. H42BR-1 and H42BR-2	14
Figure 9. Expansion Joint Details, Test Nos. H42BR-1 and H42BR-2	15
Figure 10. 11-ft Concrete Parapet Details, Test Nos. H42BR-1 and H42BR-2	16
Figure 11. 22-ft Concrete Parapet Details, Test Nos. H42BR-1 and H42BR-2	17
Figure 12. Rebar Details, Test Nos. H42BR-1 and H42BR-2	18
Figure 13. Expansion Joint Components, Test Nos. H42BR-1 and H42BR-2	19
Figure 14. Bill of Materials, Test Nos. H42BR-1 and H42BR-2	20
Figure 15. Construction, Test Nos. H42BR-1 and H42BR-2	21
Figure 16. System Installation, Test Nos. H42BR-1 and H42BR-2	22
Figure 17. System Installation at Expansion Joint, Test Nos. H42BR-1 and H42BR-2	23
Figure 18. Test Vehicle, Test No. H42BR-1	25
Figure 19. Test Vehicle Interior Floorboards and Undercarriage, Test No. H42BR-1	26
Figure 20. Vehicle Dimensions, Test No. H42BR-1	27
Figure 21. Test Vehicle, Test No. H42BR-2	29
Figure 22. Test Vehicle Interior Floorboards and Undercarriage, Test No. H42BR-2	30
Figure 23. Vehicle Dimensions, Test No. H42BR-2	31
Figure 24. Test Vehicle Target Geometry, Test No. H42BR-1	32
Figure 25. Test Vehicle Target Geometry, Test No. H42BR-2	33
Figure 26. Camera Locations, Speeds, and Lens Settings, Test No. H42BR-1	36
Figure 27. Camera Locations, Speeds, and Lens Settings, Test No. H42BR-2	37
Figure 28. Impact Location, Test No. H42BR-1	39
Figure 29. Sequential Photographs, Test No. H42BR-1	41
Figure 30. Sequential Photographs, Test No. H42BR-1	42
Figure 31. Documentary Photographs, Test No. H42BR-1	43
Figure 32. Vehicle Final Position and Trajectory Marks, Test No. H42BR-1	44
Figure 33. System Damage, Test No. H42BR-1	46
Figure 34. System Damage, Test No. H42BR-1	47
Figure 35. System Damage, Test No. H42BR-1	48
Figure 36. System Damage, Test No. H42BR-1	49
Figure 37. System Damage, Test No. H42BR-1	50
Figure 38. System Damage at Expansion Joint, Test No. H42BR-1	51
Figure 39. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
H42BR-1	52
Figure 40. Vehicle Damage, Test No. H42BR-1	54
Figure 41. Vehicle Damage, Test No. H42BR-1	55
Figure 42. Occupant Compartment Damage, Test No. H42BR-1	56
Figure 43. Undercarriage Damage, Test No. H42BR-1	57

Figure 44. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1),	
Test No. H42BR-1	60
Figure 45. Summary of Test Results and Sequential Photographs, Test No. H42BR-1	61
Figure 46. Impact Location, Test No. H42BR-2	63
Figure 47. Sequential Photographs, Test No. H42BR-2	66
Figure 48. Documentary Photographs, Test No. H42BR-2	67
Figure 49. Vehicle Final Position and Trajectory Marks, Test No. H42BR-2	68
Figure 50. System Damage, Test No. H42BR-2	70
Figure 51. System Damage, Test No. H42BR-2	71
Figure 52. System Damage, Test No. H42BR-2	72
Figure 53. System Damage, Test No. H42BR-2	73
Figure 54. System Damage, Test No. H42BR-2	74
Figure 55. System Damage, Test No. H42BR-2	75
Figure 56. System Damage Behind Impact Point, Test No. H42BR-2	76
Figure 57. System Damage at Expansion Joint, Test No. H42BR-2	77
Figure 58. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
H42BR-2	78
Figure 59. Vehicle Damage, Test No. H42BR-2	80
Figure 60. Vehicle Damage, Test No. H42BR-2	81
Figure 61. Occupant Compartment Damage, Test No. H42BR-2	82
Figure 62. Undercarriage Damage, Test No. H42BR-2	83
Figure 63. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1),	0.6
Test No. H42BR-2	86
Figure 64. Summary of Test Results and Sequential Photographs, Test No. H42BR-2	8/
Figure A-1. Reinforced Concrete, Test Nos. H42BR-1 and H42BR-2	94
Figure A-2. Compression Test Cylindrical Concrete Specimen, Test Nos. H42BR-1 and	05
Eigune A 2 Deinforced Concrete Test Neg 11/2DD 1 and 11/2DD 2	95
Figure A-5. Reinforced Concrete, Test Nos. H42DR-1 and H42DR-2	90
Figure A 5 #5 Peber Test Nos H42BP 1 and H42BP 2	97
Figure A 6 #8 Smooth Paber Test Nos H42BP 1 and H42BP 2	00
Figure A -7 PVC Pipe Test Nos $H/2RR_1$ and $H/2RR_2$	100
Figure A-8 $1\frac{4}{10}$ PVC Can Test Nos H42BR-1 and H42BR-2	101
Figure A-9 Enoxy Adhesive Test Nos H42BR-1 and H42BR-2	102
Figure A-10 Expansion Joint Filler Test Nos H42BR-1 and H42BR-2	103
Figure A-11 Expansion Joint Sealant Test Nos H42BR-1 and H42BR-2	104
Figure B-1 Vehicle Mass Distribution Test No H42BR-1	106
Figure B-2 Vehicle Mass Distribution, Test No. H42BR-2	107
Figure C-1. Floor Pan Deformation Data – Set 1. Test No. H42BR-1	.109
Figure C-2. Floor Pan Deformation Data – Set 2, Test No. H42BR-1	.110
Figure C-3. Interior Crush Deformation Data – Set 1, Test No. H42BR-1	.111
Figure C-4. Interior Crush Deformation Data – Set 2, Test No. H42BR-1	
Figure C-5. Windshield Deformation Data, Test No. H42BR-1	.113
Figure C-6. Exterior Vehicle Crush (NASS) - Front, Test No. H42BR-1	
Figure C-7. Exterior Vehicle Crush (NASS) - Side, Test No. H42BR-1	.115
Figure C-8. Floor Pan Deformation Data – Set 1, Test No. H42BR-2	.116
Figure C-9. Floor Pan Deformation Data – Set 2, Test No. H42BR-2	.117

Figure C-10. Interior Crush Deformation Data – Set 1, Test No. H42BR-2	118
Figure C-11. Interior Crush Deformation Data – Set 2, Test No. H42BR-2	119
Figure C-12. Exterior Vehicle Crush (NASS) - Front, Test No. H42BR-2	120
Figure C-13. Exterior Vehicle Crush (NASS) - Side, Test No. H42BR-2	121
Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. H42BR-1	123
Figure D-2. Longitudinal Change in Velocity (SLICE-1), Test No. H42BR-1	124
Figure D-3. Longitudinal Change in Displacement (SLICE-1), Test No. H42BR-1	125
Figure D-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. H42BR-1	126
Figure D-5. Lateral Change in Velocity (SLICE-1), Test No. H42BR-1	127
Figure D-6. Lateral Change in Displacement (SLICE-1), Test No. H42BR-1	128
Figure D-7. Vehicle Angular Displacements (SLICE-1), Test No. H42BR-1	129
Figure D-8. Acceleration Severity Index (SLICE-1), Test No. H42BR-1	130
Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. H42BR-1	131
Figure D-10. Longitudinal Change in Impact Velocity (SLICE-2), Test No. H42BR-1	132
Figure D-11. Longitudinal Change in Displacement (SLICE-2), Test No. H42BR-1	133
Figure D-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. H42BR-1	134
Figure D-13. Lateral Change in Velocity (SLICE-2), Test No. H42BR-1	135
Figure D-14. Lateral Change in Displacement (SLICE-2), Test No. H42BR-1	136
Figure D-15. Vehicle Angular Displacements (SLICE-2), Test No. H42BR-1	137
Figure D-16. Acceleration Severity Index (SLICE-2), Test No. H42BR-1	138
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. H42BR-2	140
Figure E-2. Longitudinal Change in Velocity (SLICE-1), Test No. H42BR-2	141
Figure E-3. Longitudinal Change in Displacement (SLICE-1), Test No. H42BR-2	142
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. H42BR-2	143
Figure E-5. Lateral Change in Velocity (SLICE-1), Test No. H42BR-2	144
Figure E-6. Lateral Change in Displacement (SLICE-1), Test No. H42BR-2	145
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. H42BR-2	146
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. H42BR-2	147
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. H42BR-2	148
Figure E-10. Longitudinal Change in Velocity (SLICE-2), Test No. H42BR-2	149
Figure E-11. Longitudinal Change in Displacement (SLICE-2), Test No. H42BR-2	150
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. H42BR-2	151
Figure E-13. Lateral Change in Velocity (SLICE-2), Test No. H42BR-2	152
Figure E-14. Lateral Change in Displacement (SLICE-2), Test No. H42BR-2	153
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. H42BR-2	154
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. H42BR-2	155

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	7
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	8
Table 3. Weather Conditions, Test No. H42BR-1	38
Table 4. Sequential Description of Impact Events, Test No. H42BR-1	40
Table 5. Damage to Aesthetic Recesses, Test No. H42BR-1	45
Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. H42BR-1	58
Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. H42BR-1	59
Table 8. Weather Conditions, Test No. H42BR-2	62
Table 9. Sequential Description of Impact Events, Test No. H42BR-2	64
Table 10. Damage to Aesthetic Recesses, Test No. H42BR-2	69
Table 11. Maximum Occupant Compartment Intrusion by Location, Test No. H42BR-2	84
Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. H42BR-2	85
Table 13. Summary of Safety Performance Evaluation	89
Table A-1. Bill of Materials, Test Nos. H42BR-1 and H42BR-2	93

1 INTRODUCTION

1.1 Background

The Hawaii Department of Transportation (HDOT) uses several concrete bridge rails with aesthetic treatments. However, the crashworthiness of these bridge railings under current impact safety standards has not been demonstrated. This report documents two full-scale crash tests conducted in support of a study to evaluate the safety performance of HDOT's 42-in. Tall, Aesthetic Concrete Bridge Rail with aesthetic recessed panels added to its traffic-side and back-side surfaces. The recessed panels for the system were 6 in. wide, 14 in. tall, and $\frac{1}{2}$ in. deep with an inclination angle of 60 degrees. The bridge rail is typically anchored to a concrete bridge deck with a 2-in. thick concrete finishing surface applied on the traffic-side face of the barrier. Expansion joints with smooth dowels were located at 22-ft intervals in the rail. End sections measuring 3 ft – 6 in. long are normally placed at the ends of the bridge rail adjacent to an end buttress structure. However, only the length-of-need (LON) of the barrier was evaluated in this study. The original standard plans of the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail are shown in Figures 1 through 3.

In 2006, researchers at the Texas A&M Transportation Institute (TTI) published National Cooperative Highway Research Program (NCHRP) Report No. 554 [1], which developed design guidelines for aesthetic treatments for safety shape concrete roadway barriers using a series of Finite Element Modeling (FEM) simulations in conjunction with physical crash testing. The computer simulation effort examined the effect of asperity width and depth as well as the angle of inclination of asperity surface. A parametric FEM analyses was performed for asperity angles of 30, 45, and 90 degrees, and the simulation outcomes were categorized as acceptable, marginal/unknown, and unacceptable. NCHRP Report No. 554 provided final design guidelines for safety shape barriers based on simulation and crash testing results, as shown in Figure 4.

Figure 1. HDOT Standard Detail for the 42-in. Tall, Aesthetic Concrete Bridge Rail

Figure 2. HDOT Standard Detail for the 42-in. Tall, Aesthetic Concrete Bridge Rail

 $\boldsymbol{\omega}$

Figure 3. HDOT Standard Detail for the 42-in. Tall, Aesthetic Concrete Bridge Rail

4

Figure 4. Final Design Guidelines for Aesthetic Surface Treatments of Safety Shape Concrete Barriers

NCHRP Report No. 554 also provided guidelines for single-slope and vertical-face barriers that were developed by the California Department of Transportation (Caltrans) [2] in 2002 and approved by the Federal Highway Administration (FHWA) in acceptance letter B-110 [3]. Caltrans conducted crash testing on single-slope barriers with various architectural treatments in order to develop guidelines for evaluating crashworthiness of barriers with wide-ranging patterns and textures. Six recommendations for single-slope or vertical-face barriers were developed after full-scale crash testing in accordance with NCHRP Report No. 350, Test Level 3 (TL-3) [4] criteria. As reported in NCHRP Report No. 554, the following types of surface treatment are permitted:

- 1. Sandblasted textures with a maximum relief of 9.5 mm $(^{3}/_{8} \text{ in.})$.
- 2. Images or geometric patterns cut into the face of the barrier 25 mm (1 in.) or less and having 45-degrees or flatter chamfered or beveled edges to minimize vehicular sheet metal or wheel snagging.
- 3. Textures or patterns of any shape and length inset into the face of the barrier up to 13 mm ($\frac{1}{2}$ in.) deep and 25 mm (1 in.) wide.
- 4. Any pattern or texture with gradual undulation that has a maximum relief of 20 mm ($\frac{3}{4}$ in.) over a distance of 300 mm ($11^{13}/_{16}$ in.).
- 5. Gaps, slots, grooves, or joints of any depth with a maximum width of 20 mm ($\frac{3}{4}$ in.) and a maximum surface differential across these features of 5 mm ($\frac{3}{16}$ in.).

6. Any pattern or texture with a maximum relief of 64 mm (2¹/₂ in.), if such a pattern begins 610 mm (24 in.) or more above the base of the barrier and if all leading edges are rounded or sloped to minimize any vehicle snagging potential.

After comparing the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail to the NCHRP Report No. 554 design guidelines, the research team anticipated that existing bridge rail would likely provide acceptable safety performance under current impact safety standards for passenger vehicles. However, full-scale crash testing was needed to evaluate the bridge rail to the safety criteria in the American Association of State Highway and Transportation (AASHTO) *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [5].

1.2 Objectives

The objective of this report was to conduct a safety performance evaluation of the LON of HDOT's 42-in. Tall, Aesthetic Concrete Bridge Rail system. The system was evaluated according to TL-3 criteria found in MASH 2016.

1.3 Scope

Two full-scale crash tests were conducted on the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail according to MASH 2016 test designation nos. 3-10 and 3-11. The crash test results were analyzed, evaluated, and documented, and conclusions and recommendations were made pertaining to the safety performance of the system. A final report was published discussing the results and findings of the crash tests.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Aesthetic concrete bridge rails must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the FHWA for use on the National Highway System (NHS). The current safety standards consist of the guidelines and procedures published in MASH 2016. Note that there is no difference between MASH 2009 [6] and MASH 2016 for longitudinal barriers, such as bridge rails, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1. An evaluation of the bridge railing system is discussed herein.

	Test	-	Vehicle	Impact C	onditions	
Article	Designation No.	Test Vehicle	Weight, lb	Speed, mph	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2

It should be noted that the test matrix detailed herein represents a practical worst-case condition with respect to the MASH 2016 safety requirements and a crashworthiness evaluation of the barrier system. According to MASH 2016, the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail should be evaluated at a location that evaluates the greatest propensity for vehicle snag and a location that maximizes structural loading of the bridge rail at a critical section. For the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail, the critical impact point for both impact locations occurred upstream from an expansion joint in the bridge rail. The system has a transition from the recessed panel to the main face of the bridge rail $2^{3}/_{4}$ in. upstream from each expansion joint in the rail. Thus, impacting upstream from this point provided an evaluation of vehicle snag on both the recessed panel edge and the expansion joint. Additionally, the critical structural section in the rail is at the expansion joint, and smooth dowel bars are used to transfer shear loading across the opening. As such, the critical impact points specified for test designation nos. 3-10 and 3-11 for rigid barrier testing by MASH 2016 were applied upstream from an expansion joint to evaluate vehicle snag and structural loading of the system.

Structural Adequacy	А.	Test article should contain and to a controlled stop; the vehi override the installation, althout test article is acceptable.	l redirect the vehicle of cle should not penet ough controlled latera	or bring the vehicle rate, underride, or al deflection of the		
	D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 deg.				
Occupant Risk	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant In	Occupant Impact Velocity Limits			
		Component Preferred Maximum				
		Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Ride	down Acceleration L	imits		
		Component	Preferred	Maximum		
		Longitudinal and Lateral15.0 g's20.49 g's				

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the bridge rail to contain and safely redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash tests documented herein were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3 DESIGN DETAILS

The test installation consisted of a reinforced concrete bridge rail anchored to the concrete tarmac at MwRSF's Outdoor Test Site, rather than a simulated bridge deck and overhang. Previous testing of a MASH 2016 TL-4 bridge rail on similar 8-in. thick concrete bridge deck displayed no deck damage [7], indicating the potential for deck damage or deflection that would affect the outcome of the full-scale crash test was minimal under MASH 2016 TL-3 impact conditions. The HDOT Aesthetic Concrete Bridge Rail was constructed with a 44-in. height in a 2-in. deep trench, resulting in an effective rail height of 42 in. relative to the tarmac surface to simulate the correct height of the rail relative to the bridge deck in the HDOT standard plans. A concrete fill was then applied to the trench in front of the traffic-side face of the rail to simulate the 2-in. tall finished grade used by HDOT. Design details for the installation are shown in Figures 5 through 14. Photographs of the installation are shown in Figures 15 through 17. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The reinforced concrete bridge rail had a total length of 88 ft and measured 42 in. tall and 10 in. wide, as shown in Figures 5 and 7. The barrier had a vertical front face with aesthetic recessed panels spaced 12 in. apart, measuring 6 in. wide and 14 in. tall with a 3-in. top-edge radius. Three $\frac{1}{2}$ -in. tall x $\frac{1}{2}$ -in. deep V-shaped horizontal bevel cuts were etched into each face, 8, 15, and 35 in. above the tarmac, as shown in Figure 10. The top edge of the barrier on each side was chamfered at a 45-degree angle, measuring $\frac{3}{4}$ in. wide.

The barrier system consisted of five distinct segments separated with $\frac{1}{2}$ -in. wide expansion joints, as shown in Figure 5. Expansion joints were spaced 22 ft apart, and the upstream expansion joint between segment nos. 1 and 2 was located 10 ft – 11³/4 in. from the upstream end of the barrier system. The spacing between the expansion joints was limited to 22 ft, which was the smallest rail segment length between joints noted by HDOT. Larger rail segment lengths between expansion joints were considered less critical. Filler and sealant compounds were used to fill the gap between segments at expansion joints. The concrete mix for the bridge rail sections required a minimum 28-day compressive strength of 4,000 psi. Two concrete cylinder compression tests were conducted, with 21-day compressive strength results of 4,870 psi and 4,500 psi.

Steel reinforcement consisted of ASTM A615 Gr. 60 rebar, as shown in Figure 12. Eight No. 5 longitudinal rebars were located $2^{15}/_{16}$ in. from the outer surface of each segment, with four on each side. The longitudinal rebar were 259½ in. long for the longer barrier segments, 127¾ in. long for the shorter barrier segments, and were located $2^{1/8}$, $14^{1/8}$, $26^{1/8}$, and $38^{1/8}$ in. above the tarmac. Vertical stirrups were also provided using No. 5 rebar, which were spaced on 12-in. centers on the back-side face and on 6-in. centers on the traffic-side face. Vertical reinforcement bars were anchored to an existing concrete tarmac on both the traffic-side and backside faces to a depth of 8 in. and epoxied with Hilti HIT RE-500 V3 in order to develop the full tensile strength of the bar. All rebar had a 2-in. concrete clear cover.

The barrier was constructed to be consistent with a 2-in. deep wearing surface, as shown in Figure 7. To represent the wearing surface, the tarmac was milled to a width of 16 in. and depth of 2 in. The barrier system was constructed with a 44-in. height relative to the milled depth and 2 in. of low-strength concrete fill was added to the front side of the barrier to produce a rail height of 42 in. on the traffic-side face, while keeping the overall height of the rail consistent with

construction on a bridge deck as in the HDOT standard plans. No concrete fill was added to the back side of the barrier.

At each expansion joint, shear continuity was maintained using a pin-and-receiver casting, 12-in. long x 1¹/₄-in. diameter, Schedule 80 PVC pipe with a 1¹/₄-in. diameter along the vertical centerline of one barrier segment. Then, four No. 8 smooth rebar pins were inserted into each PVC tube, which were subsequently cast into adjacent concrete barrier segments. The pins were spaced $10^{11}/_{16}$ in. apart, and the top pin was located 6 in. from the top surface along the midplane of the barrier.

Figure 5. System Layout, Test Nos. H42BR-1

Figure 6. System Layout, Test Nos. H42BR-2

Figure 7. Section Details, Test Nos. H42BR-1 and H42BR-2

13

Figure 8. Reinforcement Detail, Test Nos. H42BR-1 and H42BR-2

14

Figure 9. Expansion Joint Details, Test Nos. H42BR-1 and H42BR-2

Figure 10. 11-ft Concrete Parapet Details, Test Nos. H42BR-1 and H42BR-2

Figure 11. 22-ft Concrete Parapet Details, Test Nos. H42BR-1 and H42BR-2

Figure 12. Rebar Details, Test Nos. H42BR-1 and H42BR-2

Figure 13. Expansion Joint Components, Test Nos. H42BR-1 and H42BR-2

Item No.	QTY.	Description	Material Specification	Treatment Specification
۵1	-	Reinforced Concrete	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	<u>2</u> 4
٥2	-	Low-Strength Concrete Overlay	Concrete NE Mix 9019 CITY	<u>e</u> r
ь1	264	#5 [16] Rebar, 54 3/4" [1391] Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)*
b2	24	#5 [16] Rebar, 46 7/8" [1191] Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)*
b3	24	#5 [16] Rebar, 259 1/2" [6591] Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)*
b4	16	#5 [16] Rebar, 127 3/4" [3245] Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)*
c1	16	#8 [25] Smooth Rebar, 24" [288] Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)*
c2	16	1 1/4" [32] Dia. PVC Pipe	Schedule 80 PVC Gr. 12454	-
c3	16	1 1/4" [32] PVC Cap	Schedule 80 PVC Gr. 12454	
c4	-	Epoxy Adhesive	Hilti HIT RE-500 V3	<u></u>)
c5	-	Expansion Joint Filler	AASHTO M33, M153, or M213	<u>m</u> .
c6	-	Expansion Joint Sealant	AASHTO M173, M282, M301, ASTM D3581, or ASTM D5893	-

*Rebar does not need to be epoxy-coated for testing purposes.

•	Hawaii 42" Aesthet	ic	SHEET: 9 of 9
MURSE	Concrete Bridge Ro Test No. H42BR-1	ail	DATE: 3/29/2019
Midwest Roadside	Bill of Materials		drawn by: Djw/mkb
Safety Facility	DWG. NAME. H42BR-1_R2	SCALE: None UNITS: in.[mm]	REV. BY: JEK/JCH

Figure 14. Bill of Materials, Test Nos. H42BR-1 and H42BR-2

January 9, 2020 MwRSF Report No. TRP-03-424-20

January 9, 2020 MwRSF Report No. TRP-03-424-20

21

Figure 15. Construction, Test Nos. H42BR-1 and H42BR-2

Figure 16. System Installation, Test Nos. H42BR-1 and H42BR-2

January 9, 2020 MwRSF Report No. TRP-03-424-20

- land

Figure 17. System Installation at Expansion Joint, Test Nos. H42BR-1 and H42BR-2

4 TEST CONDITIONS

4.1 Test Facility

MwRSF's Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately five miles northwest of the University of Nebraska–Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [9] was used to steer the test vehicles. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. H42BR-1, a 2009 Kia Rio was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,498 lb, 2,421 lb, and 2,584 lb, respectively. The test vehicle is shown in Figures 18 and 19, and vehicle dimensions are shown in Figure 20. MASH 2016 describes that test vehicles used in crash testing should be no more than six model years old. A 2009 model was used for this test because the vehicle geometry of newer models did not comply with recommended vehicle dimension ranges specified in Table 4.1 of MASH 2016 [8].

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted on the vehicle's right-side dash for test nos. H42BR-1 and H42BR-2 and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

Figure 18. Test Vehicle, Test No. H42BR-1

Figure 19. Test Vehicle Interior Floorboards and Undercarriage, Test No. H42BR-1
Date:	7/17/20	019		Test Name:	H42	BR-1	VIN No:	KNADE2	23396495	6453
Year:	2009	9		Make:	<u>к</u>	ia	Model:		Rio	
Tire Size:	185/65	R14	Tire Inflati	ion Pressure:	32	psi	Odometer:	1	52886	
	M		Tes	N N N N N N N N N N N N N N N N N N N		▲ 	Vehicle Ge Target Ranges A: $65 3/8$ $65\pm3 (16)$ C: $164 1/2$ $169\pm8 (43)$ E: $98 1/2$ $98\pm5 (250)$ G: $22 3/16$	cometry - in. ((1661) B: 50±75) B: (4178) D: 00±200) D: (2502) F: 00±125) H:	(mm) <u>57 5/8</u> <u>33 1/2</u> <u>35±4 (90</u> <u>33 1/2</u> <u>36 3/8</u> <u>39±4 (95</u>	(1464) (851) 00±100) (851) (924) 90±100)
					F	B L C C	I: <u>16</u> K: <u>15 3/4</u> M: <u>58</u> $56\pm2 (14:)$ O: <u>26 1/2</u> $24\pm4 (600)$ Q: <u>23</u> S: <u>11 1/4</u>	(406) J: (400) L: (1473) N: 25±50) N: (673) P: 0±100) R: (584) R: (286) T:	21 22 57 3/8 56±2 (14 1 1/4 15 1/2 65 1/4	(533) (559) (1457) ^{425±50)} (32) (394) (1657)
Mass Distrib	ution - Ib (kg)	1					U (im	pact width):	29 1/4	(743)
Gross Static	LF <u>812</u> LR <u>477</u>	(368) (216)	RF <u>799</u> RR <u>496</u>	(362) (225)			Top of H	radiator core support: Wheel Center leight (Front): Wheel Center Height (Rear):	26 5/8 10 5/8 11 3/8	(676) (270) (289)
lb (kg)	Cı	urb	Test Ir	nertial	Gross	Static	Clear	wheel Well ance (Front):	24 3/4	(629)
W-front	1576	(715)	1527	(693)	1611	(731)	Clea	rance (Rear):	25	(635)
W-rear	922	(418)	894	(406)	973	(441)	E H	leight (Front):	6 1/2	(165)
W-total	2498	(1133)	2421 2420±55 ((1098) (1100±25)	2584 2585±55	(1172) (1175±50)	E	Height (Rear):	10 1/2	(267)
						. ,	E	ingine Type:	Gase	oline
GVWR Rating	gs lb		Surrogate	e Occupant D	ata		I	Engine Size:	1.4L	4 cyl
Front	1918	-		Туре:	Hybrid		Transm	ission Type:	Autor	matic
Rear	1874	-		Mass:	163 I	b		Drive Type:	FV	VD
Total	3638	-	Seat	Position: I	Right/Pase	senger				
Note any	Note any damage prior to test: None									

Figure 20. Vehicle Dimensions, Test No. H42BR-1

For test no. H42BR-2, a 2014 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,230 lb, 5,007 lb, and 5,170 lb, respectively. The test vehicle is shown in Figures 21 and 22, and vehicle dimensions are shown in Figure 23. Note that the rear panel on the non-impact side of the pickup truck was dented inward around the fuel filler cap, as shown in Figure 21. This damage was documented prior to testing and did not affect the outcome of test no. H42BR-2.

The longitudinal components of the center of gravity (c.g.) were determined using the measured axle weights. The vertical component of the c.g. for the 1100C vehicle was determined using a procedure published by SAE [10]. The location of the final c.g. for test no. H42BR-1 is shown in Figure 24. The Suspension Method [11] was used to determine the vertical component of the c.g. for the 2270P vehicle. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The pickup truck was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. for test no. H42BR-2 is shown in Figure 25. Data used to calculate the locations of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in video analysis, as shown in Figures 24 and 25. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

Figure 21. Test Vehicle, Test No. H42BR-2

Figure 22. Test Vehicle Interior Floorboards and Undercarriage, Test No. H42BR-2

Date:	8/19/20 ⁻	19			Test Nar	ne:	H42	BR-2	VIN No:	1C6F	RR6F	T7ES319	9996
Year:	2014				Ма	ke:	Do	dge	Model:		RAI	M 1500	
Tire Size:	P265/70F	R17	. 1	Tire Inflat	tion Pressu	ire:	40	psi	Odometer:		21	5495	
		0							Vehicle G Target Range	eometry - es listed below	in. (r	nm)	
			₽					T T	A: 77 1/2 78±2 (1) C: 229 5/8 237±13 (6)	(1969) 950±50) (5832) 6020±325)	В:_ D:_	74 1/2 41 1/2 39±3 (10	(1892) (1054) 000±75)
U U			74			<u>– –</u>			E: 140 1/8 148±12 (3	(3559) 3760±300)	F:_	48	(1219)
		J-	(\				! _	G: 28 5/8 min: 2	(727) B (710)	H: <u>6</u>	63±4 (15	(1529) 75±100)
	Q								l: <u>13 3/4</u>	(349)	J:_	25 1/2	(648)
P	-R-	<u> </u>	7		\ <u></u>			B I	K: <u>20 1/2</u>	(521)	L:_	29 1/2	(749)
						\sum	U h	_	M: <u>68 3/8</u> 67±1.5 ((1737) 1700±38)	N:	67 7/8 67±1.5 (1	(1724) 700±38)
				G	s	Ð			O: 44 43±4 (1	(1118) 100±75)	P:_	4 1/2	(114)
		-H			t -	F			Q: <u>30 3/4</u>	(781)	R:_	18 1/2	(470)
	1			с		•	-		S: 15	(381)	т:_	77 1/8	(1959)
Mass Distributio	n - lb (ka)								U (ii	npact wid	th):_	36 1/2	(927)
Gross Static LF	1431	(649)	RF	1519	(689)					Wheel Cer Height (Fro	nter ont):	34 3/4	(883)
LR	1111	(504)	RR	1109	(503)					Wheel Cei Height (Re	nter ar):	15 1/4	(387)
									Clea	Wheel N arance (Fro	Well ont):	14 3/4	(375)
Weights Ib (kg)	Cu	rb		Test I	nertial	(Gross	Static	Cle	Wheel \ arance (Re	Well ar):	37 3/4	(959)
W-front	2953	(1339)		2857	(1296)	2	950	(1338)		Bottom Fra Height (Fro	ame ont):	12	(305)
W-rear	2277	(1033)		2150	(975)	2	220	(1007)		Bottom Fra Height (Re	ame ar):	13	(330)
W-total	5230	(2372)		5007	(2271)	5	170	(2345)		Engine Ty	vpe:	Gase	oline
				5000±110) (2270±50)	51	65±110	(2343±50)		Engine S	ize:	5.7L V8	B HEMI
GVWR Ratings -	lb			Surrogat	e Occupan	t Data			Transr	nission Ty	pe:_	Autor	matic
Front	3700				Type:		Hybric	1 II		Drive Ty	pe:_	RV	VD
Rear	3900				Mass:		163 I	b		Cab St	yle:_	Quad	l Cab
Total	6900			Seat	Position:	Righ	t/Pas	senger		Bed Leng	gth:	76	6"
Note any damage prior to test:None													

Figure 23. Vehicle Dimensions, Test No. H42BR-2

Figure 24. Test Vehicle Target Geometry, Test No. H42BR-1

Figure 25. Test Vehicle Target Geometry, Test No. H42BR-2

4.4 Simulated Occupant

For test nos. H42BR-1 and H42BR-2, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The dummy had a final weight of 163 lb in both tests. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [12].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-1 unit was designated as the primary system for both tests. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Both SLICE 6DX were configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicles. Both SLICE MICRO Triax ARS had a range of 1,500 deg./sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the side of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between signals. LED lights and high-speed digital video analysis are used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Six AOS high-speed digital video cameras, eight GoPro digital video cameras, and four Panisonic digital video cameras were used to film test no. H42BR-1. Five AOS high-speed digital video cameras, nine GoPro digital video cameras, and three Panisonic digital video cameras were used to document test no H42BR-2. Camera details and operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 26 and 27.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and post-test conditions for the test.

Figure 26. Camera Locations, Speeds, and Lens Settings, Test No. H42BR-1

Figure 27. Camera Locations, Speeds, and Lens Settings, Test No. H42BR-2

5 FULL-SCALE CRASH TEST NO. H42BR-1

5.1 Weather Conditions

Test no. H42BR-1 was conducted on July 17, 2019 at approximately 11:15 a.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	92° F
Humidity	52 percent
Wind Speed	14 mph
Wind Direction	200° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.33 in.
Previous 7-Day Precipitation	0.36 in.

Table 3. Weather Conditions, Test No. H42BR-1

5.2 Test Description

Test no. H42BR -1 was conducted on HDOT's 42-in. Tall, Aesthetic Concrete Bridge Rail under MASH 2016 guidelines for test designation no. 3-10. Test designation no. 3-10 is an impact of an 1100C test vehicle at 62 mph and 25 degrees on the system. The critical impact point for this test was selected to be 3 ft $-7^{3/16}$ in. upstream from the expansion joint between barrier segment nos. 3 and 4 to maximize the potential for vehicle interaction and snag on the expansion joint and the edge of the aesthetic asperities in the rail, as shown in Figure 28, which was selected using Table 2.7 of MASH 2016.

The 2,421-lb small car impacted the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail at a speed of 63.2 mph and an angle of 24.9 deg. The actual point of impact was 3.9 in. upstream from the target location. During the test, the vehicle was captured and redirected by the system. During the redirection of the vehicle, the right-front fender and right-front wheel experienced minor snag on the expansion joint and the edge of the aesthetic asperities downstream from impact. The snag was sufficient to push the right-front tire backward and crush the front portion of the right-front fender. The snag of the vehicle components did not pose a risk to the vehicle occupant compartment nor pose a hazard due to the velocity change or deceleration of the vehicle. Note that after exiting the barrier, the vehicle continued downstream and impacted a secondary set of portable barriers used to shield adjacent areas of the test site. This secondary impact did not factor into the analysis of the crash test. The vehicle came to rest 159 ft – 2 in. downstream from the impact point and 39 ft – 6 in. laterally behind the traffic side of the barrier.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 29 and 30. Documentary photographs of the crash test are shown in Figure 31. The vehicle trajectory and final position are shown in Figure 32.

Figure 28. Impact Location, Test No. H42BR-1

TIME (sec)	EVENT
0.000	Vehicle's front bumper contacted concrete barrier 47.1 in. upstream from expansion joint between barrier nos. 3 and 4.
0.004	Vehicle's front bumper deformed, and vehicle's right headlight and right fender contacted concrete barrier.
0.006	Vehicle's right headlight deformed, and vehicle's right-front wheel contacted concrete barrier.
0.012	Vehicle's hood contacted concrete barrier.
0.018	Vehicle rolled toward system.
0.024	Vehicle's hood deformed, vehicle's right headlight shattered, and vehicle's right- rear door deformed.
0.026	Vehicle's right fender deformed.
0.028	Vehicle's right-side mirror contacted concrete barrier.
0.030	Vehicle's right side mirror deformed, vehicle's roof deformed, and vehicle's right- side mirror glass cracked.
0.032	Vehicle's right-front door deformed, and vehicle's right-side mirror glass shattered.
0.034	Vehicle's front bumper became disengaged.
0.036	Vehicle's right-front door contacted concrete barrier.
0.038	Vehicle's windshield cracked.
0.040	Vehicle's right-front window cracked, and vehicle yawed away from system.
0.044	Vehicle's right side mirror became disengaged.
0.054	Vehicle's windshield shattered.
0.110	Vehicle rolled away from system.
0.134	Vehicle's right-front window became disengaged.
0.160	Vehicle's right-rear door contacted concrete barrier.
0.170	Vehicle was parallel to system traveling at 44.3 mph.
0.176	Vehicle's right quarter panel contacted concrete barrier.
0.178	Vehicle's right quarter panel deformed.
0.190	Vehicle's rear bumper contacted concrete barrier.
0.192	Vehicle's right taillight contacted concrete barrier and deformed.
0.194	Vehicle's rear bumper deformed.
0.274	Vehicle exited system at 42.8 mph and a 5.6 degree angle.
3.642	Vehicle came to rest.

 Table 4. Sequential Description of Impact Events, Test No. H42BR-1

0.000 sec

0.050 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.000 sec

0.050 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

Figure 29. Sequential Photographs, Test No. H42BR-1

Figure 30. Sequential Photographs, Test No. H42BR-1

Figure 31. Documentary Photographs, Test No. H42BR-1

Figure 32. Vehicle Final Position and Trajectory Marks, Test No. H42BR-1

5.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 33 through 38. Barrier damage consisted of contact marks and concrete gouging on the front face of the barrier. The total length of vehicle contact along the barrier was 12 ft, which spanned from 22 in. upstream from the impact point to 9 ft – 11 in. downstream from the impact point.

Tire marks were visible on the front face of barrier nos. 3 and 4. Scuff marks were found on the front and top faces of barrier nos. 3 and 4. A 133-in. long by $37\frac{1}{4}$ -in. tall contact mark began $14\frac{1}{2}$ in. upstream from the impact point at the bottom of the barrier. A 3-in. long by 1-in. tall contact mark was found 22 in. upstream from the impact point and $3\frac{3}{4}$ in. below the top edge of the barrier.

Minor concrete spalling was observed along the second-lowest horizontal seam covering a 4-ft long area, beginning $5\frac{1}{2}$ in. upstream from the impact point. Concrete damage occurred over a 2^{3} 4-in. x 10-in. area beginning on the downstream edge of the fourth aesthetic recess upstream from the expansion gap. The rest of the damage to the system consisted of minor concrete damage to the aesthetic recesses and is summarized in Table 5. Note there was no observable damage or cracking to the top or backside of the barrier or to the expansion joint.

Recess No.	Relative to Expansion Joint ¹	Length in.	Height in.	Recess Edge
5	Upstream	3⁄4	51⁄4	Downstream
		3⁄4	3⁄4	Upstream
3	Upstream	1⁄2	1	Upstream
		3⁄4	12	Downstream
2	Upstream	1⁄2	12	Downstream
1	Upstream	1⁄2	12	Downstream
1	Downstream	1⁄2	1	Downstream
	Downstream	1/2	1	Downstream

Table 5. Damage to Aesthetic Recesses, Test No. H42BR-1

¹ Expansion joint between barrier nos. 3 and 4

Figure 33. System Damage, Test No. H42BR-1

Figure 34. System Damage, Test No. H42BR-1

Figure 35. System Damage, Test No. H42BR-1

48

Figure 36. System Damage, Test No. H42BR-1

January 9, 2020 MwRSF Report No. TRP-03-424-20

Figure 37. System Damage, Test No. H42BR-1

January 9, 2020 MwRSF Report No. TRP-03-424-20

Figure 38. System Damage at Expansion Joint, Test No. H42BR-1

The maximum lateral permanent set of the barrier system was 0.1 in., as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 0.2 in. at barrier no. 3, as determined from high-speed digital video analysis. The working width of the system was found to be 10.2 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 39

Figure 39. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. H42BR-1

5.4 Vehicle Damage

Damage to the vehicle was moderate, as shown in Figures 40 through 43. The maximum occupant compartment intrusions are listed in Table 6, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. The B-pillar (lateral) and side door deformed slightly outward, which is not considered crush toward the occupant, is denoted as negative numbers in Table 6, and is not evaluated by MASH 2016 criteria. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C.

Majority of the damage was concentrated on the right-front corner and right side of the vehicle where impact with the system occurred. The right side of the front bumper was crushed inward and back. The front bumper cover was crushed inward, and the right side was torn away from the vehicle. The hood was crushed in toward the engine compartment. The right-front fender was crushed inward and back across its entire length and height. The right-front steel rim was deformed. The right-side headlight shattered and the right-side side mirror was disengaged from the vehicle. Denting and scraping were observed across the entire right side. The right-front door was crushed on the rear of the door seam while the right-rear door was crushed inward just ahead of the door seam. The right-rear bumper cover was scuffed and dented around the wheel. The right-rear bumper was scuffed. The right-side taillight was shattered. The roof was slightly deformed.

A vertical crack on the windshield propagated through the adhesive liner and deformed inward 6.8 in., but did not impact the system or simulated occupant. The deformation of the windshield was such that the deformation limit in MASH 2016 was exceeded. However, the deformation was due to shearing and fracture of the windshield caused by crushing of the rightfront corner of the windshield, which propagated a shear crack through the glass. The windshield damage did not occur due to direct contact with the test article, nor did it pose a penetration hazard to the vehicle occupant. Thus, this damage was not a violation of MASH 2016 criteria as neither item occurred due to contact with the test article or debris, nor did they pose an intrusion risk into the occupant compartment. Additionally, the right-front side window was shattered. Review of the high-speed video revealed that the side window damage occurred due to crush of the vehicle's side door and not from direct contact with the test article. The remaining window glass remained undamaged.

The front anti-roll bar was pushed inward on the right side. The right-side control arm was bent inward and the right-side outer steering control arm joint was compressed. The right-side frame rail was bent downward. The front and rear cross members were pushed inward and the frame horn was pushed backward. The floor pan was opened at the seam of the right-side toe pan connection from vehicle crush. The split seam was not due to intrusion of the barrier or a component of the vehicle.

Figure 40. Vehicle Damage, Test No. H42BR-1

Figure 41. Vehicle Damage, Test No. H42BR-1

Figure 42. Occupant Compartment Damage, Test No. H42BR-1

Figure 43. Undercarriage Damage, Test No. H42BR-1

January 9, 2020 MwRSF Report No. TRP-03-424-20

57

LOCATION	MAXIMUM INTRUSION in.	MASH 2016 ALLOWABLE INTRUSION in.
Wheel Well & Toe Pan	2.6	≤ 9
Floor Pan & Transmission Tunnel	4.7	≤ 12
A-Pillar	1.5	≤ 5
B-Pillar	1.2	≤ 5
A-Pillar (lateral)	0.6	<i>≤</i> 3
B-Pillar (lateral)	-1.2	N/A^2
Side Front Panel	2.3	≤ 12
Side Door (above seat)	0.2	≤ 9
Side Door (below seat)	-1.1	N/A ²
Roof	2.2	\leq 4
Windshield	6.8*	≤ 3
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article
Dash	1.9	N/A ¹

Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. H42BR-1

Note: Negative values denote outward deformation

 $N/A^1 - No$ MASH 2016 criteria exist for this location

 $N/A^2 - MASH 2016$ criteria are not applicable when deformation is outward

* The windshield damage occurred after a vertical crack propagated through the adhesive liner. The windshield was partially caved in, but this deformation was unrelated to impact and thus does not violate MASH 2016 evaluation criteria.

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec moving average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 7. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 7. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix D.

		Trans	MASH 2016	
Evaluatio	on Criteria	SLICE-1 (primary)	SLICE-2	Limits
OIV	Longitudinal	-24.54	-24.03	±40
ft/s	Lateral	-31.41	-30.61	±40
ORA	Longitudinal	-4.01	-3.55	±20.49
g's	Lateral	-12.15	-13.20	±20.49
MAX.	Roll	4.8	3.2	±75
ANGULAR DISPL	Pitch	-4.3	-3.4	±75
deg.	Yaw	-33.3	-33.1	not required
T] f	HIV čt/s	36.43	33.92	not required
P	HD g's	12.79	13.57	not required
A	ASI	2.45	2.37	not required

Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. H42BR-1

5.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were processed using an SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 44. A maximum perpendicular (i.e., lateral) impact load equal to 56.3 kips was imparted on the barrier at 0.031 s after impact, as determined by the SLICE-1 (primary) unit. A peak frictional load of 16.5 kips was observed 0.064 s after impact.

Figure 44. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1), Test No. H42BR-1

5.7 Discussion

The analysis of the test results for test no. H42BR-1 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 45. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic or pedestrians. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. A vertical crack on the windshield propagated through the adhesive liner and deformed inward. Since the deformation was due to shearing and fracture of the windshield caused by crushing of the right-front corner of the windshield and the damage did not occur due to direct contact with the test article or pose a penetration hazard to the vehicle occupant, this damage was not a violation of MASH 2016 criteria. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 5.6 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. H42BR-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-10.

0.000 sec 0.050 sec 1 1	0.100 sec MwRSF MWRSF MWRSF MWRSF MWRSF MWRSF MWRSF MWRSF MWRSF MWRSF MWRSF MWRSF MWRSF 	amage t Article Deflection t Set Width	sec 42T[1057] 42T[1057] ns	0.2	250 sec
""""""""""""""""""""""""""""""""""	MwRSF H42BR-1 /uly 17, 2019 3-10 e Bridge Rail 88 ft 88 ft 88 ft 88 ft 	amage st Article Deflectior t Set Width	42°[1067] 42°[1067] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	p e	Mini 01 02
Test Number Date		amage st Article Deflectior t Set Width tta	ns Trans		
MASH 2016 Test Designation No Test Article	uny 17, 2019	amage st Article Deflectior t Set Width tta	ns Trans	ducar	Mini 0.1 0.2
Introduction Introduction Test Article HDOT 42-in. Tall, Aesthetic Concret Total Length Introduction Key Component – 22-ft Concrete Parapet Length Height Width Key Component – 11-ft Concrete Parapet Length Length Height Width Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location 47.1 in. U.S. from expansion gap between barried Impact Severity 57.4 kip-ft > 51.1 kip-ft limit from Exit Conditions Speed	e Bridge Rail 	amage st Article Deflectior t Set Width tta	ns Trans	ducar	Min 0. 0. 0. 0.
Total Length. Key Component – 22-ft Concrete Parapet Length. Height. Width. Key Component – 11-ft Concrete Parapet Length. Height. Width. Vehicle Make /Model. Curb. Test Inertial. Gross Static. Impact Conditions Speed. Angle Impact Location	88 ft • Test Article D	amage st Article Deflectior t Set Width tta	ns Trans	<u>A_A/_/</u>	Min
Key Component – 22-ft Concrete Parapet Length Height Width Key Component – 11-ft Concrete Parapet Length Height Width Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location 47.1 in. U.S. from expansion gap between barried Impact Severity Static Conditions	Test Article D Maximum Tes Permanen Dynamic. Working V Transducer Da Test Article D Maximum Tes Permanen Dynamic. Working V Transducer Da Test Article D	amage st Article Deflectior t Set Width tta	Trans	ducar	Mir
Length	22 ft • Maximum Tes 42 in. Permanen 10 in. Dynamic.	st Article Deflectior t Set Width tta	Trans	ducar	
Height	42 in. Permanen 10 in. Dynamic. Working V	Width	Trans	ducar	
Width Key Component – 11-ft Concrete Parapet Length Height Width Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location47.1 in. U.S. from expansion gap between barrier Impact Severity57.4 kip-ft > 51.1 kip-ft limit from Exit Conditions	10 in. Dynamic. Working V 	Width	Trance	ducar	
Key Component – 11-ft Concrete Parapet Length		nta	Trans	ducer	MASH 201
Length			Trans	ducer	MASH 201
Height Width Vehicle Make /Model Curb Test Inertial Gross Static. Impact Conditions Speed Angle Impact Location47.1 in. U.S. from expansion gap between barrie Impact Severity		F			MASU 201
Width Vehicle Make /Model Curb Test Inertial	HV0111017	on Critoria	SUICE 1		MASH 201
Vehicle Make /Model Curb	Line Evaluation	ion Cinena	(primary)	SLICE-2	Limit
Test Inertial	2009 Kia Kio	Longitudinal	_24.54	-24.02	+40
Gross Static Impact Conditions Speed Angle	2.421 lb	Longitudinal	-24.34	-24.05	±40
Impact Conditions Speed Angle	2,584 lb	Lateral	-31.41	-30.61	±40
Speed Angle Impact Location	OP 4	Longitudinal	-4.01	-3.55	±20.49
Angle Impact Location	63.2 mph OKA g's		10.15	10.00	20.40
Impact Location	24.9 deg.	Lateral	-12.15	-13.20	±20.49
Exit Conditions	nos. 3 and 4 MAX	Roll	4.8	3.2	±75
Exit Conditions	MASH 2016 ANGULAR	Pitch	-4.3	-3.4	+75
Speed	42.8 mph DISP.	FICH	-4.3	-3.4	±13
Angle		Yaw	-33.3	-33.1	not require
Exit Box Criterion	-8-	V - ft/s	36.43	33.92	not require
Vehicle Stability	Pass THI	. 105	50.15	55.72	not require
Vehicle Stopping Distance	Pass THI .Satisfactory		12 70	13 57	not require
Vehicle Damage		D – g's	12.79	15.57	not require
VDS [13]	Pass THI Satisfactory PHI ehind barrier PHI Moderate PHI	D – g's ASI	2.45	2.37	not require

61

6 FULL-SCALE CRASH TEST NO. H42BR-2

6.1 Weather Conditions

Test no. H42BR-2 was conducted on August 19, 2019 at approximately 12:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 8.

Temperature	85° F
Humidity	63 percent
Wind Speed	10 mph
Wind Direction	120° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	1.08 in.

Table 8. Weather Conditions, Test No. H42BR-2

6.2 Test Description

Test no. H42BR-2 was conducted on HDOT's 42-in. Tall, Aesthetic Concrete Bridge Rail under MASH 2016 guidelines for test designation no. 3-11. Test designation no. 3-11 is an impact of a 2270P test vehicle at 62 mph and 25 degrees on the system. The critical impact point for this test was selected to be 4 ft $-3^{5}/8$ in. upstream from the expansion joint between barrier segment nos. 2 and 3 to maximize the potential for vehicle interaction and snag on the expansion joint and the edge of the aesthetic asperities in the rail, as shown in Figure 46, which was selected from Table 2.7 of MASH 2016. The 5,007-lb quad cab pickup truck impacted the HDOT 42-in Tall, Aesthetic Concrete Bridge Rail at a speed of 62.7 mph and an angle of 25.1 degrees. The actual point of impact was 2.7 in. downstream from the target location. During the test, the vehicle was captured and redirected by the system. During the redirection of the vehicle, the right-front fender and right-front wheel experienced minor snag on the expansion joint and the edge of the aesthetic recesses downstream from impact. The snag was sufficient to push the right-front tire backward and crush the front portion of the right-front fender. The snag of the vehicle components did not pose a risk to the vehicle occupant compartment nor did it pose a hazard due to the velocity change or deceleration of the vehicle. The vehicle came to rest 226 ft -10 in. downstream from the impact point and 29 ft - 10 in. laterally behind the traffic side of the barrier after the vehicle's brakes were applied.

A detailed description of the sequential impact events is contained in Table 9. Sequential photographs are shown in Figure 47. Documentary photographs of the crash test are shown in Figure 48. The vehicle trajectory and final position are shown in Figure 49.

Figure 46. Impact Location, Test No. H42BR-2

TIME (sec)	EVENT							
0.000	Vehicle's front bumper contacted concrete barrier 48.9 in. upstream from expansion gap between barrier nos. 2 and 3.							
0.002	Vehicle's right headlight contacted concrete barrier.							
0.004	Vehicle's right headlight deformed.							
0.006	Vehicle's right fender contacted concrete barrier.							
0.008	Vehicle's front bumper deformed, and vehicle's right-front wheel contacted concrete barrier.							
0.010	Vehicle's right fender deformed, and vehicle's right headlight shattered.							
0.014	Vehicle's hood contacted concrete barrier.							
0.022	Vehicle's hood deformed, vehicle's grille contacted concrete barrier, and vehicle's right-front wheel contacted concrete barrier.							
0.024	.024 Vehicle's right-front wheel deflated.							
0.026	Vehicle's grille deformed.							
0.036	Vehicle's right-front door contacted concrete barrier.							
0.038	Vehicle's right-front door deformed.							
0.056	Vehicle yawed away from system and rolled toward system.							
0.058	Vehicle's right-front door flexed away from frame at top.							
0.066	Vehicle's grille became disengaged.							
0.068	Vehicle's windshield cracked, and vehicle's left headlight deformed.							
0.070	Vehicle's roof experienced flexure.							
0.076	Vehicle's right-front window shattered.							
0.096	Vehicle's left-front tire became airborne.							
0.110	Simulated occupant's head passed through right-front window opening.							
0.122	Simulated occupant's head reentered through right-front window opening.							
0.132	Vehicle's right-rear door contacted concrete barrier.							
0.134	Vehicle's right-rear door deformed.							
0.146	Vehicle's left-rear tire became airborne.							
0.168	Vehicle's right quarter panel contacted concrete barrier.							
0.188	Vehicle's right quarter panel deformed.							
0.194	Vehicle was parallel to system traveling at 47.5 mph.							
0.196	Vehicle's right taillight contacted concrete barrier.							
0.198	Vehicle's right taillight deformed.							
0.200	Vehicle's right taillight shattered.							
0.204	Vehicle's rear bumper contacted concrete barrier.							

 Table 9. Sequential Description of Impact Events, Test No. H42BR-2

0.206	Vehicle's rear bumper deformed.
0.214	Vehicle's left headlight became disengaged.
0.228	Vehicle's right-front tire became airborne.
0.232	Vehicle pitched downward.
0.356	Vehicle's right-front tire regained contact with ground.
0.366	Vehicle exited system at 46.3 mph and a 7.8 degree angle.
0.428	Vehicle rolled away from system.
0.446	Vehicle's left-front tire regained contact with ground.
0.534	Vehicle's left-rear tire regained contact with ground.
0.738	Vehicle yawed toward system.
0.770	Vehicle pitched downward.
0.772	Vehicle rolled toward system.
1.032	Vehicle rolled away from system.
6.192	Vehicle came to a rest.

0.000 sec

0.050 sec

0.100 sec

0.200 sec

0.300 sec

0.450 sec

0.000 sec

0.050 sec

0.100 sec

0.200 sec

0.300 sec

0.450 sec

Figure 47. Sequential Photographs, Test No. H42BR-2

Figure 48. Documentary Photographs, Test No. H42BR-2

Figure 49. Vehicle Final Position and Trajectory Marks, Test No. H42BR-2

6.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 50 through 57. Barrier damage consisted of contact marks and concrete spalling on the front face of the barrier. The total length of vehicle contact along the barrier was 12 ft - 10 in., which spanned from $12\frac{1}{2}$ in. upstream from the impact point to $11 \text{ ft} - 9\frac{1}{2}$ in. downstream from the impact point. Note that any cracking visible in the system photographs was documented beforehand and not a result of test no. H42BR-2.

Tire marks were visible on the front face of barrier nos. 2 and 3. Scuff marks were also found on the front and top faces of barrier nos. 2 and 3. A 137-in. long by 30-in. tall contact mark began $12\frac{1}{2}$ in. upstream from the impact point at the bottom of the barrier. A 147-in. long by 12-in. tall contact mark began 6 in. upstream from the impact point at the top edge of the barrier. A 117 $\frac{1}{2}$ -in. long by $3\frac{1}{4}$ -in. wide contact mark was found on the top face of the barrier, beginning on the front face 4 in. downstream from the impact point.

Minor surface gouging was observed along the second-lowest horizontal asperity on the barrier, beginning 5 in. downstream from the impact point and extending 39 in. downstream. The front chamfer on the top of the barrier had minor concrete damage, beginning 1½ in. downstream from the impact point and continuing 100 in. downstream. The rest of the damage to the system consisted of minor concrete damage to the aesthetic recesses and is summarized in Table 10. Note there was no observable damage or cracking to the top or backside of the barrier or to the expansion joint.

dge m
m
ım
n
eam
m
n
eam
m
n
eam
ım n
eam
m
n
eam
eam
eam

Table 10. Damage to Aesthetic Recesses, Test No. H42BR-2

¹ Expansion joint between barrier nos. 2 and 3

Figure 50. System Damage, Test No. H42BR-2

Figure 51. System Damage, Test No. H42BR-2

Figure 52. System Damage, Test No. H42BR-2

January 9, 2020 MwRSF Report No. TRP-03-424-20

Figure 53. System Damage, Test No. H42BR-2

January 9, 2020 MwRSF Report No. TRP-03-424-20

73

Figure 54. System Damage, Test No. H42BR-2

Figure 55. System Damage, Test No. H42BR-2

Figure 56. System Damage Behind Impact Point, Test No. H42BR-2

Figure 57. System Damage at Expansion Joint, Test No. H42BR-2

The maximum lateral permanent set of the barrier system was 0.2 in., as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 0.5 in. at barrier no. 3, as determined from high-speed digital video analysis. The working width of the system was found to be 10.5 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 58.

Figure 58. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. H42BR-2

6.4 Vehicle Damage

Damage to the vehicle was moderate, as shown in Figures 59 through 62. The maximum occupant compartment intrusions are listed in Table 11, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C.

The majority of the damage was concentrated on the right-front corner and right side of the vehicle where impact occurred. The right side of the front bumper was crushed inward and bent across its entire width. The right-front fender was crushed inward across its entire length. The right-front tire was partially disengaged from the steel rim and the right-front steel rim was deformed. The front headlights and front grille were disengaged from the vehicle. The hood was crushed inward on its right edge. The right-front door was crushed in the middle, pinching the latch. The entire right side of the vehicle was scraped. The right side of the bed was crushed inward along its entire length. The right-rear taillight was disengaged from the vehicle. The right side of the rear bumper was crushed inward. The windshield had severe cracking across its entire length. The right-front side window was removed from the vehicle due to crush of the side of the vehicle door and contact with the dummy's head. The window damage was not due to contact with the test article. The roof and remaining window glass remained undamaged. The right-front shock was bent outward. The right-side bump stop mount was crushed inward and compressed. The front anti-roll bar and the right-front steering knuckle were disengaged from the vehicle and the rightside lower control arm was disengaged from its mounts. The right-side upper control arm was bent inward. The right-side tie rod was disengaged from the vehicle. The left-side transmission mount was torn at the bolt holes. The right-side frame rail was bent inward. The middle cross member was buckled near its center and the right-side frame horn was pushed inward.

Figure 59. Vehicle Damage, Test No. H42BR-2

Figure 60. Vehicle Damage, Test No. H42BR-2

Figure 61. Occupant Compartment Damage, Test No. H42BR-2

Figure 62. Undercarriage Damage, Test No. H42BR-2

LOCATION	MAXIMUM INTRUSION in.	MASH 2016 ALLOWABLE INTRUSION in.
Wheel Well & Toe Pan	5.5	≤ 9
Floor Pan & Transmission Tunnel	0.5	≤ 12
A-Pillar	0.1	≤ 5
B-Pillar	0.2	≤ 5
A-Pillar (lateral)	0.1	<i>≤</i> 3
B-Pillar (lateral)	0.0	<i>≤</i> 3
Side Front Panel	4.8	≤ 12
Side Door (above seat)	0.9	≤ 9
Side Door (below seat)	2.1	≤ 12
Roof	0.1	≤ 4
Windshield	0.0	<i>≤</i> 3
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article
Dash	1.7	N/A ¹

Table 11. Maximum Occupant Compartment Intrusion by Location, Test No. H42BR-2

 N/A^1 – No MASH 2016 criteria exist for this location

6.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec moving average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 12. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 7. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

		Trans	ducer	MASH 2016
Evaluation Criteria		SLICE-1 (primary)	SLICE-2	Limits
OIV	Longitudinal	-20.88	-21.45	±40
ft/s	Lateral	-23.95	-26.92	±40
ORA	Longitudinal	-6.02	-6.03	±20.49
g's	Lateral	-8.04	-6.41	±20.49
MAX.	Roll	14.1	10.7	±75
ANGULAR DISPL.	Pitch	-3.1	-4.9	±75
deg.	Yaw	-40.9	-41.1	not required
T	HIV ft/s	31.58	33.92	not required
P	PHD g's	8.47	7.19	not required
I	ASI	1.70	1.87	not required

Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. H42BR-2

6.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were processed using an SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 63. A maximum perpendicular (i.e., lateral) impact load equal to 80.1 kips was imparted on the barrier at 0.051 s after impact, as determined by the SLICE-1 (primary) unit. A peak frictional load of 22.4 kips was observed 0.0255 s after impact.

Figure 63. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1), Test No. H42BR-2

6.7 Discussion

The analysis of the test results for test no. H42BR-2 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 64. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 7.8 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. H42BR-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

					D.		
0.000 sec	0.050 sec	0.100 sec		0.150	sec	-10"[254]-	0 sec
25.0°	LR RF 20'-10' [0.1 m] 				42"['067]	Side	
Test Agency		MwRSF			ļļ	ļ	
• Test Number		H42BR-2				P q	
Date MASH 2016 Test Designation N	······	August 19, 2019				-	
MASH 2016 Test Designation N Test Article	0	arete Bridge Pail					
Total Length		88 ft					
 Key Component – 22-ft Concrete 	Parapet				1/77	XX///	
Length Height Width			Test Article Dat	mage			Minimal
• Key Component – 11-ft Concrete	e Parapet	•	Maximum Test	Article Deflection	ns		
Length		11 ft	Permanent	Set			0.2 in.
Height		42 in.	Dynamic				
Width		10 in.	WORKING W	a			10.5 m.
Vehicle Make /Model		Dodge Ram 1500	Transducer Data	a	Trans	ducer	
Curb			Evaluatio	on Criteria	SLICE-1	ducci	MASH 2016
Gross Static					(primary)	SLICE-2	Limit
Impact Conditions			OW	Longitudinal	-20.88	-21.45	+40
Speed		62.7 mph	ft/s		22.05	26.02	- 10
Angle		25.1 deg.	100	Lateral	-23.95	-26.92	±40
Impact Location	9 in. U.S. from expansion gap between bar 118.5 kip ft > 105.6 kip ft limit fr	rrier nos. 2 and 3	ORA	Longitudinal	-6.02	-6.03	±20.49
Exit Conditions	110.5 kp-ft > 105.0 kp-ft	0111 WASH 2010	g's	Lateral	-8.04	-6.41	±20.49
Speed		46.3 mph	ΜΔΥ	Roll	14.1	10.7	+75
Angle		7.8 deg.	ANGULAR	Die 1	2.1	10.7	275
Exit Box Criterion		Pass	DISP.	Pitch	-3.1	-4.9	±/5
Vehicle Stopping Distance	226 ft = 10 in downstream 29 ft = 10 i	in behind barrier	deg.	Yaw	-40.9	-41.1	not required
Vehicle Damage			THIV	′ – ft/s	31.58	33.92	not required
VDS [13]		1-RFQ-4	DUD	~'a	0 47	7.10	not more in a
CDC [14]		01RFEW3	PHD	- g s	8.47	/.19	not required
Maximum Interior Deformat	ion	5.5 in.	A	SI	1.70	1.87	not required

Figure 64. Summary of Test Results and Sequential Photographs, Test No. H42BR-2

87

January 9, 2020 MwRSF Report No. TRP-03-424-20

7 SUMMARY AND CONCLUSIONS

The objective of this project was to evaluate the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail in accordance with the MASH 2016 TL-3 safety performance criteria. A summary of the testing and evaluation is shown in Table 13. The system consisted of two 11-ft long end segments and three 22-ft long interior barrier segments with aesthetic recesses on the front and back faces spaced 12 in. apart, measuring 6 in. wide and 14 in. tall with a 3-in. top-edge radius. The design compressive strength of the concrete was 4,000 psi. The existing concrete tarmac surface was milled to a depth of 2 in. and filled with low-strength concrete after removal of the formwork to replicate the wearing surface of a bridge deck. ASTM Grade 60 rebar was used for all longitudinal and vertical reinforcement. Vertical reinforcement bars were anchored to an existing concrete tarmac on both the traffic- and back-side faces to a depth of 8 in. and epoxied with Hilti HIT RE-500 V3 in order to develop the full tensile strength of the bar. Each barrier segment was separated by an expansion joint consisting of a ¹/₂-in. open gap filled with expansion joint sealant. The expansion joint assembly consisted of four 24-in. long No. 8 horizontal smooth rebar placed within PVC tubes and caps that were cast into the parapet. The test setup for test nos. H42BR-1 and H42BR-2 were identical with the exception that the impact locations were varied per MASH 2016 guidelines.

In test no. H42BR-1, the 2,421-lb small car impacted the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail at a speed of 63.2 mph and an angle of 24.9 degrees, resulting in an impact severity of 57.4 kip-ft. Impact occurred 47.1 in. upstream from the expansion gap between barrier nos. 3 and 4, and the vehicle exited the system at a speed of 42.8 mph and an angle of 5.6 degrees. The vehicle was successfully contained and smoothly redirected with minor damage to the system and moderate damage to the vehicle. All vehicle decelerations, occupant compartment deformations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. H42BR-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-10.

In test no. H42BR-2, the 5,007-lb quad cab pickup truck impacted the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail at a speed of 62.7 mph and an angle of 25.1 degrees, resulting in an impact severity of 118.5 kip-ft. Impact occurred 48.9 in. upstream from the expansion gap between barrier nos. 2 and 3, and the vehicle exited the system at a speed of 46.3 mph and an angle of 7.8 degrees. The vehicle was successfully contained and smoothly redirected with minor damage to the system and moderate damage to the vehicle. All vehicle decelerations, occupant compartment deformations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. H42BR-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

Based on the successful completion of the two full-scale crash tests required for evaluation of longitudinal barriers, the HDOT 42-in. Tall, Aesthetic Concrete Bridge Rail meets the safety criteria for MASH 2016 TL-3. It should be noted that test nos. H42BR-1 and H42BR-2 were conducted on the LON interior barrier segments, so the crashworthiness of the end segments and transition buttresses were not evaluated in this report. It is recommended that end sections and buttresses be designed with similar or greater capacity to the bridge rail.

Table 13. Summary of Safety Performance Evaluation

Evaluation Factors			Evaluation Criteria	a		Test No. H42BR-1	Test No. H42BR-2
Structural Adequacy	А.	Test article should the vehicle should lateral deflection	I contain and redirect the vehicle of not penetrate, underride, or overr of the test article is acceptable.	or bring the vehicle to a c ide the installation, altho	ontrolled stop; ough controlled	S	S
	D.	1. Detached eleme or show potential other traffic, pede	ents, fragments, or other debris fr for penetrating the occupant comp strians, or personnel in a work zo	rom the test article should partment, or present an unne.	d not penetrate ndue hazard to	S	S
		2. Deformations of set forth in Section	f, or intrusions into, the occupant n 5.2.2 and Appendix E of MASH	t compartment should no H 2016.	t exceed limits	S	S
	F.	The vehicle shoul angles are not to e	d remain upright during and after exceed 75 deg.	collision. The maximun	n roll and pitch	S	S
Occupant	H.	Occupant Impact calculation procee	Velocity (OIV) (see Appendix A lure) should satisfy the following	A, Section A5.2.2 of M limits:	ASH 2016 for		
Risk			Occupant Im	pact Velocity Limits		S	S
			Component	Preferred	Maximum		
			Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Ric 2016 for calculation	ledown Acceleration (ORA) (see on procedure) should satisfy the f	Appendix A, Section A5 following limits:	5.2.2 of MASH		
			Occupant Ridedo	own Acceleration Limits		S	S
			Component	Preferred	Maximum		
			Longitudinal and Lateral	15.0 g's	20.49 g's		
			MASH 2016 Test Designation No	D.		3-10	3-11
			Final Evaluation (Pass or Fail)			Pass	Pass

S – Satisfactory U – Unsatisfactory NA - Not Applicable

January 9, 2020 MwRSF Report No. TRP-03-424-20

68

8 REFERENCES

- 1. Bullard, L.D., Sheikh N.M., Bligh R.P., Haug, R.R., Schutt, J.R., and Storey, B.J., *Aesthetic Concrete Barrier Design*, NCHRP Report No. 554, Texas Transportation Institute, Texas A&M University, College Station, Texas, 2006.
- 2. White, M., Jewell, J., and Peter, R., *Crash Testing of Various Textured Barriers*, Contact No. F2001TL17, California Department of Transportation, Sacramento, California, 2002.
- 3. Taylor, H.W., *HSA-10/B110*, December, 2002.
- 4. Ross, H.E., Jr., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures* for the Safety Performane Evaluation of Highway Features, NCHRP Report No. 350, Transportation Research Board, National Research Council, Washington D. C., 1993.
- 5. *Manual for Assessing Safety Hardware, Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- 6. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 7. Development of An Optimized Mash TL-4 Bridge Rail: MASH Test No. 4-12, Report No. TRP-03-415-19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, DRAFT.
- 8. Clarifications on Implementing the AASHTO Manual for Assessing Safety Hardware, American Association of State Highway and Transportation Officials (AASHTO), May, 2016.
- 9. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 10. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series – 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 11. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 12. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 13. *Vehicle Damage Scale for Traffic Investigators, Second Edition*, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 14. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

9 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material/Treatment Specification	Reference
a1	Reinforced Concrete	Min. f'c = 4,000 psi NE Mix 47BD	Ticket#4216469 #4216463 Test Report #2147371348
a2	Low-Strength Concrete Overlay	Concrete NE Mix 9019 CITY	Ticket#1237834
b1	#5 Rebar 54¾ in. Total Unbent Length	ASTM A615 Gr. 60 Epoxy Coated (ASTM A775 or A934)	H#3600002833
b2	#5 Rebar 46 ⁷ / ₈ in. Total Unbent Length	ASTM A615 Gr. 60 Epoxy Coated (ASTM A775 or A934)	H#3600002833
b3	#5 Rebar 259½ in. Total Length	ASTM A615 Gr. 60 Epoxy Coated (ASTM A775 or A934)	H#3600002833
b4	#5 Rebar 127¾ in. Total Length	ASTM A615 Gr. 60 Epoxy Coated (ASTM A775 or A934)	H#3600002833
c1	#8 Smooth Rebar 24 in. Total Length	ASTM A615 Gr. 60 Epoxy Coated (ASTM A775 or A934)	H#KN1503046
c2	1 ¹ / ₄ -in. Dia. PVC Pipe	Schedule 80 PVC Gr. 12454	Georg Fischer Harvel LLC COC
c3	1¼-in. PVC Cap	Schedule 80 PVC Gr. 12454	COC Fastenal T#120346463 P#0470592
c4	Epoxy Adhesive	Hilti HIT RE-500 V3	Hilti COC
c5	Expansion Joint Filler	AASHTO M33, M153, or M213	W.R. Meadows Seal Tight Fiber Expansion Joint that meets M213 Data Product Sheet
c6	Expansion Joint Sealant	AASHTO M173, M282, M301, ASTM D3581, or ASTM D5893	Pecora 301NS Data Sheet

Table A-1. Bill of Materials, Test Nos. H42BR-1 and H42BR-2

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

Customer's Signature:

PLANT	TRUCK	DRIVER	CUSTO	MER	PROJECT	TAX	PO NUMBER	R DA		ME	TICKET
4	126	9629	6246	1			H42BR	6/2	0/19 12:5	8 PM	4216469
Customer UNL-MIDV	VEST ROA	ADSIDE	SAFETY	Delive 4630	ery Address NW 36TH S	T		Special In AIRPARK YEARHAI	structions / NORTH OF NGERS	OLD G	OOD
LOAD QUANTITY	QUANTI	TIVE O TY Q	RDERED	PR	ODUCT CODE	PRODUCT	ESCRIPTION	UOM		E	PRICE
3.50	12.5	50	12.50		\$70031PF	47BD (1PF)		yd	\$123.	00	\$430.50
Water Add Custome	ed On Job / r's Request:	At	SLUMP .00 in	Notes		die and		TICKET SALES T TICKET	SUBTOTAL TAX TOTAL	-	\$430.50 \$0.00 \$430.50
								PREVIO	US TOTAL TOTAL		\$1,107.00 \$1,537.50
Mary and the	and the second second			2.57		P.4 1	Term	s & Cor	ditions	- the man	and the second second
Contains Po concrete or g contact with Equipment (i thoroughly w attention pro	CAUTION KEEP (rtland cemern grout may ca skin. Always PPE). In cass ith water. If i mptly.	FRESH CHILDRE nt. Freshly use skin in wear appr e of contac rritation pe	CONCRE EN AWAY mixed cemu jury. Avoid opriate Per t with eyes rsists, seek	ETE (prolon sonal or skir c medic	ortar, ged Protective n, flush cal	This concrete is concrete. Streng the mix to exceet acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C. unless expressi personal or prog The purchaser's within 3 days fir to investigate ai price of the mat	produced with the ths are based on a d this slump, exce ny decrease in con rests must be har sed testing lab and norcete Company w y told to do so by c verty damage that r exceptions and cla m time of delivery, y such claim. Sell erials against which	ASTM stand a 3" slump. D pt under the inpressive stru- idled accordi d/or certified i vill not delivei ustomer and may occur as aims shall be In such a ca er's liability s in any claims	ard specification rrivers are not pe authorization of ength and any ri ng to ACI/ASTM technician. r any product be customer assur a result of any i deemed waiver se, seller shall t hall in no event are made.	s for rea rmitted i the custo sk of los specific yond an hes all li- such dire unless e given exceed t	ady mix to add water to omer and their s as a result aations and y curb lines ability for any active. made in writing full opportunity the purchase

Figure A-1. Reinforced Concrete, Test Nos. H42BR-1 and H42BR-2

LINCOLN OFFICE 825 "M" Street Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 11-Jul-19

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: H42BR

Mix Designation:

							Laboratory	Test Data	a						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area, sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen
URR-127	C	6/20/2019	7/11/2019	7/11/2019	21	0	21	12	6.01	28.37	138,223	4,870		5	C 1231
URR-128	D	6/20/2019	7/11/2019	7/11/2019	21	0	21	12	6.02	28.46	127,978	4,500		5	C 1231

Required Strength:

1 cc: Ms. Karla Lechtenberg

Midwest Roadside Safety Facility

Remarks: Email results to Shaun Tighe (stighe2@unl.edu) Sketches of Types of Fractures Concrete test specimens along with documentation and test data were submitted by Midwest Roadside Safety Facility. 貅 Test results presented relate only to the concrete specimens as received from Midwest Roadside Safety Type 5 Type 1 Type 2 Type 3 Type 4 Type 6 ALFRED BENESCH & COMPANY Reasonably well-Well-formed cone on Columnar vertical Diagonal fracture with Side fractures at top or Similar to Type 5 but CONSTRUCTION MATERIALS LABORATORY This report shall not be reproduced except in full, without Matt Rocula the written approval of Alfred Benesch & Company. crecking through both no cracking through end of cylinder is formed cones on both one end, vertical bottom (occur cracks running through ends, no well-formed ends; tap with hammer pointed ends, less than 1 in. commonly with [25 mm] of cracking caps, no well-defined to distinguish from cones unbonded caps) Report Number 2147371348 Bv cone on other end Type 1 through caps Page 1

Figure A-2. Compression Test Cylindrical Concrete Specimen, Test Nos. H42BR-1 and H42BR-2

January 9, 2020 MwRSF Report No. TRP-03-424-20

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

Customer's Signature:

PLANT	TRUCK	DRIVER	CUSTO	MER	PROJECT	TAX	PO NUMBER	R D	ATE	TIME	TICKET
4	242	9264	6246	1			H42BR	6/2	20/19	12:02 PM	4216463
Customer UNL-MIDV	VEST RC	ADSIDE	SAFETY	Deliv 4630	ery Address NW 36TH S	ST		Special In AIRPARK YEARHA	struction (/ NORT NGERS	s H OF OLD	GOOD
LOAD				PR	CODUCT	PRODUCT	DESCRIPTION	UOM	UNIT	PRICE	EXTENDED PRICE
9.00	9	.00	12.50		470031PF	47BD (1PF)		yd		\$123.00	\$1,107.00
Water Add Custome	ed On Job r's Reques	At	SLUMP 4.00 in	Notes	5:			TICKET SALES TICKET	SUBTO TAX TOTAL	TAL	\$1,107.00 \$0.00 \$1,107.00
								PREVIO	US TOT	AL	\$1.107.00
Contains Po concrete or of contact with Equipment (thoroughly w attention pro	CAUTION KEEP rtland ceme grout may c skin. Alway PPE). In ca ith water. If mptly.	N FRESH CHILDR ent. Freshly ause skin s wear app se of conta	CONCRE REN AWAY mixed cema injury. Avoid propriate Per act with eyes versists, seek	ent, mo prolor sonal or skii c media	ortar, iged Protective n, flush cal	This concrete is concrete. Stren the mix to exce- acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressal personal or proj The purchaser's within 3 days fr to investigate a price of the mai	produced with the gtd stare based on a dt his slump, exce iny decrease in com r tests must be har ised testing lab and concrete Company w y told to do so by c berty damage that r exceptions and cl om time of delivery, hy such claim. Sell erials against which	ASTM stand a 3" slump. E pt under the npressive str idled accordi vior certified viil not delive ustomer and may occur as aims shall be In such a c er's liability s any claims	ndition lard specif privers are authorizat ength and ing to ACI/ technician r any prod customer s a result of deemed ase, seller shall in no are made	IS incations for in not permitte ion of the cu any risk of I (ASTM spec luct beyond assumes al of any such c of any such c waived unlet shall be give event excee	ready mix and to add water to stomer and their oss as a result fications and any curb lines liability for any tirrective. ss made in writing an full opportunity d the purchase

Figure A-3. Reinforced Concrete, Test Nos. H42BR-1 and H42BR-2

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

Cuet	omer's	Signature
Ouai	onier 3	orginature

PLANT	TRUCK	DRIVER	CUSTON	MER PROJEC	T TAX	PONUMBER	DA	TE TIME	TICKET		
01	250	9342	6246	1		H42BR	6/2	5/19 7:20 A	M 1237834		
Customer UNL-MIDWEST ROADSIDE SAFETY				Delivery Address 4630 NW 36TH	ST		Special Instructions AIRPARK / NORTH OF OLD GOOD YEARHANGERS				
LOAD CUMULATIVE QUANTITY QUANTITY				PRODUCT	PRODUCT DESCRIPTION		UOM UNIT PRICE		EXTENDED PRICE		
8.00	8	1.00	8.00	14013000	SG4000		yd	\$118.50	\$948.00		
Water Added On Job At Customer's Request:			SLUMP 3.00 in	Notes:			TICKET SALES TICKET	SUBTOTAL FAX TOTAL	\$948.00 \$0.00 \$948.00		
							PREVIO GRAND	US TOTAL TOTAL	\$948.00		
					Terms & Conditions						
Contains Po concrete or contact with Equipment (thoroughly attention pro	CAUTIOI KEEP rtland ceme grout may c skin. Alway PPE). In ca vith water. I smptly.	N FRESH CHILDR ent. Freshly cause skin i vs wear app use of conta f irritation p	I CONCRE EN AWAY mixed ceme njury. Avoid propriate Per tot with eyes ersists, seek	ent, mortar, prolonged sonal Protective or skin, flush c medical	This concrete is produced with the ASTM standard specifications for ready mix concrete. Strengths are based on a 3" slump. Drivers are not permitted to add water to the mix to exceed this slump, except under the authorization of the customer and their acceptance of any decrease in compressive strength and any risk of loss as a result thereof. Cylinder tests must be handled according to ACI/ASTM specifications and drawn by a licensed testing lab and/or certified technician. Ready Mixed Concrete Company will not deliver any product beyond any curb lines unless expressly told to do so by customer and customer assumes all liability for any personal or property damage that may occur as a result of any such directive. The purchaser's exceptions and claims shall be deemed waived unless made in writing within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made.						

Figure A-4. Low-Strength Concrete Overlay, Test Nos. H42BR-1 and H42BR-2

Sold To: SIMCOT 1645 RE ST PAU	Mi	Mill Certification 04/04/2019 Ship To: SIMCOTE, 1645 RED ST PAUL, 1			MTR#:160551 Lot #:3600028332 ONE: NUCOR WA BOURBONNAIS, IL 60914 U 815-937-31 Fax: 815-939-555 INC ROCK RD WN 55119 US			#:160551-2 000283320 JCOR WAY L 60914 US 5-937-3131 5-939-5599			
Customer PO						Sales	Order #	36003216 - 2	1		
Product Group	Product Group Rebar							roduct #	# 2110230		
Grade	A615 Gr 60//	.615 Gr 60/AASHTO M31						Lot #	360000283320		
Size	#5	#5						Heat #	3600002833		
BOL.#	BOL-252680							Load #	160551		
Description	Rebar #5/16mm A615 Gr 60/AASHTO M31 40' 0" [480"] 4001- 8000 lbs						Custom	stomer Part #		1 2 2	
Production Date	03/05/2019							ped LBS	37550		
Product Country Of Origin	United States						Qty Shipped EA		900		
Original Item Description							Original Item Number				
I hereby certify that the mater	al described herein ha	s been manufact	ured in accorda	nce with the spe	clifications and	standards listed a	bove and that it	satisfies those	requirements.	J	
Melt Country of Orig	in : United Stat	les			the second s		M	elting Dat	e: 02/27/2019		
C (%) Mn (* 0.38 0.8	%) P (%) 8 0.013	S (%) 0.050	Si (%) 0.190	Ni (%) 0.22	Cr (%) 0.23	Mo (%) 0.07	Cu (%) 0.39	V (%) 0.002	Nb (%) 0.001	22	
Other Test Results Yield (PSI): 704	00		Tensile	(PSI): 1074	400		Average	Deformati	on Height (IN): 0	.044	

 Elongation in 8° (%) : 14.0
 Bend Test : Pass
 Weight Percent Variance (%) : -2.20

Comments:

All manufacturing processes of the steel materials in this product, including melting, have occurred within the United States. Products produced are weld free. Mercury, in any form, has not been used in the production or testing of this material.

mach Spring

Zachary Sprintz, Process Metallurgist

Page 1 of 1

Figure A-5. #5 Rebar, Test Nos. H42BR-1 and H42BR-2
SOLD DAYTON 2150B S TO: KANKAK	SUPERIOR TL RT 45-52 EE, IL 60901-		R Kankak	ee, inc	ī.	CERTIFIE Ship from	D MILL	TEST R	EPORT	F	age:	1	
SHIP DAYTON 2150B S TO: KANKAKI	SUPERIOR RT 45-52 EF, IL 60901-					MTR #: 00 Nucor Ste One Nuco Bourbonn 815-937-3	000076179 bel Kankak or Way ais, IL 609 3131) ee, Inc. 314		B.L. Nu Load Nu	Date: mber: mber:	23-Jun-201 503463 261786	5
Material Safety Dat	a Sheets are available at www.nucorbar.com o	r by contacting	your inside	sales repre	esentative.				011	THOM TEOT	NBM	IG-08 January 1, 2	012
LOT #	DESCRIPTION	YIELD	TENSILE	ELONG	DEND	WT%	0	Mn	P	S S	5 51 /		C.E.
HEAT#	1	P.S.I.	P.S.I.	% IN 8"	BEND	DEF	Ni	Cr	Mo	_v/	Cb	Sn	C.E.
PO# => KN1510304501 KN15103045	176736 Nucor Steel - Kankakee Inc 1" (1.0000) Round 45' 2" Gr60/A706	78,806 543MPa	105,880 730MPa	15.4%	OK	1%	.20 .15	1.21 .20	.019 .048	.036 .070 0	.26 .00	.30	.43
P0#=>	ASTM A615M-12 GR 60/A/06 CE .50 MAX/ AASHTO M31-07 Melted 05/23/15 Rolled 05/28/15 176736		ł										
KN1510304601 KN1 <u>5103046</u>	Nucor Steel - Kankakee Inc 1" (1.0000) Round 45' 2" Gr60/A706 ASTM A615M-12 GR 60/A706 CE .50 MAX/ AASHTO M31-07 Melted 05/23/15 Rolled 05/28/15 176736	79,162 546MPa	109,168 a 753MPa	17.9% I	OK	1%	.19 .14	1.24 .19	.019 .043	.012 .070 0	.24 .00	.31	.42
KN1510304901 KN15103049	Nucor Steel - Kankakee inc 1" (1.0000) Round 45' 2" Gr60/A708 ASTM A615M-12 GR 60/A706 CE .50 MAX/ AASHTO M31-07 Meited 05/24/15 Rolled 05/28/15	76,780 529MPa	103,771 a 715MPa	19.1%	ОК	.3%	.18 .16	1.21 .17	.015 .051	.035 .070 0	.24 .00	.29	.41
 inersby certify that the n the specifications and sti C) Weld repeir was not 	national described haven has been manufactured in accordance natards lised above and that it satisfies those requirements, parformed on the market al.	e with								124	af -1		·
3.) Mercury, Radium, or have not been used	Alpha source materials in any form in the oroduction of this material					QUALI	TY	Matt Luy	/mes	Mart	4	and the second	

Figure A-6. #8 Smooth Rebar, Test Nos. H42BR-1 and H42BR-2

Georg Fischer Harvel LLC 7777 Sloane Drive Little Rock AR, 72206 USA T +1 501 490 7777 F +1 501 490 7771 us.ps@georgfischer.com www.gfps.com Benjamin Levie T +1 501 490 7367 F +1 501 490 7367 F +1 501 490 7171 M +1 501 322 0712 Benjamin.levie@georgfischer.com

Little Rock, February 26, 2018

Dear Valued Customer,

This letter is to certify that PVC Schedule 40 & 80 Industrial Pipe manufactured by Georg Fischer Harvel LLC complies with the following.

ltem	Standard	Notes
Material used for pipe	ASTM D1784 "Standard Specification for Rigid Polyvinyl Chloride Compounds and Chlorinated Polyvinyl Chloride Compounds	PVC Type I, Grade I material. Meet cell class 12454
Pipe	ASTM D1785 "Standard Specification for Polyvinyl Chloride Plastic Pipe Schedules 40, 80, and 120	Sch 40 sizes 1-1/2" - 12" meet ASTM D2665
Any Pipe Bell	ASTM D2672 "Standard Specification for Joints for IPS PVC Pipe Using Solvent Cement"	Complies
Product marked NSF- pw or NSF 61	NSF 14, California AB 1953-NSF 61 Annex G (NSF/ANSI 372)	Listed by NSF (listing includes required ASTM product standards), exceeds California lead-free requirement
All product marked "Made in USA or "USA"	FTC requirements for unqualified marking "Made in USA" and Buy America Act	All Pipe Complies

Yours sincerely

Georg Fischer Piping Systems Ltd.

Blefen

Benjamin Levie Junior Product Manager

Figure A-7. PVC Pipe, Test Nos. H42BR-1 and H42BR-2

Certificate of Compliance

Sold To:	Purchase Order:	H42BR-1
UNL TRANSPORTATION/Midwest Roadside Safe	Job:	Item# c3
	Invoice Date:	05/10/2019

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

10 PCS 1-1/4" Slip 300 lb PVC Flat Pipe Cap SUPPLIED UNDER OUR TRACE NUMBER 120346463 AND UNDER PART NUMBER 0470592

6 PCS 1-1/4" Slip 300 lb PVC Flat Pipe Cap SUPPLIED UNDER OUR TRACE NUMBER 120346463 AND UNDER PART NUMBER 0470592

Ala

This is to certify that the above document is true and accurate to the best of my knowledge.

Fastenal Account Representative Signature

late Gemmell

Printed Name

5-16-19

Date

Please check current revision to avoid using obsolete copies.

This document was printed on 05/10/2019 and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Figure A-8. 1¹/₄-in. PVC Cap, Test Nos. H42BR-1 and H42BR-2

P.O. Box 21148 Tulsa, OK 74121 P: 800-879-8000 F: 800-879-7000

Date: 5/15/2019

Customer: UNIVERSITY OF NEBRASKA-LINCOLN

Customer PO: H42BR

Subject: Certificate of Conformance - HIT RE-500 V3 Adhesive

Quantity: 20 PCS / 2123404 / Injectable mortar HIT-RE 500 V3/500/1

To Whom it May Concern:

This is to certify that the HIT-RE 500 V3 provided on the above referenced order is a high-strength, slow cure two-part epoxy adhesive contained in two cartridges separating the resin from the hardener.

Additionally, this certifies that the product has been seismically and cracked concrete qualified as represented in ICC-ES report ESR- 3814.

Sincerely,

B. Mrtchell

B. Mitchell, Certification Specialist

HILTI, Inc. cocRE500 V3

Figure A-9. Epoxy Adhesive, Test Nos. H42BR-1 and H42BR-2

MasterFormat: 03 15 00

W. R. MEADOWS

FIBRE EXPANSION JOINT

Multi-Purpose, Expansion-Contraction Joint Filler

DESCRIPTION

FIBRE EXPANSION JOINT is composed of cellular fibers securely bonded together and uniformly saturated with asphalt to assure longevity. Wherever a cost-effective joint filler is required, FIBRE EXPANSION JOINT meets the need. Manufactured and marketed by W. R. MEADOWS since the early 1930s, FIBRE EXPANSION JOINT is backed by over 80 years of proven application experience. FIBRE EXPANSION JOINT is versatile, resilient, flexible, and non-extruding. When compressed to half of its original thickness, it will recover to a minimum of 70% of its original thickness. FIBRE EXPANSION JOINT will not deform, twist, or break with normal on-the-job handling. Breakage, waste and functional failure resulting from the use of inferior, foreign fiber materials can cost you time and dollars and can result in a substandard finished job, generating costly callbacks and rework expenses. However, the purchase and installation of FIBRE EXPANSION JOINT (a small segment of the total project's cost) contributes to both the final cost efficiency and functional success, far greater in proportion than its original cost.

Representative United States patents: USPNs 7,815,722; 8,057,638; 8,038,845; and D558,305. (See also <u>www.wrmeadows.com/patents</u> for further patent/intellectual property information.)

USES

FIBRE EXPANSION JOINT is ideal for use on highways, streets, airport runways, sidewalks, driveways, flatwork, and scores of commercial and industrial applications subject to pedestrian and vehicular traffic.

FEATURES/BENEFITS

- Provides the ideal product for the majority of all expansion/contraction joint requirements.
- Non-extruding ... versatile ... offers a minimum 70% recovery after compression.
- This tough, lightweight, easy-to-use, semi-rigid joint filler is available in strips and shapes fabricated to your requirements.
- Easy to cut ... dimensionally stable ... not sticky in summer or brittle in winter.
- Provides neat, finished joints requiring no trimming.
- Often copied ... but never equaled.
- Remains the standard of the industry today ... with over 80 years of proven and satisfactory performance.
- Can be punched for dowel bars and laminated to thicknesses greater than 1" (25.4 mm).

Conforms to or meets:	Thickness	Slab Widths	Standard Lengths	Weight per ft. ³
• AASHTO M 213 • ASTM D1751 • Corps of Engineers CRD-C 508 • FAA Specification Item P-610-2.7 •HH-F-341 F, Type 1	3/8°, 1/2° 3/4°, 1° (9.5, 12.7, 19.1, 25.4 mm)	36", 48" (91, 1.22 m)	10° (3.05 m) Also available: 5°,6°, 12° (15, 1.83, 3.66 m)	>19 lb.

CONTINUED ON REVERSE SIDE ...

W. R. MEADOWS, INC. P.O. Box 338 • HAMPSHIRE, IL 60140-0338 Phone: 847/214-2100 • Fax: 847/683-4544 1-800-342-5976 www.wrmeadows.com

HAMPSHIRE, IL /CARTERSVILLE, GA /YORK, PA FORT WORTH, TX /BENICIA, CA /POMONA, CA GOODYEAR, AZ / MILTON, ON /ST. ALBERT, AB

Figure A-10. Expansion Joint Filler, Test Nos. H42BR-1 and H42BR-2

APRIL 2018 (Supersedes March 2016)

Pecora 301 NS

Non-Sag Silicone Highway & Pavement Joint Sealant

I. BASIC USES

Sealing of transverse contraction and expansion joints, longitudinal, centerline and shoulder joints in Portland cement concrete (PCC) and asphalt.

2. MANUFACTURER

Pecora Corporation 165 Wambold Road Harleysville, PA 19438 Phone: 215-723-6051 800-523-6688 Fax: 215-721-0286 Website: www.pecora.com

3. PRODUCT DESCRIPTION

Pecora 301 NS Silicone Pavement Sealant is a one part, ultra low modulus product designed for sealing joints in concrete or asphalt pavement. It has excellent unprimed adhesion to concrete, metal and asphalt substrates, superior weather resistance and remains flexible at extremely low temperatures.

Pecora 301 NS Silicone Pavement Sealant is a non-sag product designed for applications on flat and sloped surfaces.

Advantages:

- Reduces pavement deterioration by restricting surface water penetration into underlying base and sub base layers.
- Convenient one component, neutral moisture curing system.
- Ultra low modulus resulting in high movement capability.
- Ease of application with standard automated bulk dispensing equipment such as Graco or Pyles.
- VOC compliant.
- Primerless adhesion to concrete and asphalt.
- Aids in elimination of non-compressables entering expansion joints.

Limitations:

1.0

Pecora 301 NS Silicone Pavement Sealant should not be used:

- for continuous water immersion conditions.
- * when ambient temperatures is below $40^{\circ}F$ (4°C) or above 120°F (49°C).
- flush with traffic surface. (Sealant must be recessed below surface.)
- for applications requiring support of hydrostatic pressures.
- with solvents for dilution purposes.
- with concrete that is cured less than 7 days.

1/2

Specification Data Sheet

- with newly applied asphalt until cooled to ambient temperature (usually 24-48 hours).
- as a structural component or in longitudinal joints greater than 3/4" in width that are intended to be used as a constant travelling surface.

38

2

PACKAGING

1-1/4

- 30 fl. oz. (887ml) cartridges
- •20 fl. oz. (592ml) sausages
- +4.5 gallon pails (17.0L)
- 50 gallon drum (188.9L) Color: pavement gray
- SEALANT COVERAGE CHART **RECESS GUIDELINES** Joint Width Sealant Depth Recess Backer Rod Minimum Joint Linear Diameter (in) (inches) Depth (in) (inches) (inches) ft./gal 1/8 3/8 1/4 1/4 3/4 308 3/8 1/4 1/8 1/2 7/8 205 1/2 1/4 1-1/4 154 1/8 5/8 3/4 3/8 1/4 7/8 -1/4 68

1/4

TABLE I: TYPICAL UNCURED PROPERTIES

Test Property	Value	Test Procedure
Cure Through (days)	7	0.5" cross section
Extrusion Rate (grams/min)	90-250	Mil-S-8802
Rheological Properties	non-sag	
Tack Free Time (mins)	60	ASTM C679
VOC Content (g/L)	50	ASTM D3960

TABLE 2: TYPICAL CURED PROPERTIES (After 7 days cure at 77°F (25°C), 50% RH)

Test Property	Value	Test Procedure
Adhesion, minimum elongation		ASTM D5329*
Asphalt	500	
Concrete	500	
Metal	500	
Elongation (%)	>1400	ASTMD412
Resilience (%)	>95	ASTM D5329
Stress @ 150% Elongation (psi) Hardness, maximum	22	ASTMD412
21 day cure (Shore 00) Joint Movement Capability	60	ASTM C661
+100/-50%; 10 cycles	Pass	ASTM C719

Since Pecora architectural sealants are applied to varied substrates under diverse environmental conditions and construction situations it is recommended that substrate testing be conducted prior to application.

Figure A-11. Expansion Joint Sealant, Test Nos. H42BR-1 and H42BR-2

Appendix B. Vehicle Center of Gravity Determination

Date:	7/17/2019	_ Test Name:_	H42BR-1	VIN:	KNAD	E22339649	5453
Year:	2009	Make:	Kia	Model:		Rio	
Vahiela CG	Dotormina	tion					
Venicie CO	Determina				Weight	Vertical	Vertical N
	Vehicle Eq	uipment			(lb)	CG (in.)	(lb-in.
-	+	Unballasted C	ar (Curb)		2498	22.762	56859.
v	+	Hub			19	10.625	201.87
	+	Brake activation	on cylinder &	frame	7	16.0	112.
3	+	Pneumatic tar	nk (Nitrogen)		22	14.75	324.
	+	Strobe/Brake	Battery		5	19.0	95.
	+	Brake Receive	er/Wires		6	33.25	199.
	+	CG Plate inclu	uding DAQ		13	17.125	222.62
	-	Battery			-32	26.5	-848.
	-	Oil			-12	9.5	-114.
	-	Interior			-90	32.0	-2880.
	-	Fuel			-16	15.5	-248.
	-	Coolant			-6	20.0	-120.
	-	Washer fluid			-4	17.0	-68.
	+	Water Ballast	(In Fuel Tank	:)	40	15.5	620.
		<u> </u>			0		
Vehicle Dime	+ Note: (+) is an	Onboard Supp dded equipment to Estin	olemental Bat vehicle, (-) is re nated Total V ions	tery emoved equi /eight (Ib)	pment from vehic	cle	54356.
Vehicle Dime Wheel Base: Roof Height:	+ Note: (+) is an ensions for 98.5 57.625	Onboard Supp dded equipment to Estin <u>C.G. Calculat</u> _in. _in.	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra	tery emoved equi /eight (lb) ck Width: ck Width:	2450 58.0 ir 57.375 ir	cle n. n.	54356.
Vehicle Dime Wheel Base: Roof Height:	+ Note: (+) is an ensions for 98.5 57.625	Onboard Supp dded equipment to Estin C.G. Calculat _in. _in.	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra	tery emoved equi /eight (lb) ck Width: ck Width:	2450 2450 58.0 ir 57.375 ir	cle n. n.	54356.
Vehicle Dime Wheel Base: Roof Height:	+ Note: (+) is an ensions for 98.5 57.625	Onboard Supp dded equipment to Estin <u>C.G. Calculat</u> in. _in. _1100C MAS	ions Front Tra Rear Tra	tery emoved equi /eight (lb) ck Width: ck Width:	2450 2450 58.0 ir 57.375 ir	n. n.	54356. Difference
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial V	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb)	Onboard Supp dded equipment to Estin C.G. Calculat _in. _in. _1100C MAS 2420 =	ilemental Bat vehicle, (-) is re nated Total V iions Front Tra Rear Tra H Targets ± 55	tery emoved equi /eight (lb) ck Width: ck Width:	2450 2450 58.0 ir 57.375 ir Test Inertial 2421	cle n. n.	54356. Differenc
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.)	Onboard Supp dded equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 =	iemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	tery emoved equi /eight (lb) ck Width: ck Width:	2450 2450 58.0 in 57.375 in Fest Inertial 2421 36.373	n.	54356. Differenc 1. -2.62
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.)	Onboard Supp dded equipment to Estin C.G. Calculat _in. _in. 1100C MAS 2420 = 39 = NA	iemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	tery emoved equi /eight (lb) ck Width: ck Width:	2450 2450 58.0 in 57.375 in Fest Inertial 2421 36.373 -0.87 22.186	n. n.	54356. Differenc 1. -2.62 N/
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) in.)	Onboard Supp dded equipment to Estin • C.G. Calculat _in. _in. 1100C MAS 2420 = 39 = NA NA NA	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	tery emoved equi /eight (lb) ck Width: ck Width:	58.0 ir 57.375 ir 2421 36.373 -0.87 22.186	cle n. n.	54356. Differenc 1. -2.62 N/ N/
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (Note: Long. CG	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) is measured fr is measured fr	C.G. Calculat in. in. in. 1100C MAS 2420 = 39 = NA NA NA rom front axle of to	est vehicle vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	tery emoved equi /eight (lb) ck Width: ck Width:	58.0 in 57.375 in 2421 36.373 -0.87 22.186	cle n. n.	54356. Differenc 1. -2.62 N/ N/
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (Note: Long. CG Note: Lateral CG	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) is measured f c measured fr	Onboard Supp dded equipment to Estin C.G. Calculat _in. _in. 1100C MAS 2420 = 39 = NA NA rom front axle of to om centerline - pos	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	tery emoved equi /eight (lb) ck Width: ck Width:	0 pment from vehi 2450 58.0 in 57.375 in 2421 36.373 -0.87 22.186 nger) side	n. n.	54356. Differenc 1. -2.62 N/ N/
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (Note: Long. CG Note: Lateral CG Note: Lateral CG	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) is measured f measured fr HT (lb)	Onboard Supp dded equipment to Estin C.G. Calculat _in. _in. 1100C MAS 2420 = 39 = NA NA rom front axle of to om centerline - pos	elemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4 est vehicle sitive to vehicle	tery emoved equi /eight (lb) ck Width: ck Width:	58.0 in 58.0 in 57.375 in 2421 36.373 -0.87 22.186 nger) side TEST INERT	n. n. n.	54356. Difference 1. -2.62 N/ N/ N/
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Vertical CG (in Note: Long. CG Note: Lateral CG	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) in.) is measured fr d measured fr HT (lb) Left	Cnboard Supp dded equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA NA rom front axle of to om centerline - pos Right	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4 est vehicle sitive to vehicle	tery emoved equi /eight (lb) ck Width: ck Width:	0 pment from vehi 2450 58.0 in 57.375 in 2421 36.373 -0.87 22.186 nger) side TEST INERT	n. n. IAL WEIGH	54356. Difference 1. -2.62 N/ N/ -1T (Ib) Right
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (Note: Long. CG Note: Lateral CG Note: Lateral CG	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) is measured fr d measured fr HT (lb) Left 803	Conboard Supp dded equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA rom front axle of to om centerline - pos Right 773	est vehicle sitive to vehicle	tery emoved equi /eight (lb) ck Width: ck Width:	0 pment from vehi 2450 58.0 in 57.375 ir 2421 36.373 -0.87 22.186 nger) side TEST INERT Front	IAL WEIGH	54356. Difference 1. -2.62 N/ N/ T. (Ib) Right 731
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (Note: Long. CG Note: Lateral CG Note: Lateral CG Note: Lateral CG	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) is measured f measured fr HT (lb) Left 803 458	Conboard Supp dded equipment to Estin C.G. Calculat _in. _in. 1100C MAS 2420 = 39 = NA NA rom front axle of to om centerline - pos Right 773 464	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	tery emoved equi veight (lb) ck Width: ck Width:	58.0 in 58.0 in 57.375 in 2421 36.373 -0.87 22.186 nger) side TEST INERT Front	Left 796 451	54356. Difference 1. -2.62 N/ N/ -7.62 N/ N/ -7.62 N/ N/ -2.62 N/ N/ -2.62 N/ N/ -2.62 N/
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (in Vertical CG (in Vertical CG (in Note: Long. CG Note: Lateral CG Note: Lateral CG Note: Lateral CG	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) is measured fr tr (lb) Left 803 458 458	Conboard Supp dded equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA rom front axle of to om centerline - pos Right 773 464	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	tery emoved equi /eight (lb) ck Width: ck Width:	0 pment from vehi 2450 58.0 in 57.375 in 2421 36.373 -0.87 22.186 nger) side TEST INERT Front Rear	Left 796 451	54356. Difference 1. -2.62 N/ N/ HT (Ib) Right 731 443 Ib
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial M Longitudinal C Lateral CG (in Vertical CG (Note: Long. CG Note: Lateral CG Note: Lateral CG CURB WEIGH Front Rear	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) is measured f measured fr 1T (lb) Left 803 458 1576 000	Conboard Supp dded equipment to Estin C.G. Calculat _in. _in. 1100C MAS 2420 = 39 = NA NA rom front axle of to om centerline - pos Right 	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	tery emoved equi /eight (lb) ck Width: ck Width:	0 pment from vehi 2450 58.0 in 57.375 in 2421 36.373 -0.87 22.186 nger) side TEST INERT Front Rear FRONT PEAD	IAL WEIGH	54356. Difference 1.0 -2.62 N/ N/ HT (Ib) Right 731 443 Ib
Vehicle Dime Wheel Base: Roof Height: Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (Note: Long. CG Note: Lateral CG Note: Lateral CG Front Rear FRONT REAR	+ Note: (+) is an ensions for 98.5 57.625 avity /eight (lb) CG (in.) n.) is measured f measured fr HT (lb) Left 803 458 1576 922	Conboard Supp dded equipment to Estin C.G. Calculat _in. _in. 1100C MAS 2420 = 39 = NA NA rom front axle of to om centerline - pos Right 773 464 lb lb	olemental Bat vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4 est vehicle sitive to vehicle	tery emoved equi veight (lb) ck Width: ck Width:	0 pment from vehi 2450 58.0 in 57.375 in 2421 36.373 -0.87 22.186 nger) side TEST INERT Front Rear FRONT REAR	Left 796 451 1527 894	54356. Difference 1.0 -2.62 N/ N/ HT (Ib) Right 731 443 Ib Ib

Figure B-1. Vehicle Mass Distribution, Test No. H42BR-1

			1142012	_ VIIN	1001		
Ye	ar: 2014	Make:	Dodge	Model:		RAM 1500	
Vehicle	CG Determinat	tion					
V CINICIC V				Weight	Vertical	Vertical M	
Vehicle E	quipment			(lb)	CG (in.)	(lb-in.)	
+	Unballasted	Truck (Curb)		5230	28.5	148858.2	
+	Hub			19	34.8	660.3	
+	Brake activ	ation cylinder &	& frame	7	27.5	192.5	
+	Pneumatic	tank (Nitrogen))	30	26.5	795	
+	Strobe/Brak	ce Battery		5	26	130	
+	Brake Rece	eiver/Wires		6	52.5	315	
+	CG Plate in	cluding DAQ		30	31.4	941.3	
-	Battery			-47	43	-2021	
-	Oil			-12	17	-204	
-	Interior			-88	36	-3168	
-	Fuel			-160	17	-2720	
-	Coolant			-13	31	-403	
-	Washer flui	d		-4	35	-140	
+	Water Balla	ast (In Fuel Tar	nk)			0	
+	Onboard St	upplemental Ba	attery	13	26	338	
-	Tailpipe			-13	22	-286	
		***************************************				~	
Note: (+) is a	added equipment to	o vehicle, (-) is re Estimated Tota Vertical CG	moved equipme al Weight (lb) Location (in.)	nt from vehicl 5003 28.6405	e	0 143288.2	
Note: (+) is a	added equipment to	e vehicle, (-) is re Estimated Tota Vertical CG <u>C.G. Calcula</u>	moved equipme al Weight (lb) Location (in.) tions	5003 28.6405	e	0 143288.2	
Note: (+) is a Vehicle E Wheel Ba	added equipment to Dimensions for Ise: <u>140.125</u>	e vehicle, (-) is re Estimated Tota Vertical CG <u>C.G. Calcula</u> in.	moved equipme al Weight (lb) Location (in.) tions Front Tra	nt from vehicl 5003 28.6405	68.375	0 143288.2	
Note: (+) is a Vehicle E Wheel Ba	added equipment to Dimensions for se: <u>140.125</u>	Estimated Tota Estimated Tota Vertical CG <u>C.G. Calcula</u> in.	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra	t from vehicl 5003 28.6405 ack Width: ack Width:	e 68.375 67.875	0 143288.2 in. in.	
Note: (+) is a Vehicle E Wheel Ba	added equipment to Dimensions for Ise: <u>140.125</u>	Estimated Tota Estimated Tota Vertical CG <u>C.G. Calcula</u> in.	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra	nt from vehicl 5003 28.6405 ack Width: ack Width:	e 68.375 67.875	0 143288.2 in. in.	
Note: (+) is a Vehicle I Wheel Ba	added equipment to Dimensions for Ise: <u>140.125</u>	Estimated Tota Vertical CG C.G. Calcular in.	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra	nt from vehicl 5003 28.6405 ack Width: _ ack Width: _	e 68.375 67.875	0 143288.2 in. in.	Difference
Note: (+) is a <u>Vehicle E</u> Wheel Ba <u>Center of</u> Test Inerti	added equipment to <u>Dimensions for</u> se: <u>140.125</u> <u>Gravity</u> al Weight (lb)	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra SH Targets + 110	nt from vehicl 5003 28.6405 ack Width: _ ack Width: _ T	e 68.375 67.875 est Inertial	0 143288.2 in. in.	Difference
Note: (+) is a <u>Vehicle E</u> Wheel Ba <u>Center of</u> Test Inerti	added equipment to Dimensions for se: 140.125 Gravity al Weight (Ib) pal CG (in)	Estimated Tota Vertical CG C.G. Calcula in. 2270P MAS 5000 63	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 + 4	nt from vehicl 5003 28.6405 ack Width: ack Width: T	68.375 67.875 est Inertial 5007 60 169513	0 143288.2	Difference 7.0 -2 8304
Note: (+) is a <u>Vehicle E</u> Wheel Ba <u>Center of</u> Test Inerti Longitudin Lateral CC	added equipment to Dimensions for se: 140.125 Gravity al Weight (lb) hal CG (in.) Gravity	D vehicle, (-) is re Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4	nt from vehicl 5003 28.6405 ack Width: _	68.375 67.875 est Inertial 5007 60.169513 -0 115651	0 143288.2	Difference 7.1 -2.8304
Note: (+) is a Vehicle L Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C	added equipment to Dimensions for se: 140.125 ^c Gravity al Weight (lb) hal CG (in.) G (in.)	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4	nt from vehicl 5003 28.6405 ack Width: ack Width:	68.375 67.875 67.875 69.109513 -0.115651 28.64	0 143288.2	Difference 7.1 -2.8304 N/ 0.6404
Note: (+) is a Vehicle E Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C	added equipment to Dimensions for se: 140.125 Gravity al Weight (lb) hal CG (in.) G (in.) CG is measured for	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4	nt from vehicl 5003 28.6405 ack Width: ack Width:	68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64	0 143288.2	Difference 7.1 -2.8304 N/ 0.6404
Note: (+) is a Vehicle I Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera	added equipment to Dimensions for se: 140.125 Gravity al Weight (lb) hal CG (in.) G (in.) CG is measured from the second formula of the second form	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of t	moved equipme al Weight (Ib) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4	nt from vehicl 5003 28.6405 ack Width: ack Width: T	e 68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64	0 143288.2	Difference 7. -2.8304 N/ 0.6404
Note: (+) is a Vehicle E Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera	added equipment to Dimensions for se: 140.125 Gravity al Weight (Ib) hal CG (in.) G (in.) CG is measured from al CG measured from	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to om centerline - po	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: ack Width: T right (passen	e 68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64 ger) side	0 143288.2	Difference 7. -2.8304 N/ 0.6404
Note: (+) is a Vehicle I Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera CURB WE	added equipment to Dimensions for ase: 140.125 Gravity al Weight (Ib) hal CG (in.) G (in.) CG is measured from al CG measured from EIGHT (Ib.)	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: ack Width: T	e 68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64 ger) side TEST INER	0 143288.2	Difference 7.0 -2.8304 N/ 0.6404
Note: (+) is a Vehicle I Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera CURB WE	added equipment to Dimensions for Ise: 140.125 Gravity al Weight (Ib) hal CG (in.) G (in.) CG is measured from al CG measured from EIGHT (Ib.)	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: ack Width: T right (passen	e 68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64 ger) side TEST INER	0 143288.2 in. in. in. TIAL WEIGI	Difference 7.0 -2.8304 N/ 0.6404
Note: (+) is a Vehicle I Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera CURB WE	Added equipment to Dimensions for Ise: 140.125 Gravity al Weight (Ib) al CG (in.) G (in.) CG is measured from al CG measured from EIGHT (Ib.) Left	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra 6H Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: ack Width: T right (passen	e 68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64 ger) side TEST INER	0 143288.2 in. in. in. TIAL WEIGI	Difference 7.(-2.83049 N/ 0.64049
Note: (+) is a Vehicle I Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera CURB WE Front	Added equipment to Dimensions for Ise: 140.125 Gravity al Weight (Ib) hal CG (in.) G (in.) CG is measured from CG measured from CG measured from EIGHT (Ib.) Left 1491	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po Right 1462	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra 6H Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: ack Width: T right (passen	e 68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64 ger) side TEST INER [*] Front	0 143288.2 in. in. in. TIAL WEIGI Left 1427	Difference 7.1 -2.8304 N/ 0.6404 -TT (Ib.) Right 1430
Note: (+) is a Vehicle E Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera CURB WE Front Rear	added equipment to Dimensions for se: 140.125 Gravity al Weight (lb) hal CG (in.) G (in.) CG is measured from al CG measured from EIGHT (lb.) Left 1491 1159	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po Right 1462 1118	moved equipme al Weight (Ib) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: _ ack Width: _ right (passen	e 68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64 ger) side FEST INER Front Rear	0 143288.2 in. in. in. TIAL WEIG Left 1427 1085	Difference 7.0 -2.83049 N/ 0.64049 -TT (Ib.) Right 1430 1065
Note: (+) is a Vehicle E Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera CURB WE Front Rear	added equipment to Dimensions for se: 140.125 Gravity al Weight (lb) hal CG (in.) G (in.) CG is measured from EIGHT (lb.) Left 1491 1159	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to om centerline - po Right 1462 1118	moved equipme al Weight (lb) Location (in.) fions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: ack Width: T right (passen	e 68.375 67.875 est Inertial 5007 60.169513 -0.115651 28.64 ger) side TEST INER' Front Rear	0 143288.2 in. in. TIAL WEIGI Left 1427 1085	Difference 7.0 -2.83049 N/ 0.64049 HT (Ib.) HT (Ib.) Right 1430 1065
Note: (+) is a Vehicle I Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera CURB WE Front Rear FRONT	added equipment to Dimensions for se: 140.125 Gravity al Weight (lb) hal CG (in.) G (in.) CG is measured from EIGHT (lb.) Left 1491 1159 2953	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to om centerline - po Right 1462 1118 lb	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: ack Width: T right (passen	68.375 67.875 67.875 67.875 60.169513 -0.115651 28.64 ger) side TEST INER Front Rear FRONT	0 143288.2 in. in. TIAL WEIGI Left 1427 1085 2857	Difference 7.0 -2.83049 N/ 0.64049 -TT (Ib.) Right 1430 1065 Ib
Note: (+) is a Vehicle I Wheel Ba Center of Test Inerti Longitudin Lateral CC Vertical C Note: Long. Note: Latera CURB WE Front Rear FRONT REAR	added equipment to Dimensions for se: 140.125 Gravity al Weight (lb) hal CG (in.) G (in.) CG is measured from EIGHT (lb.) Left 1491 1159 2953 2277	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po Right 1462 1118 lb	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra SH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	nt from vehicl 5003 28.6405 ack Width: ack Width: T right (passen	68.375 67.875 67.875 est Inertial 5007 60.169513 -0.115651 28.64 ger) side TEST INER Front Rear FRONT REAR	0 143288.2 in. in. in. TIAL WEIGI Left 1427 1085 2857 2150	Difference 7.0 -2.83049 N/ 0.64049 -1T (Ib.) Right 1430 1065 Ib Ib

Figure B-2. Vehicle Mass Distribution, Test No. H42BR-2

Appendix C. Vehicle Deformation Records

Date: Year:	7/17/ 20	2019 109			Test Name: Make:	H42 K	BR-1 (ia			VIN: Model:	KNAI	DE2233964 Rio	95453
				I	VEI PASSENG	HICLE DE ER SIDE	FORMATI	ION AN - SET	1				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A (in)	ΔZ^{A}	Total ∆ (in.)	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	()	(in.)	()	()	()	()	()	()	Crush ^C
	1	61.7958	13.5897	5.7945	60.6165	11.5917	7.2368	1.1793	1.9980	-1.4423	2.7318	1.1793	X
	2	62.6287	9.9919	7.1379	61.9279	8.1928	8.4189	0.7008	1.7991	-1.2810	2.3171	0.7008	<u> </u>
. =	3	62.2556	5.7924	7.2347	61.3829	4.0483	8.2203	0.8727	1.7441	-0.9856	2.1852	0.8727	<u> </u>
Z ₩ Ω	4	61.4670	2.4058	1.5755	60.4243	0.7148	8.1137	1.0427	1.6910	-0.5382	2.0582	1.0427	
2 Z Z	5	60.9859	-2.4247	7.7941	60.6236	-3.8940	8.8508	0.3623	-1.4693	-1.0567	1.8457	0.3623	X
ШU	6	59.8517	14.2192	8.8641	59.4095	12.4698	10.5952	0.4422	1.7494	-1.7311	2.5005	0.4422	<u> </u>
Ψ¥		59.6319	10.0769	8.8692	58.9108	8.3079	10.2596	0.7211	1.7690	-1.3904	2.3627	0.7211	<u> </u>
-	8	59.4369	5.5934	8.8249	58.6258	3.9358	9.8493	0.8111	1.65/6	-1.0244	2.1107	0.8111	<u> </u>
	9	59.4965	2.4143	8.7013	58.4720	0.6901	9.2859	1.0245	1.7242	-0.5846	2.0891	1.0245	X
	10	59.1234	-1.9772	8.8692	58.6883	-3.4618	9.9798	0.4351	-1.4846	-1.1106	1.9044	0.4351	X
	11	55.0882	15.9474	9.6383	54.6595	14.3914	11.2482	0.4287	1.5560	-1.6099	2.2796	-1.6099	<u> </u>
	12	54.5128	11.0816	9.6260	53.8570	9.4140	11.1203	0.6558	1.6676	-1.4943	2.3332	-1.4943	
	13	54.1974	7.2332	9.5363	53.3911	5.6029	10.7759	0.8063	1.6303	-1.2396	2.2010	-1.2396	Z
	14	53.5624	3.2654	9.5523	52.5603	1.8491	10.1663	1.0021	1.4163	-0.6140	1.8404	-0.6140	Z
	15	53.0199	-0.8184	9.6924	52.1590	-0.9003	7.5444	0.8609	-0.0819	2.1480	2.3155	2.1480	Z
	16	50.5777	16.0480	9.7724	50.1478	14.6039	11.2821	0.4299	1.4441	-1.5097	2.1329	-1.5097	Z
	17	48.9579	9.7142	9.5022	48.3217	8.3770	11.0120	0.6362	1.3372	-1.5098	2.1148	-1.5098	Z
z	18	48.6666	5.6927	9.4636	47.7837	4.3555	10.7555	0.8829	1.3372	-1.2919	2.0583	-1.2919	Z
ΡA	19	48.2162	2.2431	9.9366	47.3274	1.9099	8.9549	0.8888	0.3332	0.9817	1.3655	0.9817	<u>Z</u>
ЯÑ	20	48.3041	-0.5139	10.1062	48.1029	-0.3680	9.9212	0.2012	0.1459	0.1850	0.3098	0.1850	Z
õ,	21	44.5329	16.0915	9.7191	44.0847	14.9014	11.2647	0.4482	1.1901	-1.5456	2.0015	-1.5456	<u> </u>
L L	22	44.2225	10.1533	9.4321	43.6116	9.0931	10.9914	0.6109	1.0602	-1.5593	1.9821	-1.5593	Z
	23	44.0445	5.8472	9.3984	43.3135	4.7802	10.7594	0.7310	1.0670	-1.3610	1.8775	-1.3610	∣ Z
	24	43.6022	1.5281	9.9157	43.2205	1.3083	10.6479	0.3817	0.2198	-0.7322	0.8545	-0.7322	Z
	25	43.0968	-1.8415	9.6242	43.1003	-1.9984	10.1501	-0.0035	-0.1569	-0.5259	0.5488	-0.5259	
	26	39.5506	16.4069	9.3247	39.0433	15.4303	11.1081	0.5073	0.9766	-1.7834	2.0956	-1.7834	
	27	39.3375	9.9036	9.3272	38.9081	9.1686	10.8464	0.4294	0.7350	-1.5192	1.7414	-1.5192	<u> </u>
	28	39.3867	5.4744	9.2907	38.6346	4.7875	10.5193	0.7521	0.6869	-1.2286	1.5959	-1.2286	
	29	39.3525	1.8697	9.3549	38.9870	1.3729	10.1590	0.3655	0.4968	-0.8041	1.0134	-0.8041	Z
	30	39.1263	-1.4344	9.1121	39.0059	-1.9225	10.1365	0.1204	-0.4881	-1.0244	1.1411	-1.0244	Z

nt compartment, negative values d enote deforma compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-1. Floor Pan Deformation Data - Set 1, Test No. H42BR-1

Date: Year:	7/17/ 20	2019 09			Test Name: Make:	H42 K	BR-1 íia			VIN: Model:	KNAI	DE2233964 Rio	95453
				I	VEH PASSENG	HICLE DE ER SIDE	FORMATI	ION AN - SET	2				
]		Pretest	Pretest	Pretest	Deetheet V	Posttest	Deetteet 7	۸XA	۸XA	• 7 4		O B	Direction
		Х	Y	Z	Posttest X	Y	Posttest Z		ΔY ^{AA}		Total ∆	Crusn-	for
	POINT	(in.)	(in.)	(in.)	(111.)	(in.)	(11.)	(m.)	(m.)	(m.)	(11.)	(m.)	Crush ^C
	1	61.9977	30.9960	4.9728	61.1279	28.6725	3.2888	0.8698	2.3235	1.6840	2.9985	1.8954	X, Z
	2	62.8458	27.4224	6.3700	62.5168	25.3058	4.4744	0.3290	2.1166	1.8956	2.8603	1.9239	X, Z
. –	3	62.4781	23.2249	6.5412	61.9599	21.1583	4.4301	0.5182	2.0666	2.1111	2.9994	2.1738	X, Z
źĘ,	4	61.6961	19.8438	6.9462	60.9967	17.8249	4.4826	0.6994	2.0189	2.4636	3.2610	2.5610	X, Z
₹≤N'	5	61.2221	15.0172	7.2510	61.2460	13.2382	5.3340	-0.0239	1.7790	1.9170	2.6154	1.9170	Z
лЩХ	6	60.0789	31.6758	8.0475	60.1516	29.6468	6.6954	-0.0727	2.0290	1.3521	2.4393	1.3521	Z
드뚝	7	59.8637	27.5341	8.1249	59.6316	25.4780	6.5117	0.2321	2.0561	1.6132	2.6237	1.6298	X, Z
\$	8	59.6732	23.0502	8.1584	59.3198	21.0966	6.2450	0.3534	1.9536	1.9134	2.7573	1.9458	X, Z
	9	59.7352	19.8695	8.0884	59.1285	17.8367	5.7849	0.6067	2.0328	2.3035	3.1315	2.3821	X, Z
	10	59.3683	15.4812	8.3340	59.3917	13.7055	6.5792	-0.0234	1.7757	1.7548	2.4966	1.7548	Z
	11	55.3202	33.4124	8.8325	55.4567	31.5947	7.6149	-0.1365	1.8177	1.2176	2.1921	1.2176	Z
	12	54.7500	28.5466	8.9078	54.6478	26.6170	7.6819	0.1022	1.9296	1.2259	2.2884	1.2259	Z
	13	54.4381	24.6970	8.8863	54.1600	22.7987	7.4775	0.2781	1.8983	1.4088	2.3803	1.4088	Z
	14	53.8075	20.7294	8.9750	53.2901	19.0307	7.0316	0.5174	1.6987	1.9434	2.6325	1.9434	Z
	15	53.2707	16.6481	9.1891	52.7120	16.2094	4.5214	0.5587	0.4387	4.6677	4.7214	4.6677	Z
	16	50.8109	33.5111	9.0031	50.9578	31.8162	7.9490	-0.1469	1.6949	1.0541	2.0013	1.0541	Z
	17	49.1957	27.1720	8.8543	49.1181	25.5875	7.9789	0.0776	1.5845	0.8754	1.8119	0.8754	Z
-	18	48.9086	23.1502	8.8866	48.5643	21.5614	7.8728	0.3443	1.5888	1.0138	1.9159	1.0138	Z
AA A	19	48.4659	19.7087	9.4219	47.9870	19.0669	6.1769	0.4789	0.6418	3.2450	3.3423	3.2450	Z
2	20	48.5582	16.9551	9.6375	48.8265	16.8157	7.1521	-0.2683	0.1394	2.4854	2.5037	2.4854	Z
<u></u>	21	44.7659	33.5480	9.0003	44.9074	32.1241	8.3348	-0.1415	1.4239	0.6655	1.5781	0.6655	Z
Ľ	22	44.4595	27.6055	8.8168	44.4174	26.3113	8.2579	0.0421	1.2942	0.5589	1.4104	0.5589	Z
-	23	44.2859	23.2992	8.8579	44.1046	21.9941	8.1682	0.1813	1.3051	0.6897	1.4872	0.6897	Z
	24	43.8527	18.9892	9.4522	44.0046	18.5206	8.1611	-0.1519	0.4686	1.2911	1.3819	1.2911	Z
	25	43.3485	15.6146	9.2223	43.8512	15.2015	7.7659	-0.5027	0.4131	1.4564	1.5951	1.4564	Z
	26	39.7800	33.8519	8.6428	39.8669	32.6575	8.5059	-0.0869	1.1944	0.1369	1.2054	0.1369	Z
[27	39.5740	27.3494	8.7576	39.7149	26.3912	8.4304	-0.1409	0.9582	0.3272	1.0223	0.3272	Z
[28	39.6278	22.9202	8.7959	39.4202	22.0032	8.2462	0.2076	0.9170	0.5497	1.0891	0.5497	Z
	29	39.5981	19.3171	8.9217	39.7477	18.5791	7.9590	-0.1496	0.7380	0.9627	1.2222	0.9627	Z
	30	39.3734	16.0092	8.7370	39.7653	15.2844	8.0281	-0.3919	0.7248	0.7089	1.0869	0.7089	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-2. Floor Pan Deformation Data - Set 2, Test No. H42BR-1

Year:	7/17/	2019 09			Test Name: Make:	H42 K	BR-1 Cia			VIN: Model:	KNAI	DE2233964 Rio	95453
					········					modoli		140	
					VEH	HICLE DE	FORMATI	ON					
				PAS	SENGER	SIDE INT	ERIOR CI	RUSH - S	ET 1				
[Pretest	Pretest	Pretest	D <i>U U V</i>	Posttest	D	• • •	• • · A	• - A	T () A	a i B	Directio
		Х	Y	Z	Posttest X	Y	Posttest Z	ΔX	ΔY ^Δ	ΔZ^{γ}	lotal ∆	Crush	for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crust
	1	50.9562	16.3840	-18.3523	51.0410	16.1561	-16.9856	-0.0848	0.2279	1.3667	1.3882	1.3882	X, Y,
Ñ	2	50.7907	3.3098	-19.3205	51.1202	3.1871	-18.3204	-0.3295	0.1227	1.0001	1.0601	1.0601	X, Y,
SH SH	3	49.8046	-6.9965	-19.5700	50.3034	-7.1984	-18.8265	-0.4988	-0.2019	0.7435	0.9178	0.9178	X,Y,
Ϋ́ς Ι	4	49.5760	16.6916	-6.7837	49.0328	15.8651	-5.5408	0.5432	0.8265	1.2429	1.5884	1.5884	XY.
- ~	5	47.2846	-0.0642	-7.8813	47.5086	-0.6589	-7.0368	-0.2240	-0.5947	0.8445	1.0569	1.0569	XY.
	6	44.3363	-8.2675	-11.9481	44.7782	-8.7018	-11.3397	-0.4419	-0.4343	0.6084	0.8684	0.8684	XY.
	7	54 8582	18 2287	1 3073	54 3411	16 / 112	3 0359	0.5171	1 8175	1.6386	2 5011	1 8175	V
ц Щ Д Щ С	2 2	54 8810	18 0810	5 310/	54 5125	17 1720	7.0507	0.3604	1.0173	1 7313	2.5011	1 8000	
	0	59 1690	18 5611	5.0440	58 7/1/	16 3327	6 6949	0.3034	2 2284	1.6509	2.3311	2 2284	V
-	9	47,5707	10.0011	3.0440	47.0700	10.3327	0.0949	0.4270	2.2204	1.0309	2.0001	2.2204	I V
	10	41.5/0/	19.9430	-14.9619	47.0739	20.1232	-13.31/4	0.4968	-0.1802	1.6445	1.7273	-0.1802	+ Y
ō 🗠	11	34.3767	20.6770	-15.4018	34.1715	22.9126	-13.9647	0.2052	-2.2356	1.4371	2.6656	-2.2356	Y
388	12	23.6252	20.9175	-16.3909	23.5806	23.9024	-15.1491	0.0446	-2.9849	1.2418	3.2332	-2.9849	Y
ξŭ -	13	43.8790	20.1425	1.5995	43.1402	20.2825	3.1/11	0.7388	-0.1400	1.5/16	1.7422	-0.1400	Y
ž į	14	34.9090	20.7618	0.5537	34.2932	21.7560	1.9630	0.6158	-0.9942	1.4093	1.8313	-0.9942	Y
-	15	28.7953	20.6420	1.2255	28.3542	21.7622	2.5436	0.4411	-1.1202	1.3181	1.7852	-1.1202	Y
	16	30.3517	8.9799	-36.7732	31.1938	10.3123	-36.3043	-0.8421	-1.3324	0.4689	1.6445	0.4689	Z
	17	31.7368	4.0791	-36.8548	32.6371	5.4903	-36.3819	-0.9003	-1.4112	0.4729	1.7394	0.4729	Z
	18	31.7679	0.2317	-37.0611	32.6990	1.6204	-36.6276	-0.9311	-1.3887	0.4335	1.7272	0.4335	Z
	19	30.1467	-2.8344	-37.5478	30.9721	-1.4479	-36.8150	-0.8254	1.3865	0.7328	1.7722	0.7328	Z
	20	30.0267	-7.3079	-37.6309	30.8490	-5.9468	-36.7065	-0.8223	1.3611	0.9244	1.8394	0.9244	Z
λÎ	21	19.4021	8.8466	-38.3459	20.1842	10.2852	-37.6657	-0.7821	-1.4386	0.6802	1.7731	0.6802	Z
<u>v</u>	22	18.9072	3.6434	-38.7819	19.7276	4.9918	-37.1994	-0.8204	-1.3484	1.5825	2.2351	1.5825	Z
Ч	23	18.7702	-0.4042	-39.0000	19.5026	0.9523	-36.8186	-0.7324	1.3565	2.1814	2.6711	2.1814	Z
ŏ	24	18.5617	-3.4604	-39.1141	19.3327	-2.1200	-36.8862	-0.7710	1.3404	2.2279	2.7119	2.2279	Z
Ω.	25	18.7483	-5.3630	-39.1347	19.5395	-3.9441	-36.9036	-0.7912	1.4189	2.2311	2.7599	2.2311	Z
	26	9.3849	10.1594	-38.7244	10.2815	11.6186	-38.0466	-0.8966	-1.4592	0.6778	1.8419	0.6778	Z
	27	9.5977	6.4009	-39.0525	10.5072	7.8692	-38.0974	-0.9095	-1.4683	0.9551	1.9737	0.9551	Z
	28	9.4495	2.8199	-39.2964	10.3887	4.3074	-38.3213	-0.9392	-1.4875	0.9751	2.0114	0.9751	Z
	29	9.5529	-1.2259	-39.4777	10.4879	0.1872	-38,7096	-0.9350	1.4131	0.7681	1.8604	0.7681	Z
	30	9.6725	-3.5731	-39.5440	10.6473	-2.1188	-38,9127	-0.9748	1.4543	0.6313	1.8611	0.6313	Z
	31	54 9458	17 3020	-20 8454	55 0938	17 1709	-19 3405	-0 1480	0 1311	1 5049	1 5178	1 5106	Y
	32	50 4944	16 5942	-24 0423	50.9185	16.8289	-22 9585	-0 4241	-0 2347	1.0838	1 1873	1.0838	7
	33	47 5961	16 0202	-26 11/1	48 2000	16 5865	-25 3565	-0 6135	-0 5573	0 7576	1 1220	0 7576	7
, × ,	34	4/ 13/0	15 /2/1	-28 0085	45 0307	16 1857	-27 5207	-0.0133	-0.7616	0.5688	1 3068	0.5689	7
× Mar	35	44.1340	1/ 8001	-20.0900	43.0307	15 6252	-20 6/00	-0.0907	-0.7010	0.3000	1 3000	0.3000	7
. –	36	37 3/29	14 2046	-31 6864	38 2800	15 3384	-23.0430	-0.3031	-1 1338	0.3483	1 5117	0.3483	7
	24	54.0450	17 2020	20.0454	55.2000	17 1700	10.2405	0.1400	0.1014	1 5040	1 5170	0.0403	
~ ~	31	50,4044	10.5020	-20.8454	50.0405	16.0000	-19.3405	-0.1480	0.1311	1.5049	0,101	0.1311	+ Y
ξĽ	<u></u>	JU.4944	16.0000	-24.0423	10.9185	10.0209	-22.9585	-0.4241	-0.2347	1.0030	1.10/3	-0.2347	+ Y
nLL sral	33	47.0904	10.0292	-20.1141	40.2099	10.0000	-20.3000	-0.00135	-0.55/3	0.7570	1.1229	-0.00/3	+ Y
A-F .ate		44.1340	15.4241	-28.0985	45.0307	10.1857	-21.5297	-0.8967	-0.7616	0.0005	1.3068	-0.7616	+ Y
`	35	40.5295	14.8091	-29.9895	41.4946	15.6252	-29.6490	-0.9651	-0.8161	0.3405	1.3090	-0.8161	+ Y
	36	37.3428	14.2046	-31.6864	38.2800	15.3384	-31.3381	-0.9372	-1.1338	0.3483	1.511/	-1.1338	Y
ξĘΩ.	37	16.3689	15.3044	-32.4358	17.1346	16.5299	-31.9053	-0.7657	-1.2255	0.5305	1.5393	0.5305	<u> </u>
<u>, , j ř</u>	38	14.4566	18.2690	-24.6973	15.0585	19.1259	-24.0554	-0.6019	-0.8569	0.6419	1.2282	0.6419	Z
- <u>a</u> -	39	19.1184	19.4436	-17.4944	19.5431	19.9372	-16.6947	-0.4247	-0.4936	0.7997	1.0313	0.7997	<u> </u>
∩ ≥ ⊂	40	15.6345	19.6272	-13.3379	15.9720	19.9834	-12.7069	-0.3375	-0.3562	0.6310	0.7993	0.6310	Z
R 2 R	37	16.3689	15.3044	-32.4358	17.1346	16.5299	-31.9053	-0.7657	-1.2255	0.5305	1.5393	-1.2255	Y
a L	38	14.4566	18.2690	-24.6973	15.0585	19.1259	-24.0554	-0.6019	-0.8569	0.6419	1.2282	-0.8569	Y
ter	39	19.1184	19.4436	-17.4944	19.5431	19.9372	-16.6947	-0.4247	-0.4936	0.7997	1.0313	-0.4936	Y
Ľю́	40	15.6345	19.6272	-13.3379	15,9720	19.9834	-12,7069	-0.3375	-0.3562	0.6310	0 7993	-0.3562	Y

^ Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupa compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-3. Interior Crush Deformation Data – Set 1, Test No. H42BR-1

Date:	7/17/	2019		-	Test Name:	H42	BR-1			VIN:	KNA	DE2233964	95453
Year:	20	009			Make:	K	lia			Model:		Rio	
				D 40					FT 0				
				PAS	SENGER	SIDE IN I	ERIOR CI	KUSH - S	EIZ				
Ī		Pretest	Pretest	Pretest		Posttest							Directio
		X	Y	Z	Posttest X	Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ^{A}	Total ∆	Crush ^B	for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	1	51.0107	33.4114	-19.0058	49.9902	32.7732	-20.2958	1.0205	0.6382	-1.2900	1.7643	1.7643	X, Y,
– N	2	50.8495	20.3248	-19.7900	49.9826	19.7696	-21.2390	0.8669	0.5552	-1.4490	1.7775	1.7775	X, Y,
N. Y.	3	49.8704	10.0153	-19.8885	49.1352	9.3751	-21.3750	0.7352	0.6402	-1.4865	1.7777	1.7777	X, Y,
Δ× [4	49.7121	33.8795	-7.4331	48.7409	32.8325	-8.7400	0.9712	1.0470	-1.3069	1.9358	1.9358	X, Y,
	5	47.4273	17.1084	-8.2803	47.1231	16.2738	-9.6305	0.3042	0.8346	-1.3502	1.6162	1.6162	X, Y,
	6	44.4573	8.8468	-12.2110	44.1157	8.1095	-13.4983	0.3416	0.7373	-1.2873	1.5223	1.5223	X, Y,
шШ	7	55.0508	35.5348	0.6879	54.6031	33.6278	-0.5522	0.4477	1.9070	-1.2401	2.3184	1.9070	Y
ΒÄΣ	8	55.1017	36.3428	4.5988	55.0387	34.5104	3.4177	0.0630	1.8324	-1.1811	2.1810	1.8324	Y
0 <i>1</i> 4	9	59.3870	35.9214	4.2990	59.2350	33.6518	2.8095	0.1520	2.2696	-1.4895	2.7190	2.2696	Y
ш	10	47.6462	37.0148	-15.6416	46.2732	36.8570	-16.4961	1.3730	0.1578	-0.8545	1.6249	0.1578	Y
	11	34.4489	37.7327	-15.9982	33.3560	39.6500	-16.3761	1.0929	-1.9173	-0.3779	2.2390	-1.9173	Y
ЦРС	12	23.6904	37.9512	-16.9142	22.7099	40.6237	-16.8895	0.9805	-2.6725	0.0247	2.8468	-2.6725	Y
A D C L	13	44.0717	37.4430	0.9412	43.4351	37.5227	0.2033	0.6366	-0.0797	-0.7379	0.9778	-0.0797	Y
- ⊿⊾	14	35.0940	38.0409	-0.0495	34.5275	38.9759	-0.4633	0.5665	-0.9350	-0.4138	1.1689	-0.9350	Y
=	15	28.9853	37.9259	0.6672	28.6397	39.0108	0.5070	0.3456	-1.0849	-0.1602	1.1498	-1.0849	Y
	16	30.2826	25.7350	-37.1750	28.9133	26.3851	-38.0785	1.3693	-0.6501	-0.9035	1.7646	-0.9035	Z
ſ	17	31.6713	20.8346	-37.1979	30.3487	21.5603	-38.1048	1.3226	-0.7257	-0.9069	1.7602	-0.9069	Z
	18	31.7042	16.9847	-37.3506	30.3947	17.6846	-38.2366	1.3095	-0.6999	-0.8860	1.7291	-0.8860	Z
[19	30.0823	13.9109	-37.7829	28.6595	14.6154	-38.2166	1.4228	-0.7045	-0.4337	1.6458	-0.4337	Z
	20	29.9655	9.4365	-37.8027	28.5443	10.1220	-37.9639	1.4212	-0.6855	-0.1612	1.5861	-0.1612	Z
λÎ	21	19.3224	25.5715	-38.6679	17.8379	26.3378	-38.7100	1.4845	-0.7663	-0.0421	1.6711	-0.0421	Z
	22	18.8288	20.3624	-39.0277	17.4136	21.0618	-38.0543	1.4152	-0.6994	0.9734	1.8546	0.9734	Z
Ь	23	18.6936	16.3120	-39.1882	17.2145	17.0361	-37.5372	1.4791	-0.7241	1.6510	2.3319	1.6510	Z
õ	24	18.4870	13.2543	-39.2582	17.0408	13.9635	-37.5003	1.4462	-0.7092	1.7579	2.3843	1.7579	Z
ш.	25	18.6750	11.3518	-39.2535	17.2462	12.1394	-37.4760	1.4288	-0.7876	1.7775	2.4127	1.7775	Z
	26	9.3016	26.8714	-38.9937	7.9314	27.6779	-38.4778	1.3702	-0.8065	0.5159	1.6715	0.5159	Z
	27	9.5152	23.1088	-39.2708	8.1537	23.9282	-38.4296	1.3615	-0.8194	0.8412	1.7980	0.8412	Z
	28	9.3683	19.5246	-39.4636	8.0211	20.3615	-38.5371	1.3472	-0.8369	0.9265	1.8368	0.9265	Z
	29	9.4740	15.4768	-39.5891	8.0949	16.2312	-38.8060	1.3791	-0.7544	0.7831	1.7562	0.7831	Z
	30	9.5950	13.1290	-39.6234	8.2407	13.9198	-38.9491	1.3543	-0.7908	0.6743	1.7071	0.6743	Z
	31	54.9818	34.2974	-21.5397	53.8789	33.7086	-22.9423	1.1029	0.5888	-1.4026	1.8789	1.2502	Χ, `
aγ β β β β β β β β β β β β β β β β β β β	32	50.5084	33.5417	-24.6948	49.4742	33.2652	-26.2652	1.0342	0.2765	-1.5704	1.9006	1.0705	X, `
∃.ē≻.	33	47.5963	32.9455	-26.7379	46.6135	32.9554	-28.4711	0.9828	-0.0099	-1.7332	1.9925	0.9828	<u> </u>
μ, χ la '-	34	44.1205	32.3102	-28.6891	43.2980	32.4951	-30.4170	0.8225	-0.1849	-1.7279	1.9226	0.8225	X
∢ ≥	35	40.5032	31.6661	-30.5457	39.6299	31.8774	-32.2807	0.8733	-0.2113	-1.7350	1.9538	0.8733	X
	36	37.3051	31.0355	-32.2113	36.3109	31.5458	-33.7448	0.9942	-0.5103	-1.5335	1.8975	0.9942	<u> </u>
	31	54.9818	34.2974	-21.5397	53.8789	33.7086	-22.9423	1.1029	0.5888	-1.4026	1.8789	0.5888	<u> </u>
AR 3	32	50.5084	33.5417	-24.6948	49.4742	33.2652	-26.2652	1.0342	0.2765	-1.5704	1.9006	0.2765	Y
a L	33	47.5963	32.9455	-26.7379	46.6135	32.9554	-28.4711	0.9828	-0.0099	-1.7332	1.9925	-0.0099	Y
ate	34	44.1205	32.3102	-28.6891	43.2980	32.4951	-30.4170	0.8225	-0.1849	-1.7279	1.9226	-0.1849	Y
4 1	35	40.5032	31.6661	-30.5457	39.6299	31.8774	-32.2807	0.8733	-0.2113	-1.7350	1.9538	-0.2113	<u> </u>
	36	37.3051	31.0355	-32.2113	36.3109	31.5458	-33.7448	0.9942	-0.5103	-1.5335	1.8975	-0.5103	Y
Ϋ́́Υ Ϋ́́Υ Ϋ́́Υ	37	16.3255	32.1090	-32.8273	15.1740	32.7597	-32.9531	1.1515	-0.6507	-0.1258	1.3286	1.1515	<u> </u>
ا ئر ق لے	38	14.4656	35.1800	-25.1177	13.6197	35.5961	-25.0659	0.8459	-0.4161	0.0518	0.9441	0.8475	<u>, Х, Х</u>
X ax	39	19.1772	36.4587	-17.9651	18.5796	36.6212	-18.0446	0.5976	-0.1625	-0.0795	0.6244	0.5976	<u>X</u>
ш <i>2</i> ⊂	40	15.7226	36.6977	-13.7869	15.2792	36.7949	-13.8335	0.4434	-0.0972	-0.0466	0.4563	0.4434	X
β ^A R	37	16.3255	32.1090	-32.8273	15.1740	32.7597	-32.9531	1.1515	-0.6507	-0.1258	1.3286	-0.6507	Y
a L	38	14.4656	35.1800	-25.1177	13.6197	35.5961	-25.0659	0.8459	-0.4161	0.0518	0.9441	-0.4161	Y
atel 1	39	19.1772	36.4587	-17.9651	18.5796	36.6212	-18.0446	0.5976	-0.1625	-0.0795	0.6244	-0.1625	Y
ш	40	15.7226	36.6977	-13.7869	15.2792	36.7949	-13.8335	0.4434	-0.0972	-0.0466	0.4563	-0.0972	Y

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-4. Interior Crush Deformation Data - Set 2, Test No. H42BR-1

Figure C-5. Windshield Deformation Data, Test No. H42BR-1

Figure C-6. Exterior Vehicle Crush (NASS) - Front, Test No. H42BR-1

Figure C-7. Exterior Vehicle Crush (NASS) - Side, Test No. H42BR-1

Date: 8/19 Year: 20		/ <u>2019</u>)14			Test Name: Make:	H42 Do	H42BR-2 Dodge			VIN: Model:	1C6RR6FT7ES3 RAM 1500		19996
				F	VEI PASSENG	HICLE DE ER SIDE	FORMAT	ION AN - SET	1				
	DONT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for
	POINT	(III.)	(III.)	(III.)	40.40.40	(111.)	0.0407	4.0.400	1.0044	0.4400	0 7074	5 4000	
	1	53.2646	33.5702	0.1981	48.4243	29.4858	-2.2427	4.8403	4.0844	2.4408	6.7874	5.4209	X, Z
	2	53.9060	30.0140	0.9920	50.0366	26.6956	-0.5323	3.8694	3.3184	1.5243	5.3205	4.1588	<u>X, Z</u>
, <u> </u>	3	54.1624	26.6828	0.8593	52.1812	24.9177	0.6423	1.9812	1.7651	0.2170	2.6623	1.9930	
A N ME	4	53.3599	23.3085	1 2664	51 2125	22.0448	1 4564	1 120/	0.0037	-0.0900	1 1 1 0 0 F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
× L -	5 6	10 /010	21.7979	-1.2004	47 0325	22.1121	-1.4004	2 4502	-0.3142	0.1900	1.1000	2 5740	
TOE WHEE ()	7	49.4910	21 2057	2 2207	47.0323 N/A	51.5245 NI/A	2.430Z	2.4090 #\/ALLIEL	3.3317 #\/ALLEL	0.7599 #\/ALLIEL	4.3004 NIA	2.3740 NA	
	/ 8	49.2303	27 0621	3 1624	10 1515	26 1533	1 4225	#VALUE!	#VALUE:	#VALUE:	1 5722	0.2412	Y WALUE
	<u> </u>	49.3927	23 5737	3.1024	48 5507	23 1676	3 0137	0.2412	0.3000	0.0054	0.0710	0.2412	× 7
	10	49.4327	20.9686	0 1963	40.0007	20.8077	-0 2159	1 1830	0.4001	0.0034	1 25/18	1 2528	
	10	40.0700	20.0000	5 3745	43 3053	20.0011	5.0630	1.1000	1 5216	0.3106	1.2540	0.3106	7
	12	44.3149	34.9209	5 3120	43.3033	31 0354	6 7303	0.0870	0.6070	-1 4264	1.6520	-1 4264	
	13	44.0043	28 6306	5 2107	43 8621	28 2104	6 6699	0.0070	0.0073	-1 4592	1 5251	-1 4502	7
	14	44 2042	24 5507	5 1021	43 5622	24 3701	5 3040	0.1422	0.4202	-0.1110	0.6762	_0 1110	7
	15	44 6352	20.8364	4 6946	43 6033	20 5883	4 1610	1 0319	0.1000	0.5336	1 1879	0.5336	7
	16	38 2768	34 9517	5 3514	37 9225	33 8123	6.8229	0.3543	1 1394	-1 4715	1 8945	-1 4715	7
	17	38 4509	31 1309	5 3285	38 4125	30 8774	7 3832	0.0384	0 2535	-2 0547	2 0706	-2 0547	7
	18	38,9640	27.4274	5.2216	38.8995	27.2556	6.6689	0.0645	0.1718	-1.4473	1.4589	-1.4473	Z
AN	19	38,7648	21,9961	5.2105	38.7283	21.9452	5.8029	0.0365	0.0509	-0.5924	0.5957	-0.5924	z
a Ci	20	38.7406	17.2507	5.1922	38.7404	17.2654	5.3108	0.0002	-0.0147	-0.1186	0.1195	-0.1186	Z
Q Z	21	33.4213	34.6969	5.3532	33.2816	34.1593	7.1790	0.1397	0.5376	-1.8258	1.9084	-1.8258	Z
LCC	22	33.2285	30.3621	5.3472	33.4504	30.2814	6.4374	-0.2219	0.0807	-1.0902	1.1155	-1.0902	Z
4	23	33.4035	25.0933	5.3224	33.5421	25.0681	5.8147	-0.1386	0.0252	-0.4923	0.5121	-0.4923	Z
	24	33.4904	20.3548	5.3209	33.5030	20.3278	5.6226	-0.0126	0.0270	-0.3017	0.3032	-0.3017	Z
	25	33.6919	16.5064	5.2067	33.7531	16.4894	5.4141	-0.0612	0.0170	-0.2074	0.2169	-0.2074	Z
	26	29.7814	33.9794	4.3389	29.9724	34.0444	5.7894	-0.1910	-0.0650	-1.4505	1.4645	-1.4505	Z
	27	30.2072	29.5746	4.5424	30.3547	29.5822	5.5067	-0.1475	-0.0076	-0.9643	0.9755	-0.9643	Z
	28	30.2112	24.3381	4.3300	30.3797	24.3659	4.9958	-0.1685	-0.0278	-0.6658	0.6874	-0.6658	Z
	29	30.1673	20.7796	4.5280	30.2853	20.8159	4.9685	-0.1180	-0.0363	-0.4405	0.4575	-0.4405	Z
	30	30.2733	16.3162	4.5359	30.2759	16.3175	4.7346	-0.0026	-0.0013	-0.1987	0.1987	-0.1987	Z

component is deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-8. Floor Pan Deformation Data – Set 1, Test No. H42BR-2

Vear:	8/19/ 20)14		Make: Dodge						Model:	RAM 1500		
					VEI	HICLE DE ER SIDE	FORMAT	ION AN - SET	2				
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest	Posttest Z	ΔΧ ^Α	 ΔΥ ^Α	ΔZ ^A	Total Δ	Crush ^B	Directions
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	57.1091	52.4411	-4.7726	52.0177	48.6071	-6.8249	5.0914	3.8340	2.0523	6.6958	5.4895	X, Z
	2	57.7190	48.7730	-3.9665	53.5965	45.8190	-5.0802	4.1225	2.9540	1.1137	5.1924	4.2703	X, Z
_	3	57.9426	45.5969	-4.0988	55.7200	44.0293	-3.8852	2.2226	1.5676	-0.2136	2.7282	2.2226	X
- WEL WEL Z)	4	57.2210	42.3459	-4.1464	56.1088	41.7542	-3.6435	1.1122	0.5917	-0.5029	1.3565	1.1122	X
	5	56.1517	40.7872	-6.0057	54.8132	41.2078	-5.9457	1.3385	-0.4206	-0.0600	1.4043	1.3385	X
Ш×	6	53.4368	53.9962	-1.7467	50.6591	50.7244	-2.1714	2.7777	3.2718	0.4247	4.3128	2.8100	X, Z
우 별	7	53.0822	50.2113	-1.6792	N/A	N/A	N/A	#VALUE!	#VALUE!	#VALUE!	NA	NA	#VALUE
3	8	53.0980	46.0399	-1.6879	52.7120	45.3532	-0.1175	0.3860	0.6867	-1.5704	1.7569	0.3860	Х
	9	53.1689	42.5173	-1.8617	52.0708	42.3573	-1.4862	1.0981	0.1600	-0.3755	1.1715	1.0981	Х
	10	52.1209	39.8260	-4.6513	50.8813	40.0602	-4.6841	1.2396	-0.2342	0.0328	1.2620	1.2400	X, Z
	11	48.2268	53.9535	0.5122	46.9603	52.6875	0.4363	1.2665	1.2660	0.0759	1.7924	0.0759	Z
	12	47.8851	50.6746	0.4704	47.5697	50.3318	2.1418	0.3154	0.3428	-1.6714	1.7351	-1.6714	Z
	13	47.8594	47.7230	0.3810	47.4527	47.5074	2.1097	0.4067	0.2156	-1.7287	1.7889	-1.7287	Z
	14	47.8807	43.5209	0.3787	47.1015	43.6537	0.7947	0.7792	-0.1328	-0.4160	0.8932	-0.4160	Z
	15	48.2618	39.7779	-0.1179	47.0925	39.8570	-0.2986	1.1693	-0.0791	0.1807	1.1858	0.1807	Z
	16	42.2523	54.0467	0.5536	41.5857	53.1867	2.1969	0.6666	0.8600	-1.6433	1.9709	-1.6433	Z
	17	42.3346	50.2311	0.5459	42.0389	50.2533	2.7950	0.2957	-0.0222	-2.2491	2.2686	-2.2491	Z
-	18	42.7949	46.5034	0.4524	42.4783	46.6165	2.1277	0.3166	-0.1131	-1.6753	1.7087	-1.6753	Z
AA A	19	42.4335	41.0941	0.4667	42.2377	41.2978	1.3318	0.1958	-0.2037	-0.8651	0.9101	-0.8651	Z
2	20	42.3667	36.4768	0.4787	42.1890	36.6122	0.9012	0.1777	-0.1354	-0.4225	0.4779	-0.4225	Z
<u></u>	21	37.3918	53.9306	0.6095	36.9502	53.5979	2.5546	0.4416	0.3327	-1.9451	2.0222	-1.9451	Z
Ľ	22	37.0719	49.5785	0.6248	37.0681	49.7087	1.8636	0.0038	-0.1302	-1.2388	1.2456	-1.2388	Z
_	23	37.1782	44.2534	0.6212	37.0920	44.4869	1.3094	0.0862	-0.2335	-0.6882	0.7318	-0.6882	Z
	24	37.1534	39.5411	0.6413	36.9918	39.7455	1.1796	0.1616	-0.2044	-0.5383	0.5980	-0.5383	Z
	25	37.3985	35.7097	0.5397	37.1924	35.9018	1.0213	0.2061	-0.1921	-0.4816	0.5580	-0.4816	Z
	26	33.6868	53.1618	-0.3607	33.6377	53.5073	1.1709	0.0491	-0.3455	-1.5316	1.5709	-1.5316	Z
	27	33.9972	48.8443	-0.1400	33.9623	49.0372	0.9463	0.0349	-0.1929	-1.0863	1.1038	-1.0863	Z
	28	33.9475	43.6063	-0.3326	33.9196	43.8148	0.5039	0.0279	-0.2085	-0.8365	0.8625	-0.8365	Z
	29	33.8052	40.0461	-0.1165	33.7797	40.2662	0.5234	0.0255	-0.2201	-0.6399	0.6772	-0.6399	Z
	30	33.8831	35.5337	-0.0910	33.7122	35.7656	0.3486	0.1709	-0.2319	-0.4396	0.5256	-0.4396	Z
Positive v ompartme Crush cal omponent Direction	alues deno ent. culations th is deformir for Crush c	te deformati nat use mult ng inward to olumn deno	on as inwar iple directio ward the oc tes which d	d toward th nal compor cupant com irections ar	e occupant nents will dis npartment. e included in	compartme sregard con	nt, negative nponents tha calculations	values deno at are negat s. If "NA" th	ote deforma ive and only ien no intrus	tions outwar include pos sion is recor	d away fror sitive values ded, and C	n the occu where the rush will be	pant e 0.

Figure C-9. Floor Pan Deformation Data – Set 2, Test No. H42BR-2

Year:	2014				Test Name: Make:	H42 Do	BR-2 dge			VIN: Model:	1C6R	R6FT7ES3 RAM 1500	19996
-													
					VE	HICLE DE	FORMATI	ON					
				PAS	SENGER	SIDE INT	ERIOR C	RUSH - SI	ET 1				
-													-
		Pretest	Pretest	Pretest	Posttast X	Posttest	Posttast 7	۸xA	AVA	۸ 7 ^A	Total A	Cruch ^B	Direction
		Х	Y	Z	(in)	Y	(in)	(in)	(in)	(in)	(in)	(in)	for
	POINT	(in.)	(in.)	(in.)	(11.)	(in.)	(11.)	(11.)	(11.)	(11.)	()	(01.)	Crush ^C
	1	43.5815	33.7618	-26.9207	43.6109	33.3886	-27.5666	-0.0294	0.3732	-0.6459	0.7465	0.7465	X, Y, Z
τÑ.	2	42.7385	22.0075	-27.5116	42.9391	21.7493	-28.0824	-0.2006	0.2582	-0.5708	0.6578	0.6578	X, Y, Z
Υς	3	42.3023	4.8972	-27.9700	42.6571	4.6052	-28.3693	-0.3548	0.2920	-0.3993	0.6088	0.6088	X, Y, Z
Δ×	4	38.2917	35.8034	-14.6041	37.1985	35.2911	-15.7388	1.0932	0.5123	-1.1347	1.6568	1.6568	X, Y, Z
Ŭ	5	37.1820	20.7128	-15.8951	36.9928	20.1102	-16.7658	0.1892	0.6026	-0.8707	1.0757	1.0757	X, Y, Z
	6	35.3933	4.7377	-16.0414	35.4032	4.5627	-16.6277	-0.0099	0.1750	-0.5863	0.6119	0.6119	X, Y, Z
	7	46.9600	37.6774	-4.2630	45.2700	33.2684	-5.0923	1.6900	4.4090	-0.8293	4.7941	4.4090	Y
RAΣ.	8	47.1510	37.6508	0.2608	45.5226	33.5521	-0.4580	1.6284	4.0987	-0.7188	4.4685	4.0987	Y
<u>"</u> с	9	49.8576	37.6212	-1.0795	47.9636	32.8059	-2.0423	1.8940	4.8153	-0.9628	5.2632	4.8153	Y
Ц	10	37.5560	39.5287	-19.7171	36.1040	38.6102	-20.1775	1.4520	0.9185	-0.4604	1.7787	0.9185	Y
	11	25.9624	39.2282	-19.1752	24.6977	40.5886	-19.3642	1.2647	-1.3604	-0.1890	1.8670	-1.3604	Y
ЦÖС	12	13.4830	39.3343	-19.2105	12.4080	41.2757	-19.1392	1.0750	-1.9414	0.0713	2.2203	-1.9414	Y
A D C	13	38.9548	38.3199	-7.8574	37.0474	36.1712	-8.2502	1.9074	2.1487	-0.3928	2.8999	2.1487	Y
È.	14	27.2688	40.1097	0.2042	26.2512	39.7449	-0.0244	1.0176	0.3648	-0.2286	1.1049	0.3648	Y
=	15	15.5930	39.3454	-0.5766	14.5942	40.2855	-0.5528	0.9988	-0.9401	0.0238	1.3718	-0.9401	Y
	16	25.4633	26.1385	-44.4312	25.4910	26.7294	-44.7343	-0.0277	-0.5909	-0.3031	0.6647	-0.3031	Z
	17	26.8313	21.9038	-44.5893	26.8186	22.5148	-44.8729	0.0127	-0.6110	-0.2836	0.6737	-0.2836	Z
	18	27.8869	17.0497	-44.7367	27.9735	17.5330	-44.9518	-0.0866	-0.4833	-0.2151	0.5360	-0.2151	Z
[19	28.6597	11.6098	-44.8270	28.7812	12.2306	-44.9726	-0.1215	-0.6208	-0.1456	0.6491	-0.1456	Z
	20	29.2017	5.0776	-44.8432	29.2381	5.6395	-44.9644	-0.0364	-0.5619	-0.1212	0.5760	-0.1212	Z
Ω.	21	15.0635	27.7080	-45.7632	14.9463	28.1642	-45.8382	0.1172	-0.4562	-0.0750	0.4769	-0.0750	Z
[N]	22	15.9017	23.2227	-46.1646	15.9678	23.6454	-46.2618	-0.0661	-0.4227	-0.0972	0.4387	-0.0972	Z
Ч	23	16.0979	17.3453	-46.5082	16.1124	17.8668	-46.8002	-0.0145	-0.5215	-0.2920	0.5979	-0.2920	Z
ŏ	24	16.2351	11.4820	-46.7173	16.2628	11.9240	-46.9878	-0.0277	-0.4420	-0.2705	0.5189	-0.2705	Z
Ľ.	25	16.5565	5.8124	-46.7938	16.5869	6.3833	-47.0303	-0.0304	-0.5709	-0.2365	0.6187	-0.2365	Z
	26	6.8862	26.1784	-46.3087	6.8025	26.6006	-46.2721	0.0837	-0.4222	0.0366	0.4320	0.0366	Z
	27	7.6807	20.2203	-46.7193	7.6711	20.5437	-46.8819	0.0096	-0.3234	-0.1626	0.3621	-0.1626	Z
	28	7.6906	13.4075	-47.0212	7.7011	13.8460	-47.2279	-0.0105	-0.4385	-0.2067	0.4849	-0.2067	Z
	29	7.9791	8.8801	-47.1192	7.9901	9.3110	-47.2830	-0.0110	-0.4309	-0.1638	0.4611	-0.1638	Z
	30	7.9823	4.9641	-47.1462	8.0523	5.3909	-47.3074	-0.0700	-0.4268	-0.1612	0.4616	-0.1612	Z
	31	46.2126	36.3481	-28.9766	46.2596	36.3908	-29.5499	-0.0470	-0.0427	-0.5733	0.5768	0.0000	NA
¥ΕÑ	32	43.9495	35.7790	-30.5703	44.2569	35.7942	-31.3912	-0.3074	-0.0152	-0.8209	0.8767	0.0000	NA
<u>, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	33	41.7894	35.1580	-32.1893	42.2081	35.2181	-33.2234	-0.4187	-0.0601	-1.0341	1.1173	0.0000	NA
- <u>x</u> × [34	37.8876	34.1330	-34.6902	38.2152	34.4211	-35.5720	-0.3276	-0.2881	-0.8818	0.9838	0.0000	NA
¥ΣΥ	35	34.4301	33.4018	-37.2588	34.6675	33.8540	-38.0408	-0.2374	-0.4522	-0.7820	0.9340	0.0000	NA
	36	30.1549	32.5467	-39.9970	30.2178	33.1437	-40.6964	-0.0629	-0.5970	-0.6994	0.9217	0.0000	NA
	31	46.2126	36.3481	-28.9766	46.2596	36.3908	-29.5499	-0.0470	-0.0427	-0.5733	0.5768	-0.0427	Y
¥Σ.	32	43.9495	35.7790	-30.5703	44.2569	35.7942	-31.3912	-0.3074	-0.0152	-0.8209	0.8767	-0.0152	Y
a (33	41.7894	35.1580	-32.1893	42.2081	35.2181	-33.2234	-0.4187	-0.0601	-1.0341	1.1173	-0.0601	Y
ater -	34	37.8876	34.1330	-34.6902	38.2152	34.4211	-35.5720	-0.3276	-0.2881	-0.8818	0.9838	-0.2881	Y
Ľ	35	34.4301	33.4018	-37.2588	34.6675	33.8540	-38.0408	-0.2374	-0.4522	-0.7820	0.9340	-0.4522	Y
	36	30.1549	32.5467	-39.9970	30.2178	33.1437	-40.6964	-0.0629	-0.5970	-0.6994	0.9217	-0.5970	Y
¥ĘΩ	37	5.5186	33.6365	-36.0152	5.3992	33.8946	-35.8766	0.1194	-0.2581	0.1386	0.3164	0.1829	X, Z
<u>, , , , , , , , , , , , , , , , , , , </u>	38	2.0239	34.5720	-31.9196	1.9479	34.7424	-31.7277	0.0760	-0.1704	0.1919	0.2677	0.2064	X, Z
, x a i	39	6.8231	36.4094	-24.5893	6.7233	36.4996	-24.3969	0.0998	-0.0902	0.1924	0.2348	0.2167	X, Z
'nΣĊ	40	3.5959	36.7649	-15.8919	3.5301	36.7234	-15.7283	0.0658	0.0415	0.1636	0.1812	0.1812	X, Y, Z
$\frac{1}{2}$	37	5.5186	33.6365	-36.0152	5.3992	33.8946	-35.8766	0.1194	-0.2581	0.1386	0.3164	-0.2581	Y
al (38	2.0239	34.5720	-31.9196	1.9479	34.7424	-31.7277	0.0760	-0.1704	0.1919	0.2677	-0.1704	Y
PII ter	39	6.8231	36.4094	-24.5893	6.7233	36.4996	-24.3969	0.0998	-0.0902	0.1924	0.2348	-0.0902	Y
ы e	40	3,5959	36,7649	-15,8919	3 5301	36 7234	-15 7283	0.0658	0.0415	0 1636	0 1812	0.0415	Y

nega compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward two word the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-10. Interior Crush Deformation Data - Set 1, Test No. H42BR-2

Date: Year:	8/19/ 20	/2019)14	-	Test Name: H42BR-2 VIN: Make: Dodge Model:							1C6RR6FT7ES319996 RAM 1500		
				PAS	VEI SENGER	HICLE DE SIDE INT	FORMATI	ON RUSH - S	ET 2				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX^{A}	ΔY ^A	ΔZ^{A}	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(11.)	(in.)	()	(11.)	(11.)	(11.)	(11.)	(11.)	Crush ^C
	1	46.8772	52.4252	-31.7876	47.3814	51.9822	-32.3641	-0.5042	0.4430	-0.5765	0.8848	0.8848	X, Y, Z
тÑ	2	45.8294	40.6844	-32.3163	46.5032	40.3503	-32.7109	-0.6738	0.3341	-0.3946	0.8493	0.8493	X, Y, Z
ASI , Y	3	45.0999	23.5821	-32.6938	45.9190	23.2115	-32.7515	-0.8191	0.3706	-0.0577	0.9009	0.9009	<u>X, Y, Z</u>
ъ ъ́	4	41.7711	54.6078	-19.4178	41.0523	54.1654	-20.5399	0.7188	0.4424	-1.1221	1.4041	1.4041	<u>X, Y, Z</u>
	5	40.3921	39.5328	-20.6287	40.5758	38.9774	-21.3490	-0.1837	0.5554	-0.7203	0.9279	0.9279	
1	7	50.5551	23.3097	-20.0020	40.1200	23.4039	-20.9620	-0.3010	0.1200	-0.2990	0.0009	0.0009	<u> </u>
Щ Щ Щ Щ С		50.5935	56 2692	-9.1094	49.1309	52.1525	-9.0909	1.4020	4.2204	-0.7075	4.5279	4.2204	r V
S IA	0	53 5278	56 2872	-4.0002	49.4070 51.8285	51 6860	-0.2002	1.4300	4 6012	-0.0000	4.1700	4 6012	V
_	10	41.0367	58 3234	-24 5381	30.0070	57 4307	-25 0214	1.0398	0.8837	-0.4833	1 4460	0.8837	v
IDE	11	29 4471	58 2210	-23 8563	28 6316	59 6302	-23.0214	0.8155	-1 4092	-0.4033	1.4409	-1 4092	Y
) SR	12	16 9717	58 5376	-23 7428	16 3569	60 5368	-23 9294	0.6148	-1 9992	-0.1866	2 0999	-1 9992	Y Y
δQΣ	13	42.5575	57.1412	-12.6907	40.9476	55.1544	-13.0642	1.6099	1.9868	-0.3735	2.5843	1.9868	Ý
D	14	31.0011	59.1621	-4,4980	30.2498	59.0344	-4.8485	0.7513	0.1277	-0.3505	0.8388	0.1277	Ý
	15	19.3056	58.5918	-5.1357	18.6020	59.7727	-5.3393	0.7036	-1.1809	-0.2036	1.3896	-1.1809	Y
	16	28,4239	45.0350	-49.0463	29.0767	45.3997	-49.3645	-0.6528	-0.3647	-0.3182	0.8127	-0.3182	Z
	17	29.7184	40.7772	-49.2020	30.3295	41.1608	-49.4479	-0.6111	-0.3836	-0.2459	0.7623	-0.2459	Z
	18	30.6903	35.9054	-49.3405	31.3964	36.1588	-49.4602	-0.7061	-0.2534	-0.1197	0.7597	-0.1197	Z
	19	31.3704	30.4529	-49.4160	32.1108	30.8433	-49.4082	-0.7404	-0.3904	0.0078	0.8371	0.0078	Z
	20	31.8021	23.9124	-49.4097	32.4520	24.2459	-49.3076	-0.6499	-0.3335	0.1021	0.7376	0.1021	Z
ŝ	21	18.0367	46.7742	-50.2608	18.5543	47.0042	-50.4480	-0.5176	-0.2300	-0.1872	0.5965	-0.1872	Z
	22	18.7945	42.2738	-50.6523	19.4946	42.4625	-50.8109	-0.7001	-0.1887	-0.1586	0.7422	-0.1586	Z
Ч	23	18.8876	36.3924	-50.9723	19.5355	36.6751	-51.2671	-0.6479	-0.2827	-0.2948	0.7659	-0.2948	Z
õ	24	18.9235	30.5269	-51.1570	19.5807	30.7286	-51.3704	-0.6572	-0.2017	-0.2134	0.7198	-0.2134	Z
-	25	19.1485	24.8524	-51.2122	19.8073	25.1830	-51.3349	-0.6588	-0.3306	-0.1227	0.7472	-0.1227	Z
	26	9.8288	45.3806	-50.7017	10.3827	45.5783	-50.8279	-0.5539	-0.1977	-0.1262	0.6015	-0.1262	
	27	10.5180	39.4083	-51.0954	11.1423	39.4990	-51.3544	-0.6243	-0.0907	-0.2590	0.6820	-0.2590	
	28	10.4096	32.5950	-51.3672	11.0532	32.7975	-51.6048	-0.6436	-0.2025	-0.2376	0.7153	-0.2376	L
	29	10.0200	20.0031	-51.4407	11.2023	20.2070	-51.5901	-0.0417	-0.1947	-0.1474	0.0000	-0.1474	Z 7
	21	10.5570	E4.0E90	22 0062	50.0742	£4.0097	24 4004	0.6476	-0.1030	-0.1003	0.7510	-0.1003	2 V
~ ~ ~	32	49.0200	54.9500	-35.0003	48 0538	54.9007	-36 2252	-0.3470	0.0493	-0.3141	1 1315	0.0493	V I
LAF	33	45 0456	53 8292	-37 0406	45 9876	53 7555	-38 0410	-0.9420	0.0737	-1 0004	1.3761	0.0737	Y
PIL ∕, Y	34	41.0972	52.8596	-39,4901	41.9717	52,9956	-40.3624	-0.8745	-0.1360	-0.8723	1.2426	0.0000	NA
-Α Μa	35	37.5973	52.1761	-42.0139	38.4044	52.4560	-42.8091	-0.8071	-0.2799	-0.7952	1.1671	0.0000	NA
	36	33.2757	51.3817	-44.6970	33.9320	51.7866	-45.4370	-0.6563	-0.4049	-0.7400	1.0688	0.0000	NA
	31	49.5266	54.9580	-33.8863	50.0742	54.9087	-34.4004	-0.5476	0.0493	-0.5141	0.7527	0.0493	Y
Ψ́Σ	32	47.2352	54.4205	-35.4503	48.0538	54.3214	-36.2252	-0.8186	0.0991	-0.7749	1.1315	0.0991	Y
al (33	45.0456	53.8292	-37.0406	45.9876	53.7555	-38.0410	-0.9420	0.0737	-1.0004	1.3761	0.0737	Y
Her.	34	41.0972	52.8596	-39.4901	41.9717	52.9956	-40.3624	-0.8745	-0.1360	-0.8723	1.2426	-0.1360	Y
Γĩ	35	37.5973	52.1761	-42.0139	38.4044	52.4560	-42.8091	-0.8071	-0.2799	-0.7952	1.1671	-0.2799	Y
	36	33.2757	51.3817	-44.6970	33.9320	51.7866	-45.4370	-0.6563	-0.4049	-0.7400	1.0688	-0.4049	Y
A R L	37	8.7110	52.9041	-40.4257	9.1505	53.0430	-40.5323	-0.4395	-0.1389	-0.1066	0.4731	0.0000	NA
, T	38	5.2820	53.9158	-36.2927	5.7318	54.0104	-36.3826	-0.4498	-0.0946	-0.0899	0.4683	0.0000	NA
X lax	39	10.1993	55.7029	-29.0285	10.5675	55.7873	-29.0963	-0.3682	-0.0844	-0.0678	0.3838	0.0000	NA
m ≥ Ŭ	40	7.0834	56.1495	-20.2949	7.4146	56.1905	-20.4195	-0.3312	-0.0410	-0.1246	0.3562	0.0000	NA
ЗAR	37	8.7110	52.9041	-40.4257	9.1505	53.0430	-40.5323	-0.4395	-0.1389	-0.1066	0.4731	-0.1389	Y
al	38	5.2820	53.9158	-36.2927	5.7318	54.0104	-36.3826	-0.4498	-0.0946	-0.0899	0.4683	-0.0946	Y
3-P	39	10.1993	55.7029	-29.0285	10.5675	55.7873	-29.0963	-0.3682	-0.0844	-0.0678	0.3838	-0.0844	Y
ш <u>с</u>	40	7.0834	56.1495	-20.2949	7.4146	56.1905	-20.4195	-0.3312	-0.0410	-0.1246	0.3562	-0.0410	Υ

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-11. Interior Crush Deformation Data – Set 2, Test No. H42BR-2

Figure C-12. Exterior Vehicle Crush (NASS) - Front, Test No. H42BR-2

Figure C-13. Exterior Vehicle Crush (NASS) - Side, Test No. H42BR-2

Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. H42BR-1

Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. H42BR-1

Figure D-2. Longitudinal Change in Velocity (SLICE-1), Test No. H42BR-1

Figure D-3. Longitudinal Change in Displacement (SLICE-1), Test No. H42BR-1

Figure D-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. H42BR-1

Figure D-5. Lateral Change in Velocity (SLICE-1), Test No. H42BR-1

Figure D-6. Lateral Change in Displacement (SLICE-1), Test No. H42BR-1

Figure D-7. Vehicle Angular Displacements (SLICE-1), Test No. H42BR-1

Figure D-8. Acceleration Severity Index (SLICE-1), Test No. H42BR-1

Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. H42BR-1

Figure D-10. Longitudinal Change in Impact Velocity (SLICE-2), Test No. H42BR-1

Figure D-11. Longitudinal Change in Displacement (SLICE-2), Test No. H42BR-1

Figure D-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. H42BR-1

Figure D-13. Lateral Change in Velocity (SLICE-2), Test No. H42BR-1

Figure D-14. Lateral Change in Displacement (SLICE-2), Test No. H42BR-1

Figure D-15. Vehicle Angular Displacements (SLICE-2), Test No. H42BR-1

137

Figure D-16. Acceleration Severity Index (SLICE-2), Test No. H42BR-1

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. H42BR-2

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. H42BR-2

Figure E-2. Longitudinal Change in Velocity (SLICE-1), Test No. H42BR-2

Figure E-3. Longitudinal Change in Displacement (SLICE-1), Test No. H42BR-2

Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. H42BR-2

Figure E-5. Lateral Change in Velocity (SLICE-1), Test No. H42BR-2

Figure E-6. Lateral Change in Displacement (SLICE-1), Test No. H42BR-2

Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. H42BR-2

Figure E-8. Acceleration Severity Index (SLICE-1), Test No. H42BR-2

Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. H42BR-2

Figure E-10. Longitudinal Change in Velocity (SLICE-2), Test No. H42BR-2

Figure E-11. Longitudinal Change in Displacement (SLICE-2), Test No. H42BR-2

Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. H42BR-2

Figure E-13. Lateral Change in Velocity (SLICE-2), Test No. H42BR-2

Figure E-14. Lateral Change in Displacement (SLICE-2), Test No. H42BR-2

Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. H42BR-2

Figure E-16. Acceleration Severity Index (SLICE-2), Test No. H42BR-2

END OF DOCUMENT