

Research Project Number TPF-5(193) Supplement #114 NDOT Sponsoring Agency Code RPFP-17-CONC-3

MASH TL-3 EVALUATION OF

CONCRETE AND ASPHALT TIED-DOWN

ANCHORAGE FOR PORTABLE

CONCRETE BARRIER

Submitted by

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Nathan M. Asselin Undergraduate Research Assistant

Ronald K. Faller, Ph.D., P.E. Research Professor MwRSF Director

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853

(402) 472-0965

Outdoor Test Site 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

WISCONSIN DEPARTMENT OF TRANSPORTATION

4802 Sheboygan Avenue Madison, Wisconsin 53707

MwRSF Research Report No. TRP-03-386-19

April 12, 2019

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-386-19	2.		3. Recipient's Accession No.
4. Title and Subtitle MASH TL-3 Evaluation of Concr Portable Concrete Barrier	5. Report Date April 12, 2019		
			6.
7. Author(s)			8. Performing Organization Report No.
Bielenberg, R.W., Asselin, N.M.,	and Faller, R.K.		TRP-03-386-19
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln	e and Address 7 (MwRSF)		10. Project/Task/Work Unit No.
Main Office: Prem S. Paul Research Center at Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Whittier School	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract © or Grant (G) No. TPF-5(193) Supplement #114
12. Sponsoring Organization Nan Wisconsin Department of Transpo	ne and Address		13. Type of Report and Period Covered Final Report: 2017 – 2019
Madison, Wisconsin 53707			14. Sponsoring Agency Code RPFP-17-CONC-3
15. Supplementary Notes Prepared in cooperation with U.S	. Department of Tra	nsportation, Federal Highway	Administration.
4			

16. Abstract

The objective of this research was to evaluate Wisconsin DOT's F-shaped portable concrete barriers (PCBs) with a bolt-through, tie-down anchorage system for concrete road surfaces with a reduced embedment epoxy anchorage and a steel pin tie-down anchorage system for asphalt surfaces according to *Manual for Assessing Safety Hardware 2016* (MASH 2016) Test Level 3 (TL-3) test designation no. 3-11 criteria.

Test no. WITD-1 consisted of PCBs with a bolt-through, tie-down configuration on concrete tarmac. The system was installed with the rear toe of the PCBs placed 1 in. (25 mm) away from the edge of the simulated bridge deck. Barrier nos. 5 through 13 were attached on the traffic side with three $1\frac{1}{8}$ -in. (29-mm) diameter A307 Grade A threaded rods per barrier epoxied into the concrete with an embedment depth of $5\frac{1}{4}$ in. (133 mm). The test results for test no. WITD-1 showed that the system sufficiently contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier, and the barrier system was deemed acceptable according to MASH 2016 TL-3 criteria. Test no. WITD-2 consisted of PCBs with a pinned, tie-down configuration placed on a 2-in. (51-mm) thick asphalt pad. The rear toe of the PCBs were installed 6 in. (152 mm) from the edge of a 36-in. wide x 36-in. deep (914-mm x 914-mm) trench. Barrier nos. 6 through 14 were anchored on the traffic side of the system with three $1\frac{1}{2}$ -in. (38-mm) diameter steel pins driven through the bolt anchor pockets on each barrier. During test no. WITD-2 the wheel well and toe pan were deformed a maximum of $13\frac{1}{2}$ in. (343 mm), which surpassed the MASH 2016 deformation limits. Due to the deformation, test no. WITD-2 was deemed unacceptable under the MASH 2016 TL-3 test designation no. 3-11 safety criteria. Potential barrier modifications for improving the performance were noted for future research.

17. Document Analysis/Descripto Highway Safety, Crash Test, Road Compliance Test, MASH 2016, T Barrier, Temporary Concrete Barr Foundation, Asphalt Foundation	rs dside Appurtenances, est Level 3, Portable Concrete rier, Pinned Barrier, Concrete	 Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 		
19. Security Class (this report)20. Security Class (this page)		21. No. of Pages	22. Price	
Unclassified	Unclassified	181		

DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation and the Wisconsin Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Wisconsin Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Mr. Scott Rosenbaugh, Research Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) Wisconsin Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barriers and conducting the crash tests. Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor
J.C. Holloway, M.S.C.E., E.I.T., Assistant Director – Physical
Testing Division
K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer
J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
C.S. Stolle, Ph.D., Research Assistant Professor
M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research
Associate
S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
E.W. Krier, B.S., Construction and Testing Technician II
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
R.M. Novak, Construction and Testing Technician I
M.T. Ramel, B.S.C.M., former Construction and Testing
Technician I
J.E. Kohtz, B.S.M.E., CAD Technician
E.L. Urbank, B.A., Research Communication Specialist
M.A. Rasmussen, Former Engineering Technician
Undergraduate and Graduate Research Assistants

Wisconsin Department of Transportation

Jerry Zogg, P.E., former Chief Roadway Standards Engineer Erik Emerson, P.E., Standards Development Engineer

Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

David Stertz, P.E., Design Standards and Oversite Section Chief to the WisDOT Staff

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	v
LIST OF TABLES	ix
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	1 1 2 2
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria 2.3 Soil Strength Requirements	
3 TEST CONDITIONS. 3.1 Test Facility	
4 DESIGN DETAILS – TEST NO. WITD-1	
 5 FULL-SCALE CRASH TEST NO. WITD-1 5.1 Weather Conditions 5.2 Test Description 5.3 Barrier Damage 5.4 Vehicle Damage 5.5 Occupant Risk 5.6 Discussion 	

DESIGN DETAILS – TEST NO. WITD-2	59
FULL-SCALE CRASH TEST NO. WITD-2	73
7.1 Static Soil Test	73
7.2 Weather Conditions	73
7.3 Test Description	73
7.4 Barrier Damage	80
7.5 Vehicle Damage	
7.6 Occupant Risk	
7.7 Discussion	
SUMMARY AND CONCLUSIONS	100
MASH EVALUATION	
) REFERENCES	106
APPENDICES	108
Appendix A. Material Specifications	109
Appendix B. Vehicle Center of Gravity Determination	
Appendix C. Static Soil Tests	131
Appendix D. Vehicle Deformation Records	
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. WITD) -1147
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. WITD) -2164

LIST OF FIGURES

Figure 1. Bolt-Through Tie-Down for F-Shape PCB	3
Figure 2. Steel Pin Tie-Down for F-Shape PCB – Asphalt Road Surface	4
Figure 3. Test Vehicle, Test No. WITD-1	9
Figure 4. Test Vehicle Pre-Test Interior Floorboard and Occupant Compartment Test No.	
WITD-1	10
Figure 5. Vehicle Dimensions, Test No. WITD-1	11
Figure 6. Test Vehicle, Test No. WITD-2	12
Figure 7. Test Vehicle Pre-Test Interior Floorboard and Undercarriage, Test No. WITD-2	13
Figure 8. Vehicle Dimensions, Test No. WITD-2	14
Figure 9. Target Geometry, Test No. WITD-1	15
Figure 10. Target Geometry, Test No. WITD-2	16
Figure 11. Camera Locations, Speeds, and Lens Settings, Test No. WITD-1	19
Figure 12. Camera Locations, Speeds, and Lens Settings, Test No. WITD-2	20
Figure 13. System Layout, Test No. WITD-1	22
Figure 14. Concrete Barrier Assembly, Test No. WITD-1	23
Figure 15. Connection and Anchorage Details, Test No. WITD-1	24
Figure 16. Portable Concrete Barrier Details, Test No. WITD-1	25
Figure 17. Portable Concrete Barrier Details, Test No. WITD-1	26
Figure 18. Portable Concrete Barrier Details, Test No. WITD-1	27
Figure 19. Connector Pin Details, Test No.WITD-1	28
Figure 20. Anchor Components, Test No.WITD-1	29
Figure 21. Bill of Materials, Test No.WITD-1	30
Figure 22. Test Installation Photographs, Test No. WITD-1	31
Figure 23. Connection and Anchor Pin Details, Test No. WITD-1	32
Figure 24. Impact Location, Test No. WITD-1	34
Figure 25. Sequential Photographs, Test No. WITD-1	36
Figure 26. Additional Sequential Photographs, Test No. WITD-1	37
Figure 27. Documentary Photographs, Test No. WITD-1	38
Figure 28. Additional Documentary Photographs, Test No. WITD-1	39
Figure 29. Vehicle Final Position and Trajectory Marks, Test No. WITD-1	40
Figure 30. System Damage – Front, Back, Downstream, and Upstream Views, Test No.	/1
Figure 31 System Damage at Impact Location Test No. WITD-1	- 1 //2
Figure 32 System Damage – Barrier No. 8 Traffic Side Test No. WITD-1	
Figure 33 System Damage – Additional Views of Damage on Barrier No. 8 Traffic Side	
Test No WITD-1	44
Figure 34 System Damage – Barrier No. 9 Traffic Side Test No. WITD-1	
Figure 35 System Damage – Additional Views of Damage on Barrier No. 9 Traffic Side	
Test No. WITD-1	46
Figure 36 System Damage – Barrier Nos 8 and 9 Non-Traffic Side Test No. WITD-1	+ 0 //7
Figure 37 Permanent Set Deflection Dynamic Deflection and Working Width Test No.	·····7 /
WITD-1	<u>/0</u>
Figure 38 Vehicle Damage Test No WITD-1	ر ب ۲۱
Figure 39 Vehicle Damage - Impact Side Test No. WITD-1	50 51
Figure 40 Vehicle Damage – Impact Side, Test No. WITD-1	
- 10-10	

Figure 41. Vehicle Damage, Windshield Damage Test No. WITD-1	53
Figure 42. Occupant Compartment Damage, Test No. WITD-1	54
Figure 43. Undercarriage Vehicle Damage, Test No. WITD-1	55
Figure 44. Summary of Test Results and Sequential Photographs, Test No. WITD-1	
Figure 45. System Layout, Test No. WITD-2	60
Figure 46. System Profile, Test No. WITD-2	61
Figure 47. System Profile, Test No. WITD-2	62
Figure 48. Concrete Barrier Assembly, Test No. WITD-2	63
Figure 49. Connection and Anchorage Details, Test No. WITD-2	64
Figure 50. Portable Concrete Barrier Details, Test No. WITD-2	65
Figure 51. Portable Concrete Barrier Details, Test No. WITD-2	66
Figure 52. Portable Concrete Barrier Rebar Details, Test No. WITD-2	67
Figure 53. Connector Pin Details, Test No. WITD-2	68
Figure 54. Anchor Pin Details. Test No. WITD-2	69
Figure 55. Bill of Materials, Test No. WITD-2	70
Figure 56. Test Installation Photographs, Test No. WITD-2	71
Figure 57. Connection and Anchor Pin Details, Test No. WITD-2	72
Figure 58. Impact Location, Test No. WITD-2	74
Figure 59. Additional Sequential Photographs, Test No. WITD-2	76
Figure 60. Additional Sequential Photographs, Test No. WITD-2	77
Figure 61. Documentary Photographs, Test No. WITD-2	
Figure 62. Vehicle Final Position and Trajectory Marks, Test No. WITD-2	79
Figure 63. System Damage – Front, Back, Downstream, and Upstream Views, Test No.	
WITD-2	81
Figure 64. System Damage at Impact Location, Test No. WITD-2	82
Figure 65. Barrier No. 10 Barrier Damage, Test No. WITD-2	83
Figure 66. Barrier No. 9 Barrier Damage, Test No. WITD-2	84
Figure 67. Barrier Nos. 9 and 10 Connection Pin Damage, Test No. WITD-2	85
Figure 68. Barrier No. 10 Asphalt Pin Damage and Displacement, Test No. WITD-2	
Figure 69. Barrier No. 9 Asphalt Pin Damage and Displacement, Test No. WITD-2	
Figure 71. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test	
No.WITD-2	
Figure 72. Vehicle Damage, Test No. WITD-2	91
Figure 73. Vehicle Damage, Windshield Damage Test No. WITD-2	92
Figure 74. Vehicle Damage, Test No. WITD-2	93
Figure 75. Vehicle Undercarriage Damage, Test No. WITD-2	94
Figure 76. Occupant Compartment Damage, Test No. WITD-2	95
Figure 77. Summary of Test Results and Sequential Photographs, Test No. WITD-2	99
Figure A-1. Concrete Barriers, Test Nos. WITD-1 and WITD-2	112
Figure A-2. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2	113
Figure A-3. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2	114
Figure A-4. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2	115
Figure A-4. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2 Figure A-5. Concrete Barrier Bar, Test Nos. WITD-1 and WITD-2	115
Figure A-4. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2 Figure A-5. Concrete Barrier Bar, Test Nos. WITD-1 and WITD-2 Figure A-6. Concrete Barrier Connecting Pin, Test Nos. WITD-1 and WITD-2	115
Figure A-4. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2 Figure A-5. Concrete Barrier Bar, Test Nos. WITD-1 and WITD-2 Figure A-6. Concrete Barrier Connecting Pin, Test Nos. WITD-1 and WITD-2 Figure A-7. 1 ¹ / ₈ -in. (26-mm) Diameter Threaded Rod, Test No. WITD-1	115 116 117 118
Figure A-4. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2 Figure A-5. Concrete Barrier Bar, Test Nos. WITD-1 and WITD-2 Figure A-6. Concrete Barrier Connecting Pin, Test Nos. WITD-1 and WITD-2 Figure A-7. 1 ¹ / ₈ -in. (26-mm) Diameter Threaded Rod, Test No. WITD-1 Figure A-8. 1 ¹ / ₈ -in. (26-mm) Diameter Threaded Rod, Test No. WITD-1	115 116 117 118 119

Figure A-10. 1 ¹ / ₈ -in. (26-mm) Diameter Hex Nuts, Test No. WITD-1	121
Figure A-11. 1 ¹ / ₂ -in. (38-mm) Diameter Anchor Pin, Test No. WITD-2	122
Figure A-12. ¹ / ₂ -in. (13-mm) Thick Washer Plate, Test No. WITD-2	123
Figure A-13. Asphalt, Test No. WITD-2	124
Figure A-14. Asphalt, Test No. WITD-2	125
Figure A-15. Asphalt, Test No. WITD-2	126
Figure A-16. Asphalt, Test No. WITD-2	127
Figure B-1. Vehicle Mass Distribution, Test No. WITD-1	129
Figure B-2. Vehicle Mass Distribution, Test No. WITD-2	130
Figure C-1. Soil Strength, Initial Calibration Tests	132
Figure C-2. Static Soil Test, Test No. WITD-2	133
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. WITD-1	135
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. WITD-1	136
Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. WITD-1	137
Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. WITD-1	138
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. WITD-1	139
Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. WITD-1	140
Figure D-7. Floor Pan Deformation Data – Set 1, Test No. WITD-2	141
Figure D-8. Floor Pan Deformation Data – Set 2, Test No. WITD-2	142
Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. WITD-2	143
Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. WITD-2	144
Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. WITD-2	145
Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. WITD-2	146
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. WITD-1	148
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. WITD-1	149
Figure E-5. Longitudinal Occupant Displacement (SLICE-1), Test No. WITD-1	130
Figure E-4. 10-IIIS Average Lateral Deceleration (SLICE-1), Test No. WITD-1	152
Figure E-5. Lateral Occupant Displacement (SLICE-1), Test No. WITD-1	152
Figure E 7 Vehicle Angular Displacements (SLICE-1), Test No. WITD-1	155
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. WITD-1	155
Figure E-9, 10-ms Average Longitudinal Deceleration (SLICE-2) Test No. WITD-1	155
Figure E-10 I ongitudinal Occupant Impact Velocity (SLICE-2), Test No. WITD-1	157
Figure E-11 I ongitudinal Occupant Displacement (SLICE-2), Test No. WITD-1	158
Figure E-12 10-ms Average Lateral Deceleration (SLICE-2), Test No. WITD-1	159
Figure E-13 Lateral Occupant Impact Velocity (SLICE-2) Test No. WITD-1	160
Figure E-14 Lateral Occupant Displacement (SLICE-2), Test No. WITD-1	
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. WITD-1	162
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. WITD-1	163
Figure F-1, 10-ms Average Longitudinal Deceleration (SLICE-1). Test No. WITD-2	
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. WITD-2	166
Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. WITD-2	167
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. WITD-2	168
Figure F-5. Lateral Occupant Impact Velocity (SLICE-1). Test No. WITD-2	169
Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. WITD-2	170
Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. WITD-2	171
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. WITD-2	172

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. WITD-2	173
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. WITD-2	174
Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. WITD-2	175
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. WITD-2	176
Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. WITD-2	177
Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. WITD-2	178
Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. WITD-2	179
Figure F-16. Acceleration Severity Index (SLICE-2), Test No. WITD-2	

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	5
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	6
Table 3. Weather Conditions, Test No. WITD-1	33
Table 4. Sequential Description of Impact Events, Test No. WITD-1	35
Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. WITD-1	56
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. WITD-1	57
Table 7. Weather Conditions, Test No. WITD-2	73
Table 8. Sequential Description of Impact Events, Test No. WITD-2	75
Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. WITD-2	96
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. WITD-2	97
Table 11. Summary of Safety Performance Evaluation	101
Table A-1. Bill of Materials, Test No. WITD-1	110
Table A-2. Bill of Materials, Test No. WITD-2	111

1 INTRODUCTION

1.1 Background

Portable concrete barriers (PCBs) are often used in applications where it is desired that their deflection during vehicular impacts be limited. Free-standing PCB systems develop their redirective capacity through a combination of various forces and mechanisms, including inertial resistance developed by the acceleration of several barrier segments, lateral friction loads, and the tensile loads developed from the mass and friction of the barrier segments upstream and downstream from the impacted region. Crash testing was performed in accordance with Test Level 3 (TL-3) impact safety standards published in the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [1] upon free-standing F-shape PCBs that are used in many of the Midwest Pooled Fund states and have demonstrated dynamic deflections in excess of 6.6 ft (2.0 m) [2]. For many installations, this deflection is undesirable. Therefore, tie-down systems for anchoring PCB segments have been designed to limit dynamic barrier deflections and restrain barrier segments.

The Midwest Roadside Safety Facility (MwRSF) previously developed and full-scale crash tested a tie-down system for use on concrete bridge decks and with the redesigned F-shape temporary concrete barriers, as shown in Figure 1 [3]. The tie-down system consisted of three 1¹/₈in. (29-mm) diameter Grade 2 (ASTM A307) threaded rods embedded approximately 12 in. (305 mm) into the concrete on the traffic side of each of the redesigned F-shape temporary concrete barriers. The barriers were placed 1 in. (25 mm) away from a concrete bridge deck edge drop-off. During full-scale crash testing, the barrier safely redirected the ³/₄-ton pickup truck with minimal barrier deflections. The barrier system was determined to be acceptable according to the TL-3 safety performance criteria presented in National Cooperative Highway Research Program (NCHRP) Report No. 350 [4].

A related study conducted by MwRSF investigated the dynamic performance of epoxy anchors in concrete [5]. As part of that effort, MwRSF conducted dynamic component testing of the 1¹/₈-in. (29-mm) diameter Grade 2 (ASTM A307) threaded rod, with an embedment depth of 5¹/₄ in. (133 mm), was placed in the bolt through tie-down meant for concrete road surfaces. The ultimate shear value obtained during the component tests was determined to be far greater than the nominal shear capacity of the anchor, and the ultimate tension capacity was within one percent of the nominal tension capacity of the concrete strength in the component tests. Therefore, the anchorage design with a 5¹/₄-in. (133-mm) embedment depth utilizing Hilti HIT-RE 500-SD epoxy adhesive was considered an adequate alternative anchorage design for the 1¹/₈-in. (29-mm) diameter rods used in the tie-down temporary concrete barrier tested under NCHRP Report No. 350 TL-3 because the tested capacities met the nominal capacities of the anchorages used in the full-scale crash test.

However, the failure in the tension test created significant concrete damage. This concrete damage would be expected to occur to the bridge decks of real-world installations during severe, high-energy impacts. In addition, the compressive strength of the concrete used in these component tests may have been higher than the typical strength of concrete bridge decks. Thus, a decrease in the anchor capacity would be expected for lower strength concrete. This decrease in strength would likely be offset to some extent by the presence of reinforcing steel in the bridge deck. Thus, it was believed that using the ASTM A307 rod with Hilti HIT-RE 500 or Hilti HIT-RE 500 SD epoxy adhesive with a 5¹/₄-in. (133 mm) embedment depth should provide similar anchorage to the tested

system, but increased deflection and increased deck damage may result. It was also noted that epoxy adhesive manufacturer recommendations for anchor installation should be closely followed to prevent concerns for anchor creep and reductions in anchor capacity. The performance of the reduced embedment depth anchor under a MASH 2016 TL-3 impact conditions was unknown.

A tie-down system for asphalt road surfaces was also developed at MwRSF that utilized three $1\frac{1}{2}$ -in. (38-mm) diameter x $38\frac{1}{2}$ -in. (978-mm) long ASTM A36 steel pins with 3-in. (76-mm) x 3-in. (76-mm) x $\frac{1}{2}$ -in. (13-mm) ASTM A36 steel caps installed in holes on the front face of each barrier segment, as shown in Figure 2 [6]. The tie-down system was then installed in combination with sixteen F-shape barriers on a 2-in. (51-mm) thick asphalt pad and crash tested according to NCHRP Report No. 350 test designation no. 3-11. The results showed that the vehicle was safely contained and redirected, and the test was judged acceptable according to the NCHRP Report No. 350 criteria. Barrier deflections for the system were reduced, and all barriers in the system were safely restrained on the asphalt road surface.

Wisconsin Department of Transportation (WisDOT) currently uses two tie-down anchorages with F-shape PCBs that were successfully developed and crash tested according to NCHRP Report No. 350 TL-3: (1) the bolt through tie-down for use on concrete road surfaces (Figure 1) and (2) the steel pin tie-down for use on asphalt road surfaces (Figure 2). WisDOT desires to continue to have access to these two tie-down anchorages following the MASH 2016 implementation date of December 31, 2019 for longitudinal barriers. However, the increased mass and kinetic energy of the MASH 2009 and 2016 test vehicles has been shown to increase impact loading and dynamic deflection of PCB systems [7]. Thus, a need existed to evaluate these two tie-down anchorages for use with F-shape PCBs under the MASH 2016 criteria and determine if the barrier segment and the tie-down systems have sufficient capacity to constrain barrier motions, define its dynamic deflections, and ensure its safety performance adjacent to vertical drop-offs.

As noted previously, WisDOT in cooperation with MwRSF evaluated the dynamic loading of epoxy anchors [5]. That research suggested there was potential to apply the bolt through tie-down for use on concrete road surfaces with a reduced anchor depth. As such, WisDOT desired to evaluate the bolt through tie-down for use on concrete road surfaces using the minimal anchor embedment depth of $5\frac{1}{4}$ in. (133 mm).

1.2 Objective

The objective of this research was to evaluate the safety performance of the WisDOT F-shape PCB with both the bolt-through, tie-down anchorage system for concrete road surfaces with a reduced embedment epoxy anchorage and the steel pin tie-down anchorage system for asphalt surfaces. Both systems were evaluated according to the TL-3 criteria of MASH 2016.

1.3 Scope

The research objective was achieved through the completion of several tasks. One fullscale crash test was conducted on each F-shape PCB anchorage system according to MASH 2016 test designation no. 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the tie-down anchorages for the F-shape PCB.

Figure 1. Bolt-Through Tie-Down for F-Shape PCB

Figure 2. Steel Pin Tie-Down for F-Shape PCB – Asphalt Road Surface

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as PCBs, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [1]. Note that there is no difference between MASH 2009 and MASH 2016 for most longitudinal barriers, such as the anchored PCB systems tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight lb (kg)	Speed mph (km/h)	Angle deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,270)	62 (100)	25	A,D,F,H,I

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

Only test no. 3-11 was deemed critical for evaluation of the two tie-down anchorage systems for F-shape PCB herein. Test no. 7069-3, found in the Federal Highway Administration (FHWA) report nos. FHWA-RD-93-058 and FHWA-RD-93-064 and performed under MASH TL-3 standards, have indicated that safety-shape barriers can safely redirect 1100C vehicles. In test no. 2214NJ-1, found in MwRSF report no. TRP-03-177-06, MASH test designation no. 3-10 was successfully conducted on a permanent New Jersey shape concrete parapet under NCHRP Project 22-14(2) [8]. In test report no. 607911-1&2, MASH test designation no. 3-10 was also successfully conducted on a free-standing F-shape PCB similar to the barrier used in this study by the Texas A&M Transportation Institute (TTI) [9]. These two tests indicate that safety shape barriers are capable of successfully capturing and redirecting the 1100C vehicle in both a free-standing PCB and permanent concrete parapet applications. Additionally, the increased toe height of New Jersey shape barriers tends to produce increased vehicle climb and instability as compared to the F-shape geometry. Thus, one would expect that the anchored F-shape PCBs evaluated in this study would perform similarly to these previous MASH 1100C vehicle tests in terms of capture and redirection, and it was believed that test designation no. 3-10 with the 1100C vehicle may be deemed noncritical for evaluation of the tie-down anchorages for use with F-shape PCBs. MASH 2016 test designation no. 3-11 was the more critical evaluation test due to concerns for increased barrier loading during 2270P impacts, the need to evaluate the barrier restraint system, and in order to determine dynamic deflection and working width. Thus, only test designation no. 3-11 was conducted on the anchored PCB systems evaluated herein.

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.					
	D. Detached elements, fragments or other debris from the test articles should not penetrate or show potential for penetrating the occupate compartment, or present an undue hazard to other traffic, pedestrian or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.						
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.					
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
Risk		Occupant Impact Velocity Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)			
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix Section A5.2.2 of MASH 2016 for calculation procedure) shou satisfy the following limits:					
		Occupant Ridedown Acceleration Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2016 criteria and the lack of experience and knowledge regarding the performance of the new vehicle types with certain types of hardware could result in unanticipated barrier performance. Thus, any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the PCB system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable.

Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash tests documented herein were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 (W152x23.8) posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm) measured at a height of 25 in. (635 mm). If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH 2016. No static soil test was conducted prior to test no. WITD-1 as the system was evaluated on the concrete tarmac.

For test no. WITD-2, the F-shape PCBs were placed on an asphalt pad placed on an in-situ soil and anchored with steel pins that passed through the barrier and into the asphalt and soil. While no baseline soil test with identical properties was available for direct comparison, a static soil test was still conducted to ensure that the soil beneath the asphalt pad was consistent with previous soils used at MwRSF for MASH testing, as shown in Appendix C. The static test results found that the in-situ soil used for test no. WITD-2 developed higher loads when compared with previous static soil baseline tests used for MwRSF testing. Thus, the in-situ soil was deemed acceptable for evaluation of the anchored PCB system in test no. WITD-2.

3 TEST CONDITIONS

3.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

3.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicles. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicles. The test vehicles were released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [10] was used to steer the test vehicles. A guide flag, attached to the left-front wheels and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicles were towed down the line, the guide flag struck and knocked each stanchion to the ground.

3.3 Test Vehicles

For test no. WITD-1, a 2011 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 4,950 lb (2,245 kg), 5,000 lb (2,268 kg), and 5,154 lb (2,338 kg), respectively. The test vehicle is shown in Figures 3 and 4, and vehicle dimensions are shown in Figure 5. Note that pre-test photographs of the vehicle's undercarriage for test no. WITD-1 are not available.

For test no. WITD-2, a 2010 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,075 lb (2,302 kg), 5,003 lb (2,269 kg), and 5,157 lb (2,339 kg), respectively. The test vehicle is shown in Figures 6 and 7, and vehicle dimensions are shown in Figure 8.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [11] was used to determine the vertical component of the c.g. for the pickup trucks. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicles were suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. for test no. WITD-1 is shown in Figures 5 and 9. The location of the final c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 9 and 10. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

Figure 3. Test Vehicle, Test No. WITD-1

Figure 4. Test Vehicle Pre-Test Interior Floorboard and Occupant Compartment Test No. WITD-1

Date:	5/30/2017		Test Name	e: WI	ГD-1	VIN No:	1D7RB10	SKXAS249	304	
Year:	Year: 2011		Make:		dge	Model: Ram 1500				
Tire Size:	LT265/70R17	7 <u> </u>	ire Inflation Pressur	e: 40	Psi	Odometer:	1	50033		
t Wheel				m Wheel a Track		Vehicle Ge Target Ranges a: <u>77 7/8</u> 78±2 (195 c: 229	ometry - in. (i listed below (1978) b: _ .0±50) (5817) d:	mm) 73 3/4 46 7/8	<u>(1873)</u> (1191)	
				J_i ,		237±13 (60:	20±325)		<u> </u>	
Te				e: 140 5/8 148±12 (370	(3572) f:f:	40 3/8 39±3 (10	(1026) 00±75)			
		\backslash		TIRE DIA		g: 28 1/16 min: 28 ((713) h:	65 1/16 63±4 (157	(1653) 75±100)	
1			// + r +			i: 8 1/8	(206) j:	27 1/4	(692)	
 			Ţ			k:19	(483) I:	28 7/8	(733)	
	(ϕ)	s	=(p)			m: 68 5/8 67±1.5 (17	(1743) n:	68 67±1.5 (1	(1727) 700±38)	
		-	— h —	1		o: <u>46 1/8</u> 43±4 (110	(1172) p:_	4 7/8	(124)	
-	ol	e —	Wfront f	-		q: <u>31 3/8</u>	<u>(797)</u> r:	18 3/8	(467)	
ŀ		c	······	-		s: <u>13</u>	(330) t:	77 1/8	(1959)	
Mass Distribu	ution Ib (kg)					H	Wheel Center leight (Front):	15	(381)	
Gross Static	LF_1399 (6	635) RF	1380 (626)				Wheel Center Height (Rear):	15 1/8	(384)	
	LR_1204 (5	546) RR_	1171 (531)			Clea	Wheel Well rance (Front):	34 3/4	(883)	
100000 D. (2013)						Cle	Wheel Well arance (Rear):	37	(940)	
Weights lb (kg) Curb			Test Inertial		Gross Static		Bottom Frame leight (Front):	13 3/4	(349)	
W-front	2689 (1	220)	2687 (1219)	2779	(1261)		Bottom Frame Height (Rear):	24 1/2	(622)	
W-rear	2261 (1	026)	2313 (1049)	2375	(1077)	E	ingine Type:	Gaso	line	
W-total	4950 (2	245)	5000 (2268)	5154	(2338)	I	Engine Size:	3.7L	V6	
			5000±110 (2270±50)	5165±110	(2343±50)	Transm	ission Type:	Auton	natic	
GVWR Ratings lb		D	Dummy Data				Drive Type:		/D	
Front	3700		Туре:	Hybrid	111		Cab Style:	Quad	Cab	
Rear	ear <u>3900</u> Mass: <u>154</u>		b		Bed Length:	76	"			
Total	6700		Seat Position:	Passen	ger					
Note any damage prior to test: Dent on passenger side of rear bumper. Paint taken off driver side above gas tank cover.										

Figure 5. Vehicle Dimensions, Test No. WITD-1

Figure 6. Test Vehicle, Test No. WITD-2

Figure 7. Test Vehicle Pre-Test Interior Floorboard and Undercarriage, Test No. WITD-2

Date:	12/14/2017	Test Name:	WITD-2	VIN No: 1D7RB1GP4AS121538					
Year:	2010	Make:	Dodge	Model:	el: Ram 1500				
Tire Size:	P275/60R20 114T	Tire Inflation Pressure:	40 Psi	Odometer:	216936				
			M Wheel a Track	Vehicle Geo Target Ranges li	ometry - in. (mm) isted below				
t Wheel Track				a: <u>78</u> ^{78±2 (1950)} c: 229 1/8	(1981) b: 74 3/4 (1899) ⁽⁵⁸²⁰⁾ d: 48 5/8 (1235)				
\downarrow \downarrow				237±13 (602	0±325)				
Te	est Inertial C.M.			e: 141 1/4 148±12 (376	(3588) f: 40 1/8 (1019) 0±300) 39±3 (1000±75)				
A loss		+- q -+ +	TIRE DIA	g: 28 3/8	(721) h: <u>62 3/8 (1584)</u> ⁽¹⁰⁾ 63±4 (1575±100)				
1	ĥ			i: <u>13</u>	(330) j: 24 1/4 (616)				
 + (k: <u>21 1/4</u>	(540) I: <u>29 7/8</u> (759)				
				m: <u>68 5/8</u> 67±1.5 (170	(1743) n: <u>68 1/8 (1730)</u> 00±38) 67±1.5 (1700±38)				
		h		o: <u>46 5/8</u> 43±4 (1100	(1184) p: <u>4 3/8 (111)</u>				
-	d	e f f	-	q: <u>33 1/8</u>	(841) r: <u>21 5/8</u> (549)				
-	Vireur	- c	-	s: <u>14 3/8</u>	(365) t: <u>78 3/8 (1991)</u>				
Mass Distribu	ition lb (kg)			н	Wheel Center eight (Front): <u>15 3/4 (400)</u>				
Gross Static	LF_1461 (663)	RF1426 (647)		ŀ	Wheel Center Height (Rear):15 3/4(400)				
	LR 1149 (521)	RR 1121 (508)		Clear	Wheel Well rance (Front): 35 5/8 (905)				
	10 100 <u> </u>			Clea	Wheel Well trance (Rear): 38 3/8 (975)				
Weights Ib (kg)	Curb	Test Inertial	Gross Static	E	Bottom Frame leight (Front): 18 3/4 (476)				
W-front	2848 (1292)	2794 (1267)	2887 (1310)	B	Bottom Frame Height (Rear): 25 3/4 (654)				
W-rear	2227 (1010)	2209 (1002)	2270 (1030)	E	ngine Type: Gasoline				
W-total	5075 (2302)	5003 (2269)	5157 (2339)	-	ingine Size: 4.71 V8				
		5000±110 (2270±50)	5165±110 (2343±50)	- Transmi	ssion Type: Automatic				
GVWR Ratings Ib Dummy Data				Drive Type: RWD					
Front	3700	Type:	Hybrid II		Cab Style: Quad Cab				
Rear	Rear Mass:		154 lb	E	Bed Length: 76"				
Total	Total <u>6700</u> Seat Position:		Driver						
Note any damage prior to test: NONE									

Figure 8. Vehicle Dimensions, Test No. WITD-2

Figure 9. Target Geometry, Test No. WITD-1

Figure 10. Target Geometry, Test No. WITD-2

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicles' right-side windshield wipers for both tests and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

3.4 Simulated Occupant

For test nos. WITD-1 and WITD-2, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front and left-front seat of the test vehicles, respectively, with the seat belt fastened. The dummy, which had a final weight of 154 lb (70 kg) in both tests, was represented by model no. 572, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

3.5 Data Acquisition Systems

3.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [12].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system for both tests. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

3.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicles. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

3.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the sides of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

3.5.4 Digital Photography

Five AOS high-speed digital video cameras and eleven GoPro digital video cameras were utilized to film test no. WITD-1. Six AOS high-speed digital video cameras and twelve GoPro digital video cameras were utilized to film test no. WITD-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 11 and 12.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon digital still camera was also used to document pre- and post-test conditions for each test.

Figure 11. Camera Locations, Speeds, and Lens Settings, Test No. WITD-1

Figure 12. Camera Locations, Speeds, and Lens Settings, Test No. WITD-2

4 DESIGN DETAILS – TEST NO. WITD-1

The test installation consisted of sixteen 12-ft 6-in. (3.8-m) long WisDOT PCBs in a boltthrough, tie-down configuration for use on concrete. The system was installed with the rear toe of the PCBs placed 1 in. (25 mm) away from the edge of the simulated bridge deck, as shown in Figures 13 through 21. Photographs of the test installation are shown in Figures 22 and 23. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The concrete mix for the barrier sections required a minimum compressive strength of 5,000 psi (34.5 MPa). A minimum concrete cover of 2 in. (51 mm) was specified. Each PCB was reinforced with ASTM A615 Grade 60 rebar. The barrier sections used a connection pin, as shown in Figure 15. Each connection pin measured 28 in. (711 mm) in length, 1¹/₄ in. (32 mm) in diameter, and was used to interlock the ³/₄-in. (19-mm) diameter ASTM A705 Grade 60 connection loop bars, as shown in Figures 15 and 16.

Barrier nos. 5 through 13 were each anchored to the concrete tarmac through the bolt anchor pockets on the front (traffic) side with three 1¹/₈-in. (29-mm) diameter by 12-in. (305-mm) long, ASTM A307 Grade A threaded rods inserted and epoxied with Hilti HIT-RE 500 V3 epoxy into 1¹/₄-in. (32-mm) diameter holes in the concrete tarmac, as shown in Figures 13 and 15. Equivalent strength epoxies and and/or epoxy anchorage configurations could also be used in real-world installations. During installation, the barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints. After slack was removed from all the joints, 1¹/₄-in. (32-mm) diameter holes were drilled for bolt anchors at the bolt anchor pocket locations on the front (traffic) side. The threaded rod anchors were embedded to a depth of 5¹/₄ in. (133 mm), as shown in Figure 15.

Figure 13. System Layout, Test No. WITD-1

Figure 14. Concrete Barrier Assembly, Test No. WITD-1

Figure 15. Connection and Anchorage Details, Test No. WITD-1

Figure 16. Portable Concrete Barrier Details, Test No. WITD-1

Figure 17. Portable Concrete Barrier Details, Test No. WITD-1

Figure 18. Portable Concrete Barrier Details, Test No. WITD-1

Figure 19. Connector Pin Details, Test No.WITD-1

Figure 20. Anchor Components, Test No.WITD-1

Item No.	QTY.	Description	Material Spec	Galvanization Spec	Hardware Guide
a1	16	Portable Concrete Barrier	Min f'c = 5,000 psi [34.5 MPa]	_	SWC09
a2	192	1/2" [13] Dia., 72" [1,829] Long Form Bar	ASTM A615 Gr. 60	-	SWC09*
a3	32	1/2" [13] Dia., 146" [3,708] Long Longitudinal Bar	ASTM A615 Gr. 60	_	SWC09*
a4	48	5/8" [16] Dia., 146" [3,708] Long Longitudinal Bar	ASTM A615 Gr. 60	_	SWC09*
۵5	96	3/4" [19] Dia., 36" [914] Long Anchor Loop Bar	ASTM A615 Gr. 60	_	SWC09*
۵6	32	3/4" [19] Dia., 101" [2,565] Long Connection Loop Bar	ASTM A709 Gr. 70 or A706 Gr. 60	_	SWC09*
۵7	32	3/4" [19] Dia., 91" [2,311] Long Connection Loop Bar	ASTM A709 Gr. 70 or A706 Gr. 60	-	SWC09*
۵8	32	3/4" [19] Dia., 102" [2,591] Long Connection Loop Bar	ASTM A709 Gr. 70 or A706 Gr. 60	-	SWC09*
۵9	15	1 1/4" [32] Dia., 28" [711] Long Connector Pin	ASTM A36	_	FMW02
ь1	27	1 1/8" [29] Dia. UNC, 12" [305] Long Threaded Rod	ASTM A307 Gr. A	**ASTM A153 or B695 Class 55 or F2329	-
b2	27	3"x3"x1/2" [76x76x13] Washer Plate	ASTM A36	**ASTM A123	-
b3	27	1 1/8" [29] Dia. Heavy Hex Nut	ASTM A563A	**ASTM A153 or B695 Class 55 or F2329	-
c1	-	Hilti HIT-RE 500 V3 Epoxy or equivalent	Minimum bond strength for 1 1/8" [29] anchor > 1,650 psi [11 MPa] in uncracked concrete	-	-

30

Included in SWC09 hardware guide designation.
** Component does not need to be galvanized for testing purposes.

	RSF	WI PCB Anchorage Down Test No. WITD-1	SHEET: 9 of 9 DATE: 5/25/2017
Midwest	Roadside Facility	Bill of Materials	DRAWN BY: MES/JEK
Safety		DWG. NAME. WITD-1_R10	SCALE: 1:768 UNITS: in.[mm]

Figure 21. Bill of Materials, Test No.WITD-1

Figure 22. Test Installation Photographs, Test No. WITD-1

Figure 23. Connection and Anchor Pin Details, Test No. WITD-1

5 FULL-SCALE CRASH TEST NO. WITD-1

5.1 Weather Conditions

Test no. WITD-1 was conducted on May 30, 2017 at approximately 1:45 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	81° F
Humidity	21%
Wind Speed	17 mph
Wind Direction	330° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.42 in.
Previous 7-Day Precipitation	0.42 in.

Table 3. Weather Conditions, Test No. WITD-1

5.2 Test Description

Initial vehicle impact was to occur 4 ft $-3^{3}/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 8 and 9, as shown in Figure 24, which was selected using Table 2.7 of MASH 2016. The 5,000-lb (2,268-kg) quad cab pickup truck impacted the bolt-through tie-down PCB system on concrete at a speed of 62.0 mph (99.8 km/h) and at an angle of 25.6 degrees. The actual point of impact was 6.9 in. (175 mm) downstream from the target location. The vehicle came to rest 243 ft -2 in. (74.1 m) downstream from the impact point and 23 ft -10 in. (7.3 m) laterally in front of the traffic facing side of the barrier after brakes were applied.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 25 and 26. Documentary photographs of the crash test are shown in Figures 27 and 28. The vehicle trajectory and final position are shown in Figure 29.

5.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 30 through 36. Barrier damage consisted of contact marks on the front face of the concrete segments, spalling of the concrete, and concrete cracking and fracture. The length of vehicle contact along the barrier was approximately 18 ft -134 in. (5.5 m) which spanned from 5 ft -434 in. upstream from the downstream edge of barrier no. 8 to 314 in. (83 mm) upstream from the downstream end of barrier no. 9.

Figure 24. Impact Location, Test No. WITD-1

TIME	EVENT	
0.000	Vehicle's front bumper contacted barrier no. 8 at 3 ft $- \frac{8^5}{16}$ in. (1.1 m) upstream from the centerline of the joint between barrier nos. 8 and 9.	
0.004	Vehicle's front bumper deformed and right-front tire contacted barrier no. 8.	
0.016	Vehicle's right-front tire rode up barrier no. 8.	
0.018	Vehicle rolled toward barrier.	
0.028	Vehicle's front bumper contacted barrier no. 9.	
0.032	Vehicle's right-front door contacted barrier no. 8, and concrete barrier no. 8 rotated clockwise about vertical axis.	
0.036	Barrier no. 9 twisted counterclockwise about the downstream end.	
0.040	Vehicle yawed away from barrier and pitched upward.	
0.044	Vehicle's right airbag deployed.	
0.046	Vehicle's left airbag deployed.	
0.064	Rear toe of barrier no. 9 spalled between midspan and upstream end of barrier.	
0.074 Rear toe of barrier no. 8 spalled at the midspan of the barrier.		
0.082 Barrier no. 9 cracked at midspan of barrier.		
0.088	0.088 Barrier no. 8 spalled at downstream end.	
0.098	Vehicle's left-front tire became airborne.	
0.120	Occupant's head contacted right-front door's window.	
0.132	Barrier no. 8 cracked between midspan and upstream end of barrier.	
0.172	Vehicle was parallel to system at a speed of 52.6 mph (84.7 km/h).	
0.176	Vehicle's rear bumper contacted barrier no. 8.	
0.180	Vehicle pitched downward.	
0.212	Vehicle's right taillight disengaged and vehicle's right-front tire became airborne.	
0.214	Barrier no. 9 spalled at downstream end.	
0.226	Vehicle's left-rear tire became airborne.	
0.336	Vehicle's right-rear tire became airborne.	
0.346	Vehicle exited system while airborne at a speed of 49.7 mph (80.0 km/h) and	
0.410	angle of 4.4 degrees.	
0.410	Vehicle's right-front tire regained contact with ground.	
0.534	Vehicle's front bumper contacted ground.	
0.580	Vehicle rolled away from barrier.	
0.606	Vehicle's rear regained contact with ground.	
0.790	Vehicle's left-front fire regained contact with ground.	
0.950	Vehicle's right-rear tire regained contact with ground.	
0.994	Vehicle's left-rear tire regained contact with ground.	
1.038	Vehicle's right-rear wheel disengaged and vehicle pitched downward.	

Table 4. Sequential Description of Impact Events, Test No. WITD-1

0.000 sec

0.046 sec

0.098 sec

0.172 sec

0.346 sec

0.790 sec

0.000 sec

0.046 sec

0.120 sec

0.172 sec

0.346 sec

0.790 sec

Figure 25. Sequential Photographs, Test No. WITD-1

Figure 26. Additional Sequential Photographs, Test No. WITD-1

Figure 27. Documentary Photographs, Test No. WITD-1

Figure 28. Additional Documentary Photographs, Test No. WITD-1

Figure 29. Vehicle Final Position and Trajectory Marks, Test No. WITD-1

Figure 30. System Damage - Front, Back, Downstream, and Upstream Views, Test No. WITD-1

Figure 31. System Damage at Impact Location, Test No. WITD-1

Figure 32. System Damage – Barrier No. 8 Traffic Side, Test No. WITD-1

Figure 33. System Damage – Additional Views of Damage on Barrier No. 8 Traffic Side, Test No. WITD-1

Figure 34. System Damage – Barrier No. 9 Traffic Side, Test No. WITD-1

Figure 35. System Damage – Additional Views of Damage on Barrier No. 9 Traffic Side, Test No. WITD-1

Figure 36. System Damage – Barrier Nos. 8 and 9 Non-Traffic Side, Test No. WITD-1

Tire marks were visible on the front face of barrier nos. 8 and 9. The front face of barrier no. 8 also contained extensive spalling, gouging, cracking and fracturing. Two major cracks were found 7 ft $-1\frac{3}{8}$ in. (2.2 m) downstream from the upstream edge of barrier no. 8 and 7 ft $-4\frac{3}{8}$ in. (2.2 m) downstream from the upstream edge of barrier no. 8, which extended across the front, top, and partially down the rear faces of the barrier. An additional major crack was found 4 ft $-2\frac{3}{4}$ in. (1.3 m) upstream from the downstream edge of barrier no. 8, which extended vertically across the front face of the barrier and terminated on the top face 3 ft -10% in. upstream from the downstream end of the barrier. These cracks measured 3 ft $-\frac{1}{2}$ in. (0.9 m), 2 ft $-\frac{97}{8}$ in. (0.9 m), and 2 ft $-\frac{91}{4}$ in. (0.8 m) in length, respectively. Minor cracks were also found across the front face of barrier no. 8 located 4 ft $-4\frac{3}{4}$ in. (1.3 m) downstream from the upstream edge and 2 ft $-1\frac{3}{4}$ in. (0.7 m) upstream from the downstream edge. Concrete spalling with disengaged pieces occurred on the front face of barrier no. 8. One disengaged piece of concrete measured 27³/₄ in. x 10¹/₂ in. x 7⁷/₈ in. (705 mm x 267 mm x 200 mm) and was located 5 ft - 1 in. (1.5 m) downstream from the upstream edge of barrier no. 8. Another disengaged piece of concrete measured 39 in. x 6¹/₂ in. x 10³/₈ in. (991 mm x 165 mm x 264 mm) and was located 3 ft $-7\frac{1}{8}$ in. (1.1 m) upstream from the downstream edge of barrier no. 8. A 30¹/₂-in. (775-mm) long fracture was also found on the front face of barrier no. 8, starting 5 ft -3 in. (1.6 m) downstream from the upstream edge of barrier no. 8 at its base and extending vertically through the entire barrier. A piece of concrete, measuring 29¹/₂ in. x 7⁵/₈ in. x 3 in. (749 mm x 194 mm x 76 mm), disengaged from the back side of barrier no. 8 approximately 6 ft $-3\frac{1}{2}$ in. (1.9 m) upstream from the downstream edge of the barrier.

The front face of barrier no. 9 had similar damage to the front face of barrier no. 8. A major crack originated at the base of the barrier 6 ft – 6½ in. (2.0 m) downstream from the upstream edge of barrier no. 9 and extended vertically $27\frac{1}{2}$ in. (699-mm) across the front and top faces before terminating on the top rear edge. Significant spalling on the front face of barrier no. 9 occurred 1 ft – 1 in. (0.3 m) downstream from the upstream edge, 5 ft – $6\frac{1}{8}$ in. (1.7 m) downstream from the upstream edge, and 2 ft – 8 $\frac{7}{8}$ (0.8 m) upstream from the downstream edge; the disengaged pieces measured 23 in. x $5\frac{1}{8}$ in. x $20\frac{3}{4}$ in. (584 mm x 130 mm x 527 mm), $19\frac{1}{2}$ in. x 13 in. x $6\frac{1}{2}$ in. (495 mm x 330 mm x 165 mm), and $19\frac{1}{4}$ in. x $5\frac{1}{4}$ in. (1.5 m) downstream from the upstream edge of barrier no. 9 which began at the base and continued all the way through the top face. The back side of barrier no. 9 also encountered two major disengaged pieces of concrete, measuring $23\frac{1}{2}$ in. (597 mm) and $65\frac{1}{2}$ in. (1,664 mm) in length, and were found $9\frac{1}{2}$ in. (241-mm) upstream from the downstream edge of barrier no. 9, respectively. The remaining barriers, as well as the joint connection pins between all barriers, showed no damage.

The anchor rods and anchor pockets in barrier nos. 8 and 9 were damaged. Anchor pocket nos. 2 and 3 (middle anchor and downstream pockets) in barrier no. 8 and all three anchor pockets in barrier no. 9 spalled and exposed the anchor pocket rebar loop bars. Anchor rod no. 3 (downstream anchor rod) in barrier no. 8 and anchor rod no.1 (upstream anchor) in barrier no. 9 bent and fractured at the ground line. The anchor pocket no. 2 (middle anchor pocket) exposed rebar loop bar in barrier no. 9 was also deformed downward. Anchor rods and anchor pockets on all remaining barriers remained undamaged.

The maximum lateral permanent set deflection of the barrier system was $8\frac{1}{2}$ in. (216 mm), which occurred at the downstream end of barrier no. 8, as measured in the field. The maximum

lateral dynamic barrier deflection, including barrier rotation of the top of the barrier, was 14.3 in. (363 mm) at the upstream end of barrier no. 9, as determined from high-speed digital video analysis. The working width of the system was found to be 36.8 in. (935 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 37.

Figure 37. Permanent Set Deflection, Dynamic Deflection and Working Width, Test No. WITD-1

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 38 through 43. The maximum occupant compartment intrusions are listed in Table 5 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. The A-pillar (lateral) and side door (above seat) deformed slightly outward, which is not considered crush toward the occupant, is denoted as negative numbers in Table 5, and is not evaluated by MASH 2016 criteria. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

50

Figure 39 Vehicle Damage – Impact Side, Test No. WITD-1

Figure 40. Vehicle Damage – Impact Side, Test No. WITD-1

Figure 41.Vehicle Damage, Windshield Damage Test No. WITD-1

Figure 42. Occupant Compartment Damage, Test No. WITD-1

Figure 43. Undercarriage Vehicle Damage, Test No. WITD-1

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	³ ⁄ ₄ (19)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1/8 (3)	≤ 12 (305)
A-Pillar	1/2 (13)	≤ 5 (127)
A-Pillar (Lateral)	-3/8 (-10)	N/A
B-Pillar	⁵ / ₈ (16)	≤ 5 (127)
B-Pillar (Lateral)	1/2 (13)	<i>≤</i> 3 (76)
Side Front Panel (in Front of A-Pillar)	³ / ₈ (10)	≤ 12 (305)
Side Door (Above Seat)	-2 (-51)	N/A
Side Door (Below Seat)	¹ ⁄4 (6)	≤ 12 (305)
Roof	1/8 (3)	≤4 (102)
Windshield	0 (0)	<i>≤</i> 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	⁵ / ₈ (16)	N/A

Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. WITD-1

Note: Negative values denote outward deformation

N/A – Not applicable

The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. Scraping and contact marks extended the entire length of the vehicle on the right side. The right-rear taillight, the right-rear wheel, the right and left headlights, the front bumper fascia, and the grille disengaged from the vehicle. Numerous dents were found along the right side of the vehicle. The largest dent measured 43¹/₂ in. x 14 in. x 1³/₄ in. (1,105 mm x 356 mm x 44 mm) and was located near the rear edge of the right-front door. No other dent measured more than 20 in. (508 mm) long. Small bends or buckles were found on the right quarter panel, the brake backing plate, the right-rear door, and the right fender. Several larger kinks were visible on the front bumper where impact occurred. A few notable gouges were found on the right quarter panel just behind the right-rear door, one measuring 15 in. (381 mm) in length. Smaller gouges were scattered along the front bumper. The right-front, right-rear, and left-front doors all had gaps along their rear front and top edges. The right-rear door had the largest gap of $3\frac{1}{4}$ in. (83) mm) and the left-front door had the smallest gaps, never surpassing 2 in. (51 mm). Tearing was found near the right-front door, the side wall of the right-front tire, and the right side of the front bumper fascia. The right-front, left-front, and right-rear doors could not open because of their deformations. The windshield had a 25-in. x 6-in. (635-mm x 152-mm) spider-web crack. All other window glass as well as the roof remained undamaged. The left-front and left-rear wheels and doors were undamaged.

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

		Transducer		МАСН 2016
Evaluation Criteria		SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-13.14 (4.01)	-12.75 (3.89)	±40 (12.2)
ft/s (m/s)	Lateral	-20.39 (6.21)	-22.29 (6.79)	±40 (12.2)
ORA	Longitudinal	-6.66	-6.69	±20.49
g's	Lateral	-20.41	-17.46	±20.49
MAX.	Roll	26.3	23.2	±75
ANGULAR DISPL.	Pitch	-13.2	-14.8	±75
deg.	Yaw	-38.9	-38.2	not required
TI ft/s	HIV (m/s)	24.83 (7.57)	25.64 (7.81)	not required
PHD g's ASI		21.42	18.61	not required
		1.32	1.41	not required

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. WITD-1

5.6 Discussion

The analysis of the test results for test no. WITD-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 44. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 4.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. WITD-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

Figure 44. Summary of Test Results and Sequential Photographs, Test No. WITD-1

85

6 DESIGN DETAILS – TEST NO. WITD-2

The test installation consisted of sixteen 12-ft 6-in. (3.8-m) long WisDOT PCBs in a pinned, tie-down configuration for use with asphalt, as shown in Figures 45 through 55. Photographs of the test installation are shown in Figures 56 and 57. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The concrete mix for the barrier sections required a minimum compressive strength of 5,000 psi (34.5 MPa) and a minimum concrete cover of 2 in. (51 mm) was specified for the barriers. Each PCB was reinforced with ASTM A615 Grade 60 rebar. The barrier sections used a connection pin, as shown in Figure 53. Each connection pin measured 28 in. (711 mm) in length, 1¹/₄ in. (32 mm) in diameter, and was used to interlock the ³/₄-in. diameter ASTM A705 Grade 60 connection loop bars, as shown in Figures 49 and 50.

The barrier installation was placed on top of a 2-in. (51-mm) thick asphalt pad composed of NE SPS mix with 52-34 grade binder. The thickness of the asphalt pad was identical to the thickness used in the original NCHRP Report No. 350 evaluation of the steel pin tie-down for asphalt road surfaces. In the original research study, dynamic component testing of steel pins in asphalt was conducted. For these tests, steel pins with diameters of 1.125-in. (28.575-mm) and 1.5-in. (38.1-mm) were tested with 2-in. (51-mm), 4-in. (102-mm), and 6-in. (152-mm) asphalt cover depths. Review of the test data from the component tests with the various asphalt depths found that the amount of asphalt cover had little or no effect on the steel pin performance. Thus, full-scale testing was conducted with a minimal asphalt depth to evaluate the most critical case. A similar approach was applied in this testing. The rear toe of the PCBs were installed 6 in. (152 mm) from the edge of a 36-in. wide x 36-in. deep (914-mm x 914-mm) trench, as shown in Figures 45 through 48. During installation, the barrier segments were pulled in a direction parallel to the longitudinal axis of the system, and slack was removed in all joints. After slack was removed from all the joints, barrier nos. 6 through 14 were each anchored on the traffic side of the barrier with three 38¹/₂-in. long x 1¹/₂-in. diameter (978-mm x 38-mm) ASTM A36 pins driven through the bolt anchor pockets as shown in Figures 48 and 49. The steel anchor pins were embedded to a depth of 32 in. (813 mm), as shown in Figure 46.

Figure 45. System Layout, Test No. WITD-2

April 12, 2019 MwRSF Report No. TRP-03-386-19

Figure 46. System Profile, Test No. WITD-2

Figure 47. System Profile, Test No. WITD-2

Figure 48. Concrete Barrier Assembly, Test No. WITD-2

April 12, 2019 MwRSF Report No. TRP-03-386-19

Figure 49. Connection and Anchorage Details, Test No. WITD-2

Figure 50. Portable Concrete Barrier Details, Test No. WITD-2

Figure 51. Portable Concrete Barrier Details, Test No. WITD-2

Figure 52. Portable Concrete Barrier Rebar Details, Test No. WITD-2

Figure 53. Connector Pin Details, Test No. WITD-2

Figure 54. Anchor Pin Details, Test No. WITD-2

ltem No.	QTY.	Description	Material Specification	Galvanization Specification	Hardware Guide				
a1	16	Portable Concrete Barrier	Min f'c = 5,000 psi [34.5 MPa]	-	SWC09				
a2	192	1/2" [13] Dia., 72" [1829] Long Form Bar	ASTM A615 Gr. 60	-	SWC09*				
a3	32	1/2" [13] Dia., 146" [3708] Long Longitudinal Bar	ASTM A615 Gr. 60	-	SWC09*				
a4	48	5/8" [16] Dia., 146" [3708] Long Longitudinal Bar	ASTM A615 Gr. 60	-	SWC09*				
α5	96	3/4" [19] Dia., 36" [914] Long Anchor Loop Bar	ASTM A615 Gr. 60	-	SWC09*				
a6	32	3/4" [19] Dia., 101" [2565] Long Connection Loop Bar	ASTM A709 Gr. 70 or A706 Gr. 60	=	SWC09*				
۵7	32	3/4" [19] Dia., 91" [2311] Long Connection Loop Bar	ASTM A709 Gr. 70 or A706 Gr. 60	-	SWC09*				
a8	32	3/4" [19] Dia., 102" [2591] Long Connection Loop Bar	ASTM A709 Gr. 70 or A706 Gr. 60	-	SWC09*				
a9	15	1 1/4" [32] Dia., 28" [711] Long Connector Pin	ASTM A36		FMW02				
b1	27	1 1/2" [38] Dia., 38 1/2" [978] Long Anchor Pin	ASTM A36	ASTM A123 ***	FRS01				
b2	27	3"x3"x1/2" [76x76x13] Washer Plate	ASTM A36	ASTM A123 ***	FRS01**				
c1	1	2400"x72"x2" [60,960x183x51] Asphalt Pad	NE SPS Mix with 52-34 Grade Binder	-	-				
 Included in SWC09 hardware guide designation. Included in FRS01 hardware guide designation. Component does not need to be galvanized for testing purposes. 									
WI PCB Anchorage Tie- 11 of 11 Down Date: Test No. WITD-2 1/14/201 Midwest Roadside Safety Facility Bill of Materials DRAWN B MES/JEK/ WITD-2_R12									

Figure 56. Test Installation Photographs, Test No. WITD-2

Figure 57. Connection and Anchor Pin Details, Test No. WITD-2

7 FULL-SCALE CRASH TEST NO. WITD-2

7.1 Static Soil Test

Before full-scale crash test no. WITD-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. While no baseline soil test with identical properties was available for direct comparison, a static soil test was still conducted to ensure that the soil beneath the asphalt pad was consistent with previous soils used at MwRSF for MASH testing, as shown in Appendix C. The static test results found that the in-situ soil used for test no. WITD-2 developed higher loads when compared with previous static soil baseline tests used for MwRSF testing. Thus, the in-situ soil was deemed acceptable for evaluation of the anchored PCB system in test no. WITD-2.

7.2 Weather Conditions

Test no. WITD-2 was conducted on November 22, 2017 at approximately 2:40 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 7.

Temperature	43° F
Humidity	34%
Wind Speed	14 mph
Wind Direction	190° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.06 in.

Table 7. Weather Conditions, Test No. WITD-2

7.3 Test Description

Initial vehicle impact was to occur 4 ft $-3^{3}/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 9 and 10, as shown in Figure 58, which was selected using Table 2.7 of MASH 2016. The 5,003-lb (2,269-kg) quad cab pickup truck impacted the pinned, tie-down PCB system on asphalt at a speed of 62.0 mph (99.8 km/h) and at an angle of 25.1 degrees. The actual point of impact was 4.3 in. (109 mm) downstream from the target location. The vehicle came to rest 160 ft – 4 in. (48.9 m) downstream from the impact point and 8 ft – 11 in. (2.7 m) laterally behind the traffic side of the barrier after brakes were applied.

A detailed description of the sequential impact events is contained in Table 8. Sequential photographs are shown in Figures 59 and 60. Documentary photographs of the crash test are shown in Figure 61. The vehicle trajectory and final position are shown in Figure 62.

Note that the barriers in the system are numbered as 2 through 17. The referenced events, impact, and system damage contained within the report reference the numbers that appear on the physical barriers.

Figure 58. Impact Location, Test No. WITD-2

TIME (sec)	EVENT		
0.000	Vehicle's left-front tire contacted barrier no. 9 at 3 ft $-$ 10.9 in. (1.2 m) upstream from the centerline of the joint between barrier nos. 9 and 10.		
0.002	Vehicle's front bumper contacted barrier no. 9.		
0.018	Barrier no. 9 rotated counterclockwise about its upstream end.		
0.022	Vehicle's grille contacted barrier no. 9 and vehicle yawed away from barrier.		
0.026	Asphalt and soil beneath barriers no. 9 and no. 10 displaced laterally.		
0.042	Barrier no. 10 rotated clockwise about its downstream end.		
0.066	Vehicle's left-front wheel snagged on joint between barrier nos. 9 and 10.		
0.076	Barrier no. 10 cracked on back side between midspan and upstream end of barrier.		
0.086	Barrier no. 10 rolled away from traffic side of system.		
0.110	Concrete barrier no. 11 rotated clockwise about its downstream end.		
0.116	Vehicle's right-front tire became airborne.		
0.122	Barrier no. 11 rolled away from traffic side of system.		
0.174	Barrier no. 12 rotated clockwise about its downstream end.		
0.254	Vehicle was parallel to system at a speed of 46.5 mph (74.8 km/h).		
0.282	Vehicle's right-rear tire became airborne.		
0.348	Vehicle's left-front tire became airborne.		
0.386	Vehicle exited system at a speed of 49.0 mph (78.8 km/h) and angle of 8.2 degrees.		
0.440	Vehicle's left-rear tire became airborne.		
0.492	Asphalt and soil underneath the backside downstream end of concrete barrier no. 9 disengaged from the surrounding soil.		
0.702	Vehicle's right-front tire regained contact with ground.		
0.766	Vehicle's front bumper contacted ground.		
0.872	Vehicle's left-front tire regained contact with ground.		
0.996	Vehicle's left-rear tire regained contact with ground.		
1.020	Vehicle's right-front tire became airborne.		
1.072	Vehicle's right-rear tire regained contact with ground.		
1.174	Vehicle's right-front tire regained contact with ground.		
1.504	Vehicle's right-front tire became airborne.		
1.634	Vehicle's right-front tire regained contact with ground.		

Table 8. Sequential Description of Impact Events, Test No. WITD-2

Figure 59. Additional Sequential Photographs, Test No. WITD-2

Figure 60. Additional Sequential Photographs, Test No. WITD-2

Figure 61. Documentary Photographs, Test No. WITD-2

Figure 62. Vehicle Final Position and Trajectory Marks, Test No. WITD-2

7.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 63 through 70. Barrier damage consisted of contact marks on the front face of the concrete segments, spalling of the concrete, and concrete and asphalt cracking. The length of vehicle contact along the barrier spanned from 7 in. (178 mm) downstream from the centerline of barrier no. 9 to 7 in. (178 mm) downstream from the upstream edge of barrier no. 11.

Tire marks were visible on the front face of barrier nos. 9, 10, and 11. Barrier no. 8 had a 14-in. (356-mm) long crack starting $31\frac{1}{2}$ in. (800 mm) upstream from the downstream end of barrier no. 8. A large vertical crack located 45 in. (1143 mm) downstream from the upstream edge of barrier no. 9 extended along the entire height of the barrier, including 6 in. (152 mm) onto its top surface. Two more vertical cracks on barrier no. 9 extended completely through its top surface, located 22 in. (559 mm) and 28 in. (711 mm) downstream from the centerline, respectively. Barrier no. 10 had a large crack, starting 50 in. (1270 mm) downstream from the upstream edge and 3 in. (76 mm) from the bottom of barrier no. 10, which extended diagonally 16 in. (406 mm) downstream, 13 in. (330 mm) upward, and penetrated through the back side of the barrier. Barrier no. 11 had two major cracks: (1) a vertical crack began 12 in. (305 mm) upstream from the centerline of the barrier and spanned the entire barrier height and (2) a 22-in. (559-mm) long horizontal crack began $9\frac{1}{2}$ in. (241 mm) upstream from the centerline of the barrier.

Barrier nos. 9, 10, and 11 encountered concrete spalling. An 11-in. (219-mm) long piece of concrete, located 11 in. (279 mm) from the base of the barrier, disengaged from barrier no. 9. Another piece of concrete, measuring 23 in. x 5 in. x 2 in. (584 mm x 127 mm x 51 mm) and located at the toe of barrier no. 9 around the farthest downstream anchor pin, disengaged from barrier no. 9 and exposed the steel reinforcement. Two pieces of concrete, measuring 20 in. x 9½ in. x 4 in. (508 mm x 241 mm x 102 mm) and 28 in. x $4\frac{1}{2}$ in. x 2 in. (711 mm x 114 mm x 51 mm), disengaged from the toe of barrier no. 10. The steel reinforcement for the anchor pockets approximately 16 in. (406 mm) downstream from the upstream edge of barrier no. 10 and 32 in. (813 mm) upstream from the downstream edge of barrier no. 10 were exposed.

A piece of concrete at the front-upstream corner of barrier no. 10 disengaged beginning 12 in. (305 mm) from the base of barrier no. 10 and extending to the top. Spalling was found on barrier no. 11 along its upstream edge. Anchor pocket reinforcement was exposed 18 in. (457 mm) downstream from the upstream edge of barrier no. 11. However, the spalling found on barrier no. 11 was much less significant than the spalling found on barrier nos. 9 and 10. The joint connection pin located between barriers nos. 9 and 10 was bent at the top and bottom, as shown in Figure 67. The joint connection pins located between all other barriers were undamaged.

All three anchor pockets on barrier no. 8 were undamaged. The three anchor pins on barrier nos. 8 and 9 were displaced vertically. Anchor pin nos. 2 and 3 (middle and downstream anchor pins) on barrier no. 9 were also displaced laterally in the asphalt. All three anchor pins on barrier no. 10 were displaced vertically and laterally in the asphalt. The three anchor pins on barrier no. 11 were displaced vertically while anchor pin nos. 1 and 2 (upstream and middle anchor pins) were also displaced laterally in the asphalt. The remaining anchor pins and anchor pockets were undamaged.

Figure 63. System Damage – Front, Back, Downstream, and Upstream Views, Test No. WITD-2

Figure 64. System Damage at Impact Location, Test No. WITD-2

Figure 65. Barrier No. 10 Barrier Damage, Test No. WITD-2

83

Figure 66. Barrier No. 9 Barrier Damage, Test No. WITD-2

84

Figure 67. Barrier Nos. 9 and 10 Connection Pin Damage, Test No. WITD-2

Figure 68. Barrier No. 10 Asphalt Pin Damage and Displacement, Test No. WITD-2

Figure 69. Barrier No. 9 Asphalt Pin Damage and Displacement, Test No. WITD-2

Figure 70. Barrier Joint Snag, Test No. WITD-2

Cracking in the asphalt and lateral soil displacement adjacent to the vertical drop off was extensive. The largest asphalt crack was 19 ft – 10 in. (6.0 m) long, which began 9 in. (229 mm) upstream from the centerline of barrier no. 9 and ended 2 in. (51 mm) downstream from barrier no. 10. In this area, all anchor pins were pulled out of the asphalt. Other significant asphalt cracks were found at the rear of barrier no. 8, measuring 8 ft – 2 in. (2.5 m) long, and at the toe of barrier no. 10 near the centerline, measuring 8 ft – 7 in. (2.6 m) long. The asphalt and soil disengaged at many different locations behind barrier nos. 9 and 10, totaling almost 15 ft (4.6 m) in length. Smaller asphalt cracks were also found behind and underneath barrier no. 11.

The maximum lateral permanent set deflection of the barrier system was 14³/₈ in. (365 mm), which occurred at the downstream end of barrier no. 9, as measured in the field. The maximum lateral dynamic barrier deflection, including barrier rotation of the top of the barrier, was 24.5 in. (623 mm) at the upstream end of barrier no. 10, as determined from high-speed digital video analysis. The working width of the system was found to be 47.0 in. (1195 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 71.

Figure 71. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.WITD-2

7.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 72 through 76. The maximum occupant compartment intrusions are listed in Table 9 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. The side door (above seat and below seat) deformed outward, which is not considered crush toward the occupant, is denoted as negative numbers in Table 9, and is not evaluated by MASH 2016 criteria. Note that the maximum wheel well and toe pan deformation of 13¹/₂ in. (343 mm) exceeded the MASH 2016 intrusion limit of 9 in. (229 mm). In addition to exceeding the maximum toe pan and wheel well intrusion criteria, the intrusion of the wheel rim led to several tears in the floor pan. Thus, the occupant compartment intrusion limits were violated, which resulted in the failure of test no. WITD-2 to meet the MASH 2016 criteria. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. The left side of the front bumper was crushed inward and backward to a depth of 17 in. (432 mm) and the right side of the front bumper bent upward 4 in. (102 mm). The left side of the front bumper cover was ripped off starting 21 in. (533 mm) from the center. The vehicle grille completely detached, leaving a 2¹/₂-in. x 6-in. (64-mm x 152-mm) piece at the attachment point to the right of the center point. Both headlights were crushed. The left-front fender was crushed and almost disengaged from the vehicle, but remained attached at two points. The left-front wheel assembly was detached and crushed into the wheel well and toe pan. The toe pan on the left side of the vehicle deformed upward into the brake pedal and contained multiple tears, as shown in Figure 76. The left-rear wheel assembly had scrapes along the outer circumference of the rim and a 3-in. x 4-in. (76-mm x 102-mm) I-shaped puncture in the tire. The left rocker panel had a 48-in. (1,219-mm) long x 6-in. (152-mm) wide x 2-in. (51-mm) deep indentation. The left-front door was also deformed and rotated slightly counter-clockwise. The right-front fender was bent away from the front bumper. Cracking in the windshield began in the lower-right corner and expanded outward in a spider web formation. The side windows, roof, and rest of the right side remained undamaged.

Figure 72. Vehicle Damage, Test No. WITD-2

91

April 12, 2019 MwRSF Report No. TRP-03-386-19

Figure 73. Vehicle Damage, Windshield Damage Test No. WITD-2

Figure 74. Vehicle Damage, Test No. WITD-2

Figure 75. Vehicle Undercarriage Damage, Test No. WITD-2

April 12, 2019 MwRSF Report No. TRP-03-386-19

Figure 76. Occupant Compartment Damage, Test No. WITD-2

95

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	131⁄2 (343)	≤ 9 (229)
Floor Pan & Transmission Tunnel	7¾ (197)	≤ 12 (305)
A-Pillar	31/8 (79)	≤ 5 (127)
A-Pillar (Lateral)	1/2 (13)	≤3 (76)
B-Pillar	11/8 (29)	≤ 5 (127)
B-Pillar (Lateral)	1/2 (13)	≤3 (76)
Side Front Panel (in Front of A-Pillar)	45/8 (117)	≤ 12 (305)
Side Door (Above Seat)	-31/2 (-89)	N/A
Side Door (Below Seat)	-31/2 (-89)	N/A
Roof	13/8 (35)	≤ 4 (102)
Windshield	0 (0)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	47/8 (124)	N/A

Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. WITD-2

Note: Negative values denote outward deformation N/A - Not applicable

7.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 10. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 10. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

		Transducer		MASH 2016	
Evaluati	on Criteria	SLICE-1	SLICE-2 (primary)	Limits	
OIV	Longitudinal	-23.25 (-7.09)	-23.88 (-7.28)	±40 (12.2)	
ft/s (m/s)	Lateral	15.16 (4.62)	19.10 (5.82)	±40 (12.2)	
ORA	Longitudinal	-9.52	-9.68	±20.49	
g's	Lateral	10.05	8.71	±20.49	
MAX.	Roll	-2.4	6.4	±75	
ANGULAR DISPL.	Pitch	-11.8	-10.5	±75	
deg.	Yaw	31.6	31.7	not required	
T ft/s	HIV (m/s)	30.09 (9.17)	29.64 (9.04)	not required	
Р	YHD g's	10.30	10.37	not required	
l	ASI	1.51	1.54	not required	

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. WITD-2

7.7 Discussion

The analysis of the test results for test no. WITD-2 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 77. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment in the wheel well, toe pan, and floor pan exceeded deformation limits in MASH 2016. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 8.2 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. WITD-2 was determined to be unacceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

While the vehicle was captured and redirected successfully in test no. WITD-2, excessive occupant compartment deformations observed in the test caused it to be deemed a failure. Further review of the test results found that wheel snag on the joint between the anchored PCB segments contributed to the excessive occupant compartment deformations. In test no. WITD-2, the impact point was selected to maximize vehicle snag and loading of the barrier joint. During the impact, the asphalt and a portion of the soil next to the excavated trench behind the system was disengaged, which allowed increased motion of the PCB segments. It is believed that the increased barrier

deflection caused by displacement of the asphalt and soil allowed upstream barriers impacted by the vehicle to deflect/rotate back laterally, while the downstream barriers remained anchored with limited displacement. This exposed the upstream face of the downstream barrier segments and promoted snagging of the wheel and tire as it traversed the joints between barrier segments, as shown in Figure 70. The front tire climbed the toe of the PCBs as well, which increased the exposure of the upstream faces of the downstream barriers to the wheel. This wheel snag may have occurred at the joint between barrier nos. 9 and 10, the joint between barrier nos. 10 and 11, or a combination of snag at both joints. Review of the accelerometer data from the 2270P vehicle found that there were increases in the longitudinal acceleration pulses between 65 msec and 90 msec that would correlate with the timing of the wheel traversing the joint between barrier nos. 9 and 10.

The wheel snag rotated the left-front wheel 90 degrees and pushed it back toward the floor pan of the pickup. This in turn caused excessive toe pan deformations, opened a hole in the floor pan, and allowed a portion of the wheel rim to penetrate the occupant compartment, as shown in Figure 76. The combination of the excessive occupant compartment deformations, opening of the floor pan, and penetration of the wheel rim into the occupant compartment led to the test being deemed unacceptable under the MASH TL-3 safety requirements.

After the test, it was noted that test no. WITD-1, conducted on a bolted-through tie-down anchorage for the F-shape PCB used on concrete, had less severe wheel snag and was capable of meeting MASH 2016 TL-3 criteria. It was believed that the epoxied anchor rods used in that system more effectively reduced motion of the barrier, thus lessening the joint separation and wheel snag severity. As such, MwRSF researchers believe that there may be ways to improve the barrier performance from test no. WITD-2 to mitigate the wheel snag. Potential options to improve the asphalt pin tie-down anchorage performance include increasing the offset of the barriers from the excavation or introducing a shear transfer element at the joint that prevents the joint separation.
State of the second sec				Constant of the second	· · ·	The second second	
							THE S
		self and		S. L. C.		AN PORT	
		A.		* .	all and the second second	the second	
0.000 sec	0.110 sec	0.250 sec		0.364 sec	e 2	0.492 s	ec
	160'-4" [48.9 m]						
	8'-11" [2.7 m]						
<u> </u>							
16'-9" [5.1 m]	Jan			32"[813	5]		
Futt Box							
				-			
Test Agency		MwRSF		2"[51]	Antonin	77	
Test Number		WITD-2					
Date		/22/2017					
MASH 2016 Test Designation No	Direct Tic Door E Ch						
Test Article	200 ft	(61.0 m)		32"[813	5]		
Key Component – E-Shape PCB		(01.0 III)					
Length	12 ft – 6 in	(3.8 m)					
Width	$22^{1/2}$ in (5	572 mm)			Ų		
Height		• • • • •	Vehicle Damage.				Moderat
Key Component – Anchor Pins		,	VDS [13]				11-LFQ-
Pin Size	1 ¹ / ₂ -in. (38-mm) diameter s	steel pins	CDC [14]	anian Dafammatian		1.21/	. 11-LYEW-
Pin Material	AS'	TM A36	Tost Article Dom	erior Deformation.			Moderat
Pin Length		978 mm)	Maximum Test A	rticle Deflections			Wioderat
Embedment Depth		813 mm)	Permanent Se	tucie Deficicions		143%	in (365 mm
Number of Pins per Barrier			Dynamic				in. (622 mm
Tupe of Support Surface	2 in (51 mm) thick as	0-14 shalt pad	Working Wid	lth			n. (1,194 mm
Soil Type	In Situ I ow Plast	icity Silt	Transducer Data				
Vehicle Make /Model	2010 Dodge R	am 1500			Trans	ducer	MACILO
Curb	5 075 lb (2	(302 kg)	Evaluatio	on Criteria	SLICE 1	SLICE-2	Limit
Test Inertial		(2.269 kg)			SLICE-1	(primary)	Linin
Gross Static		,339 kg)	OIV	Longitudinal	-23.25 (-7.09)	-23.88 (-7.28)	±40 (12.)
Impact Conditions			ft/s (m/s)	Lateral	15.16 (4.62)	19.10 (5.82)	±40 (12.2
Speed		.8 km/h)	ORA	Longitudinal	-9.52	-9.68	±20.49
Angle		25.1 deg.	g's	Lateral	10.05	8.71	±20.49
Impact Location	ft - 10.9 in. (1191.3 mm) upstream from jo	oint 9-10	MAX	Roll	-2.4	6.4	±75
Impact Severity 115.3 kip-ft (156	0.3 kJ > 106 kip-ft (144 kJ) limit from MAS	SH 2016	ANGULAR	Pitch	-11.8	-10.5	±75
Exit Conditions	40.0 - 1 (70	9 1 m /h)	deg	Yaw	31.6	31.7	not requir
Speed		.o KIII/II) 8.2 deg	THIV –	ft/s (m/s)	30.09.(9.17)	29 64 (9 04)	not requir
Exit Box Criterion		Pass	PHD	-g's	10.30	10 37	not requir
	Sat	isfactory	A	SI	1.51	1.54	not requir
Vehicle Stability	•						

Figure 77. Summary of Test Results and Sequential Photographs, Test No. WITD-2

66

April 12, 2019 MwRSF Report No. TRP-03-386-19

8 SUMMARY AND CONCLUSIONS

This research effort assessed the crashworthiness of two different tie-down anchorages for F-shape PCBs in accordance with MASH 2016 TL-3 evaluation criteria: (1) a bolt-through tiedown for use on concrete road surfaces and (2) a steel pin tie-down for use on asphalt road surfaces. Both systems used a 32-in. (813-mm) tall by 22¹/₂-in. (572-mm) wide by 12-ft 6-in. (3.8-m) long F-shape PCB with a pin and loop connection and anchor pockets in the toe of the barrier. The bolt through tie-down for concrete road surfaces used 1¹/₈-in. (29-mm) diameter by 12-in. (305-mm) long, ASTM A307 Grade A threaded rods embedded and epoxied into the concrete to a depth of 5¼ in. (133 mm). Three rods were installed through the anchor pockets on the traffic-side face of each PCB segment. For the testing, the PCBs were installed with the back of the barrier 1 in. (25 mm) from the edge of a simulated bridge deck. The steel pin tie-down for use on asphalt road surfaces used 1¹/₂-in. (38-mm) diameter steel pins installed through the anchor pockets on the traffic-side face of each PCB segment. The pins were driven through a 2-in. (51-mm) thick layer of asphalt and into the soil to a depth of 32 in. (813 mm). The PCB segments for the asphalt tiedown anchorage were installed with the back of the barrier 6 in. (152 mm) from the edge of a 3-ft (914-mm) deep vertical trench. MASH 2016 test designation no. 3-11 was conducted on each anchored PCB system in order to evaluate its performance. Test no. WITD-1 was conducted on the bolt-through tie-down for use on concrete road surfaces, and test no. WITD-2 was conducted on the steel pin tie-down for use on asphalt road surfaces. A summary of the test results is shown in Table 11.

In test no. WITD-1, the 2270P pickup truck impacted the barrier at a speed of 62.0 mph (99.8 km/h), an angle of 25.6 degrees, and a location 3 ft $- 8^{3}/_{16}$ (1.1 m) upstream from the centerline of the joint between barrier nos. 8 and 9, thus resulting in an impact severity of 119.7 kip-ft (162.3 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 49.7 mph (80.0 km/h) and an angle of 4.4 degrees. The vehicle was safely contained and redirected by the anchored PCB system. Barrier damage was moderate and consisted of cracking and spalling of the concrete barrier as well as fracturing of two of the threaded rod anchors. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 14.3 in. (363 mm) at the upstream end of barrier no. 9, while the working width of the system was found to be 36.8 in. (935 mm). The maximum lateral permanent set deflection of the barrier system was 8¹/₂ in. (216 mm) at the downstream end of barrier no. 8. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. WITD-1 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-11.

Evaluation Factors	E	valuation Criteria		Test No. WITD-1	Test No. WITD-2
Structural Adequacy	A. Test article shou bring the vehic should not per installation alth- the test article is	ld contain and redi le to a controlled netrate, underride, ough controlled lat acceptable.	rect the vehicle or stop; the vehicle or override the eral deflection of	S	S
	 D. 1. Detached eler the test article s for penetrating t an undue haza personnel in a w 2. Deformations 	nents, fragments or hould not penetrate he occupant compa rd to other traffic ork zone. of, or intrusions i	other debris from or show potential rtment, or present c, pedestrians, or nto, the occupant	S S	S U
	compartment sh Section 5.2.2 an	ould not exceed l d Appendix E of M.	imits set forth in ASH 2016.		
	F. The vehicle sho collision. The m to exceed 75 deg	uld remain upright aximum roll and pi grees.	during and after tch angles are not	S	S
Occupant Risk	H. Occupant Impac Section A5.2.2 procedure) shou	t Velocity (OIV) of MASH 2016 d satisfy the follow	(see Appendix A, 5 for calculation ing limits:		
	Component Longitudinal a	pant Impact Velocit Preferred and 30 ft/s (9.1 m/s)	y Limits Maximum 40 ft/s (12.2 m/s)	S	S
	I. The Occupant Appendix A, S calculation proc limits:	Ridedown Accelera ection A5.2.2 of edure) should sati	ation (ORA) (see MASH 2016 for sfy the following	S	S
	Occupan	Ridedown Acceler	ation Limits	5	5
	Component	Preferred	Maximum		
	Longitudinal a	20.49 g's			
	MASH 2016 Te	st Designation No.		3-11	3-11
	Final Evaluati	on (Pass or Fail)		Pass	Fail

Table 11.	Summary	of Safety	Performance	Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

In test no. WITD-2, the 2270P pickup truck impacted the barrier at a speed of 62.0 mph (99.8 km/h), an angle of 25.1 degrees, and a location 3 ft -10% in. (1.2 m) upstream from the centerline of the joint between barrier nos. 9 and 10, thus resulting in an impact severity of 115.3 kip-ft (156.3 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 49.0 mph (78.9 km/h) and an angle of 8.2 degrees. The vehicle was contained and redirected by the anchored PCB system. However, snagging of the left-front wheel was observed at the barrier joints. This snag pushed the wheel back toward the rear of the wheel well and the toe pan causing

high toe pan deformation, opening of the toe pan, and intrusion of a portion of the wheel rim into the occupant compartment. The maximum lateral dynamic barrier deflection, including barrier rotation, was 24.5 in. (622 mm) at the upstream end of barrier no. 10, while the working width of the system was found to be 47.0 in. (1,195 mm). The maximum lateral permanent set deflection of the barrier system was 14³/₈ in. (365 mm), which occurred at the downstream end of barrier no. 9. All occupant risk values were found to be within limits. However, the wheel well and toe pan were deformed a maximum of 13¹/₂ in. (343 mm), which exceeded the MASH 2016 deformation limit of 9 in. (229 mm). The combination of the excessive occupant compartment deformations, opening of the floor pan, and the penetration of the wheel rim into the occupant compartment led to the test being deemed unacceptable under the MASH 2016 TL-3 safety requirements. Subsequently, test no. WITD-2 was determined to be unacceptable according to the safety performance criteria for MASH 2016 test designation no. 3-11.

As with any system that is successfully evaluated for use on the roadway, the bolt-through tie-down system for use on concrete road surfaces has several important points that should be noted with respect to its application.

- 1. The threaded rods used to anchor this system were epoxied into the concrete to a depth of 5¼ in. (133 mm) using Hilti HIT-RE 500 V3 epoxy. Other epoxies may be used if they have equal or greater bond strength. Similarly, deeper embedment could be applied to achieve equivalent shear and tensile capacities. Thus, it is recommended that alternative epoxy anchorage configurations for use with this system be capable of developing the same shear and tensile strengths of the 1½-in. (29-mm) diameter ASTM A307 Grade A threaded rod anchored with the Hilti HIT-RE 500 V3 epoxy to a depth of 5¼ in. (133 mm) used in this evaluation.
- 2. For bridge deck applications, the threaded rods could be passed completely through the bridge deck and fixed with a plate washer and nut. This would provide equal or greater anchorage to the epoxy anchored system evaluated herein. A 3-in. by 3-in. by ¹/₄-in. (76-mm by 76-mm by 6-mm) plate washer is recommended.
- 3. The termination and anchorage system described herein was designed for use with the pinned tie-down F-shape PCB system. Therefore, it should not be used with other PCB systems or joint designs without further study. Although this termination and anchorage system may potentially be adapted to other approved temporary concrete barrier systems, it is first necessary to consider several factors, such as barrier connections, segment lengths, reinforcement, and geometry, as noted below.
 - a. Joints between barrier segments must have comparable or greater torsional rigidity about the longitudinal barrier axis when compared to that of the as-tested configuration.
 - b. Alternative barrier segment lengths would be acceptable as long as they are at least 12¹/₂ ft (3.8 m) long and utilize an equivalent or greater number of anchors per foot of barrier length. With shorter barrier lengths, it is believed that additional barrier rotation may occur due to the greater number of joints, thus resulting in the propensity for increased climb and rollover.

- c. Alternative barrier segments should have comparable mass per unit length.
- d. The reinforcement in the alternative barrier segments should be equal or greater than the F-shape barrier described herein. This reinforcement recommendation is to include the longitudinal steel, shear stirrups, and containment steel bars surrounding the anchor boxes used with the vertical anchor rods.
- e. The shape of alternative barrier segments may require further study. Past research has shown that the different barrier shapes produce variation in vehicle climb, pitch, and roll. Therefore, further study may be needed to assure safe performance when applying the designs to other barrier shapes.
- 4. End users may wish to apply the anchorage shown on both sides of the system to create an anchored PCB system in a median or two-way traffic application. However, the researchers cannot recommend using anchorage on both sides of the PCB without further research and evaluation. Placing anchorage on the back side of the barrier may induce increased tipping of the barrier segments which could increase the potential for vehicles to climb the sloped barrier face and become unstable.
- 5. The threaded rod anchorage evaluated in test no. WITD-1 is not intended for use on concrete surfaces with asphalt overlays. Extension of the epoxied anchors through several inches of asphalt will change the anchor loading from primarily shear and tensile loads to bending loads. This will cause increased anchor failure and may adversely affect the behavior of the system.

Additional research is needed to revise the asphalt pin anchorage evaluated in test no. WITD-2 to reduce the wheel snag and corresponding occupant compartment damage that resulted in the crash test failure. As noted previously, various modifications may improve the performance of the barrier, which include increasing the barrier offset from the excavation or introducing a shear transfer element at the joint that prevents joint separation.

9 MASH EVALUATION

A bolt-through tie-down anchorage for use with an F-shape PCB installed on a concrete road surface was evaluated to determine its compliance with MASH 2016 TL-3 evaluation criteria. This barrier system consisted of a 32-in. (813-mm) tall by 22¹/₂-in. (572-mm) wide by 12-ft 6-in. (3.8-m) long F-shape PCB with a pin and loop connection and anchor pockets in the toe of the barrier. The bolt-through tie-down for concrete road surfaces used 1¹/₈-in. (29-mm) diameter by 12-in. (305-mm) long, ASTM A307 Grade A threaded rods embedded and epoxied into the concrete to a depth of 5¹/₄ in. (133 mm). Three threaded rods were installed through anchor pockets on the traffic-side face of each PCB segment. For the testing, the PCBs were installed with the back of the barrier 1 in. (25 mm) from the edge of a simulated bridge deck.

MASH 2016 TL-3 currently requires two full-scale crash tests for evaluation of longitudinal barrier systems. Only test designation no. 3-11 was deemed critical for evaluation of the anchored PCB system. Test designation no. 3-10 with the 1100C vehicle is typically required to evaluate vehicle capture, vehicle stability, and occupant risk concerns for the 1100C vehicle. Previous full-scale crash tests of safety-shape concrete barriers under MASH TL-3 have indicated that safety-shape barriers can safely redirect 1100C vehicles. In test no. 3-10 (2214NJ-1), MASH test designation no. 3-10 was successfully conducted on a permanent New Jersey shape concrete parapet under NCHRP Project 22-14(2) [8]. In test no. 607911-1&2, MASH test designation no. 3-10 was also successfully conducted by TTI on a free-standing F-shape PCB similar to the barrier used in this study [9]. These two tests indicate that safety shape barriers are capable of successfully capturing and redirecting the 1100C vehicle in both free-standing PCB and permanent concrete parapet applications. Additionally, the increased toe height of New Jersey shape barriers tends to produce increased vehicle climb and instability as compared to the F-shape geometry. Thus, one would expect that the anchored F-shape PCBs evaluated in this study would perform similarly to these previous MASH 1100C vehicle tests in terms of containment and redirection, and it was believed that test designation no. 3-10 with the 1100C vehicle was deemed non-critical for evaluation of the tie-down anchorages for use with F-shape PCBs.

Test no. WITD-1 was conducted to evaluate the crashworthiness of the barrier system to MASH 2016 TL-3 evaluation criteria. In test no. WITD-1, the 2270P pickup truck impacted the barrier at a 25.6-degree angle with a speed of 62.0 mph (99.8 km/h), thus resulting in an impact severity of 119.7 kip-ft (162.3 kJ). After impacting the barrier system, the vehicle was parallel to the system at a speed of 52.6 mph (84.7 km/h) and exited the system at a speed of 49.7 mph (80.0 km/h) and an angle of 4.4 degrees. The vehicle was safely contained and redirected by the anchored PCB systems. Barrier damage was moderate and consisted of cracking and spalling of the concrete barrier as well as fracturing of two of the threaded rod anchors. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 14.3 in. (363 mm) at the upstream end of barrier no. 9, while the working width of the system was found to be 36.8 in. (935 mm). The maximum lateral permanent set deflection of the barrier system was 8½ in. (216 mm) at the downstream end of barrier no. 8. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. WITD-1 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-11.

Based on the evaluation of the successful full-scale crash testing in test no. WITD-1 and the review of previous MASH crash testing of similar permanent and portable concrete barriers with a 1100C vehicle, it is believed that the tie-down anchorage for use with an F-shape PCB installed on a concrete road surface meets all of the requirements for compliance with MASH 2016 TL-3.

10 REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH), Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Free-Standing Temporary Barrier – Update to NCHRP 350 Test No. 3-11 with 28" C.G. Height (2214TB-2)*, Report No. TRP-03-174-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 2006.
- 3. Polivka, K.A., Faller, R.K., Rohde, J.R., Holloway, J.C., Bielenberg, B.W., and Sicking, D.L., *Development and Evaluation of a Tie-Down System for the Redesigned F-Shape Concrete Temporary Barrier*, Report No. TRP-03-134-03, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, August 2003.
- 4. Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- Dickey, B.J., Faller, R.K., Rosenbaugh, S.K., Bielenberg, R.W., Lechtenberg, K.A., and Sicking, D.L., *Development of a Design Procedure for Concrete Traffic Barrier Attachments* to Bridge Decks Utilizing Epoxy Concrete Anchors, Report No. TRP 03-264-12, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, November 26, 2012.
- 6. Bielenberg, B.W., Faller, R.K., Rohde, J.R., Reid, J.D., Sicking, D.L., and Holloway, J.C., *Development of Tie-Down and Transition Systems for Temporary Concrete Barrier on Asphalt Road Surfaces*, Report No. TRP-03-180-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, February 2007.
- 7. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Permanent New Jersey Safety Shape Barrier -Update to NCHRP 350 Test No. 3-10 (2214NJ-1)*, Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
- 9. Sheikh, N.M., Menges, W.L., Kuhn, D.L., *MASH TL-3 Testing and Evaluation of Free-Standing Portable Concrete Barrier*, Test Report No. 607911-1&2, Texas A&M Transportation Institute, Texas A&M University, College Station, Texas, May 2017.
- 10. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.

- 11. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 12. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York, New York, July, 2007.
- 13. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 14. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

11 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Specification	Reference
a1	Portable Concrete Barrier	ACI GRADE 1 ASTM C39 Min f'c = 5,000 psi [34.5 MPa]	Project Nebraska Barrier
a2	1/2" [13] Dia., 72" [1,829] Long Form Bar	ASTM A615/A615M-14 GR 60[420] AASHTO M31-07	R#17-328 L#KN1610574101 H#KN16105741 L#KN1610574201 H#KN16105742
a3	1/2" [13] Dia., 146" [3,708] Long Longitudinal Bar	ASTM A615/A615M-14 GR 60[420] AASHTO M31-07	R#17-328 L#KN1610574101 H#KN16105741 L#KN1610574201 H#KN16105742
a4	5/8" [16] Dia., 146" [3,708] Long Longitudinal Bar	A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60(420) AASHTO M31 -07	R#17-328 L#KN1610418601 H#KN16104186 L#KN1610418701 H#KN16104187
a5	3/4" [19] Dia., 36" [914] Long Anchor Loop Bar	A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60(420) AASHTO M31 -07	H#KN16104234 L#KN1610423401
a6	3/4" [19] Dia., 101" [2,565] Long Connection Loop Bar	ASTM A706/A706M-09b GR60 [420]	R#17-328 L#KN1610065601 H#KN16100656
a7	3/4" [19] Dia., 91" [2,311] Long Connection Loop Bar	ASTM A706/A706M-09b GR60 [420]	R#17-328 L#KN1610065601 H#KN16100656
a8	3/4" [19] Dia., 102" [2,591] Long Connection Loop Bar	ASTM A706/A706M-09b GR60 [420]	R#17-328 L#KN1610065601 H#KN16100656
a9	1 1/4" [32] Dia., 28" [711] Long Connector Pin	ASME SA36 ASTM A6-14, A36- 14, ASTM A709A, AASHTO M270-12	H#62138817/06
b1	1 1/8" [29] Dia. UNC, 12" [305] Long Threaded Rod	ASTM A307 Gr. A	R#17-513 H#606782
b2	3"x3"x1/2" [76x76x13] Washer Plate	ASTM A36	R#17-568 H#B702406
b3	1 1/8" [29] Dia. Heavy Hex Nut	ASTM A563 Gr. A Heavy Hex	R#17-674 H#C4070634
c1	Hilti HIT-RE 500 V3 Epoxy or equivalent	Minimum bond strength for 1 1/8" [29] anchor > 1,650 psi [11 MPa] in uncracked concrete	TECHNICAL DATA ONLINE

Table A-1. Bill of Materials, Test No. WITD-1

Item No.	Description	Material Specification	Reference
al	Portable Concrete Barrier	ACI GRADE 1 ASTM C39 Min f'c = 5,000 psi [34.5 MPa]	Project Nebraska Barrier
a2	1/2" [13] Dia., 72" [1829] Long Form Bar	ASTM A615/A615M-14 GR 60[420] AASHTO M31-07	L#KN1610574101 H#KN16105741 L#KN1610574201 H#KN16105742
a3	1/2" [13] Dia., 146" [3708] Long Longitudinal Bar	ASTM A615/A615M-14 GR 60[420] AASHTO M31-07	L#KN1610574101 H#KN16105741 L#KN1610574201 H#KN16105742
a4	5/8" [16] Dia., 146" [3708] Long Longitudinal Bar	A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60(420) AASHTO M31 -07	R#17-328 L#KN1610418601 H#KN16104186 L#KN1610418701 H#KN16104187
a5	3/4" [19] Dia., 36" [914] Long Anchor Loop Bar	A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60(420) AASHTO M31 -07	H#KN16104234 L#KN1610423401
аб	3/4" [19] Dia., 101" [2565] Long Connection Loop Bar	ASTM A706/A706M- 09b GR60 [420]	R#17-328 L#KN1610065601 H#KN16100656
a7	3/4" [19] Dia., 91" [2311] Long Connection Loop Bar	ASTM A706/A706M- 09b GR60 [420]	L#KN1610065601 H#KN16100656
a8	3/4" [19] Dia., 102" [2591] Long Connection Loop Bar	ASTM A706/A706M- 09b GR60 [420]	L#KN1610065601 H#KN16100656
a9	1 1/4" [32] Dia., 28" [711] Long Connector Pin	ASME SA36 ASTM A6- 14, A36-14, ASTM A709A, AASHTO M270-12	H#62138817/06
b1	1 1/2" [38] Dia., 38 1/2" [978] Long Anchor Pin	ASTM A36-14/A529-14 Gr. 50	H#2056210
b2	3"x3"x1/2" [76x76x13] Washer Plate	ASTM A36	H#B617195
c1	2400"x72"x2" [60,960x183x51] Asphalt Pad	NE SPS Mix with 52-34 Grade Binder SUPERPAVE TESTING RESULTS SAYS: 64-34	Project Number: 540624

Table A-2. Bill of Materials, Test No. WITD-2

W3716 U.S. HWY 10 • MAIDEN ROCK, WI 54750 (715) 647-2311 800-325-8456 Fax (715) 647-5181 Website: www.wieserconcrete.com

Website. www.weserconcrete.com

CONCRETE TEST RESULTS

	PROJECT	Nebraska Barrier		Testing By:	Jason Hendricks						
CONCRE	TE SUPPLIER	Wieser Concrete		ACI GRADE 1 ASTM C39 5000 PSI Mix							
SET	TEST	POUR DATE	RESULTS	AVERAGE	TEST TYPE						
1	1 2	4/4/2017	8251 8293	8272	14 Day						
2	1 2	4/5/2017	8240 7742	7991	14 Day						
3	1 2	4/6/2017	7209 7418	7314	14 Day						
4	1 2	4/7/2017	9040 8737	8889	14 Day						
5	1 2	4/10/2017	6814 6791	6803	14 Day						
6	1 2	4/11/2017	8475 8340	8408	14 Day						
7	1 2	4/12/2017	8157 8292	8225	14 Day						
8	1 2	4/13/2017	7879 7751	7815	14 Day						

Jason Hendricks Signature

Signature

Figure A-1. Concrete Barriers, Test Nos. WITD-1 and WITD-2

SOLD ADELPHI		IUCO	R			CERTIFIE	ED MILL	TEST F	EPORT		Page:	1	
TO: NEW PR/	AGUE, MN 56071- NL	ICOR STEEL	KANKAK	EE, INC		Ship from MTR #: 0	1: 000149483						-
HIP ADELPHI 411 MAIN O: NEW PR/	A METALS LLC I STREET EAST AGUE, MN 56071-					One Nuce Bourbonr 815-937-	or Way nais, IL 609 3131	914		B.L. N Load N	Date: lumber: lumber:	15-Nov-201 530660 279950	16
laterial Safety Dat	a Sheets are available at www.nucorbar.co	om or by contactin	ig your inside	sales repre	sentative				CHE	MICAL TER	NBM	G-08 January 1, 3	2012
LOT # HEAT #	DESCRIPTION	YIELD P.S.I.	TENSILE P.S.I.	ELONG % IN 8"	BEND	WT% DEF	C Ni	Mn Cr	PMo	S V	Si Cb	Cu Sn	C.
PO# => N1610574101 N16105741	819831 Nucor Steel - Kankakee Inc 13/#4 Rebar 40' 4615M GB420 (Gr60)	67,201 463MP	102,596 a 707MPa	14.9%	ок	-5.8% .028	.37 .21	.99 .16	.015 .055	.042 .009	.20 .001	.29	
PO# =>	ASTM A615/A615M-14 GR 60[420] AASHTO M31-07 Melted 10/06/16 Rolled 10/18/16 819831							5	.54				
(N1610574201 (N16105742	Nucor Steel - Kankakee Inc 13/#4 Rebar 40' A615M GR420 (Gr60) ASTM A615/A615M-14 GR 60(420)	72,534 500MP	107,791 a 743MPa	13.3%	OK	-5.0% .028	.39 .21	.99 .15	.016 .054	.049 .010	.20 .001	.34	
	AASHTO M31-07 Melted 10/06/16 Rolled 10/18/16												
hereby certify that the n the specifications and sta .) Weld repair was not .) Melted and Manufac .) Mercury, Radium, or have not been used i	naterial described herein has been manufactured in acco indarcis listed above and that it satisfies those requireme performed on this material, ured in the United States, Alpha source materials in any form in the production of this material.	rdance with nts.				QUALI	TY RANCE:	Matt Luy	/mes	Mo	of L	your	-

Figure A-2. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2

R#17-328

. .

WI DOT Tie Down Barriers and Rebar

SOLD ADE TO: 411 NEV	ELPHIA METALS I LLC I MAIN ST E W PRAGUE, MN 56071-	NUCOR STEE		KEE, IN	<i>c.</i>	CERTIFI	ED MILL '	TEST F	REPORT	F	Page: 1		
SHIP ADE TO: C/O 174 HAM	ELPHIA METALS LLC D MIDWEST TERMINAL SERVICE 15 165TH ST MMOND, IN 46320-	S				Ship from: MTR #: 00 Nucor Stee One Nucor Bourbonna 815-937-3	00133903 II Kankakee, Way iis, IL 60914 131	Inc.		B.L. Nu Load Nu	Date: 29 mber: 52 mber: 27	-Jul-2010 5039 6710	6
Material Saf	fety Data Sheets are available at www.nuc	orbar.com or by contactin	g your inside	sales repres	entative.						NBN	G-08 January	1, 2012
LOT #	DECODERTION.		PHY	SICAL TES	TS	1	- 1.		CHEN	AICAL TESTS	5	- 1	
HEAT #	DESCRIPTION	YIELD P.S.I.	P.S.I.	ELONG % IN 8"	BEND	WT% DEF	C Ni Mi	Cr	Mo	S V S	Si Cb	Sn	C.E.
PO# =:	-> 818928	00.107											
KN161041	18601 Nucor Steel - Kankakee Inc	69,407 479MPa	105,847 730MPa	10.8%	OK	-3.4%	.41	1.08	.019	.049	.20	.29	
KN 10104	60° A615M GR420 (Gr60) ASTM A615/A615M-15 GR 6 AASHTO M31-07	473101-2 60[420]	1 JOWF A			.000	15	59	.009	.005	.001		
PO# =:	Melted 07/08/16 Roll > 818928	.ed 07/10/16											
KN16104	18701 Nucor Steel - Kankakee Inc	65,863	102,581	15.3%	OK	-4.3%	.39	1.06	.019	.043	.20	.33	
KN161041	187 16#5 Rebar 60' A615M GR420 (Gr60) ASTM A615/A615M-15 GR 6 AASHTO M31-07 Melted 07/08/16 Roll	454MPa 60[420] .ed 07/10/16	707MPa			.039	.17	.13	.053	.009	.001		
J hereby cent the specific 1.) Weld ro 2.) Melted 3.) Mercury have no	intify that the material described herein l cations and standards listed above and the repair was not performed on this material. and abias, or Alpha pource materials in so been used in the production of this mat	has been manufactured in a at it satisfies those requ my form serial.	ccordance wil lirements.	th		QUALITY	E: Mati	t Luyme	s	Matt	Lyn	<u>~</u>	

Figure A-3. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2

O NUCOR O MILL CERTIFICATION DETAILS NSKNK-KANKAKEE, IL a set a set a second set a set a set a Purchase Order #: 818379 Heat #: KN16104234 Customer: ADELPHIA METALS I LLC - NEW PRAGUE Customer Part #: Bill of Lading : 524861 Length: 30'0" Certified By : Matt Luymes Date: 07/12/2016 Lot #: KN1610423401 Tag #: KN1613081042 Grade: ASTM A615/A615M-15 GR 60[420] AASHTO M31-07 Size : # 6(19) RS Divison : NSKNK-Kankakee, IL Melt Date : 07/10/2016 Qty Shipped LBS: 12978 Qty Shipped PCS : 288 Comments: Roll Date : 07/12/2016 **Chemical Properties -Wt.% Physical Properties** Imperial-psi С Mn Si S Ρ Cu Cr Ni Mo Tensile: 102731 0.39 0.020 1.06 0.18 0.048 0.37 0.14 0.19 0.056 Yield: 66178 Elongation (in 8 inches): 14 V Nb Sn .57 Elongation (in 2 inches): 0.0088 0.001 0.019 Bend Test: OK

Carbon Equiv:

I hereby certify that the material described herein has been manufactured in accordance with the specification and standards listed above and that it satisfies those requirements. All melting and manufacturing process were performed in the United States of America unless otherwise noted on the mill test report.

At Lurymes

Matt Luymes, Chief Metallurgist

 $(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{2}) = (\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{2}) = (\mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{2$

Figure A-4. Concrete Barrier Rebar, Test Nos. WITD-1 and WITD-2

SOLD ADELPHI 411 MAIN TO: NEW PRA	A METALS I LLC I ST E AGUE, MN 56071-			R KANKAN	EE, INC	2.	CERTIFIE Ship from:	D MILL	TEST R	EPORT		Page:	1	
SHIP ADELPHI 411 MAIN TO: NEW PRA	A METALS I STREET EAST AGUE, MN 56071-						MTR #: 00 Nucor Stee One Nucor Bourbonna 815-937-3	0011257 el Kankal r Way ais, IL 60 131	0 kee, Inc. 1914		B.L. Nu Load Nu	Date: mber: mber:	24-Mar-201 517112 271351	6
Material Safety Data	a Sheets are available at www.nucorb	ar.com or	by contactin	g your inside	sales repr	esentative.						NBM	G-08 January 1, 2	012
LOT #	DESCRIPTION		MELD	PHY	SICAL TES	STS	110770/	~ /	14	CHE	MICAL TEST	S Ci	10. 1	
HEAT #	DESCRIPTION		P.S.I.	P.S.I.	% IN 8"	BEND	DEF	Ni	Cr	Mo	V	Cb	Sn	C.E.
PO# => KN1610065601 KN16100656	817132 Nucor Steel - Kankakee Inc 3/4" (.7500) Round 24' A706		76,513 528MPa	99,415 a 685MPa	15.8%	ОК		.16 .17	1.12 .10	.010 .071	.021 .061 0	.22 .00	.37	.37
	ASTM A706/A706M-09b GR60 [TEN/YD = 1.3 Melted 02/11/16 Rolled 02/14	420] /16												
		.)	Mor	yh-										
		3/4	2											
I hereby certify that the m the specifications and star 1.) Weld repair was not p 2.) Melted and Manufact 3.) Mercury, Radium, or A	aterial described herein has been manufactured in ndards isiad above and that it satisfies those requerformed on this material, ured in the United States. Alpha source materials in any form	n accordance airements.	with				QUALIT	Y ANCE:	Matt Luy	mes	Mar	the La	ymer_	-

Figure A-5. Concrete Barrier Bar, Test Nos. WITD-1 and WITD-2

				0000000		TOTOTOT	~				14
		CUSTOMER	SHIP TO	CUS	IOMER BILL TO	TEST REPOR	GRADI	3	SHA	PE/SIZE	Page 1/1
ed Ger	DAU	Chai	Iman .	and l	Company	ny	7.00				
S-ML-ST PAUL		P.C	p. ₽;	9730	ð		20'00"	н .		9,300 LB	62138817/06
AINT PAUL, MN 55119		SALES OR 2571711/00	DER 0010		USTOMER MA	TERIAL Nº	SPECI	FICATION / DAT	TE or REVIS	ON	
CUSTOMER PURCHASE ORD 3046178M3	ER NUMBER		BILL OF LA 1332-000003	DING 11395	. DATE 07/29/2	015	ASTM	1709-13A, AASHTI	O M270-12		
CHEMICAL COMPOSITION Ç Ma 0.19 0.75	P. 0.012	\$ 0.027	Şi 0.22	Cu %	Ni % 0.18	Çr 0.18	мо 0.033	¥ 0.003	Nb 0.001	Şn 0.013	
MECHANICAL PROPERTIES	G	i/L ·	Y	ELS .	И	IS	XS		Ň	(Å.	
28.80	8.0	000	1	1.4	4	92 95	49.3	ś		0	
GEOMETRIC CHARACTERISTIC R:R 31.45	5										
HARDENABILITY DI A255 Inch 0.74											
COMMENTS / NOTES	ISA Masufastu	rian processes fo	w this steal which m	w include scrap me	ted in an electric an	furnice					
nd hot rolling, has been performed a rast billets. Silicon killed (deaxidize	t Gerdau St. Paul Mi d) steel. No weld re	ill, 1678 Red Ro	ck Rd., St. Paul, Min	ecsora, USA. All particular or any	roducts produced fro Ilquid alloy which	om strand is		•			
iquid at ambient temperatures during provided by Gerdan - St. Paul Mill w	processing or while ithout the expressed	written consent	aul Mill's possession of Gerdan St, Paul M	Any modification ill negates the valid	to this certification ity of this test report	as					
epon shall not be reproduced except esponsible for the inability of this m	in full, without the e storial to meet specifi	expressed writter fic applications.	n consent of Gerdau S	ie, Paul Mill, Gerda	n St. Paul Mill is no	4					
Roll batch 62138817/06 roll did 7/14 ASME SA36/SA36M-13	2015		*								
	1		ו ך			in and			×		
		22-6]								
		5 11	5								
		2016									
	ove figures alle or	Tilled-ahemite	Mand physical test	records as conta	ined in the perma	nent records of co	ompany. We certify	that these data a	re correct and	in compliance with	
The at		and the second	including the hiller	s, was melted and	i manufactured in	the USA. CMITH	t complies with EN	10204 3.1.			
The ab specifi	ed requirements.	rius-material, i	menerang are owner					177 1			

Figure A-6. Concrete Barrier Connecting Pin, Test Nos. WITD-1 and WITD-2

WI DOT Tie Down Threaded Rod R#17-513

						DATE :	24.03.2017
U	STOMER :	FASTE	NAL COMPAN	IY PURCHASIN	IG IMPORT TRAFI	FIC	
A	RT NAME :	CARBO	ON STEEL ALL	THREADED RO	DS		
IZ	Ε:	1-1/8	" - 7 X 10 FT		DATE :	02.11.2016	
A	RT NO. (Customer) :	47150			REPORT NO. :	M 32	
۸A	ATERIAL/DIA :	28	мм		SHIPPING NO.	120258344 (LO	T#3)
IE/	AT NO. :	60678	2	8	ORDER NO. :	120258344	
0	T QTY. :	40	PCS		LOT NO. :	28 V- 3/16	
Pt	ECIFICATION :	AST	MA 307 GRA	DE A; IA THRE	AD FIT		
U	ANTITY TESTED :	2 PCS					
_							
-	INSPECTION ITEM	1	SPECIF		INSPECTIC	N RESULT	REMARKS
1	INSPECTION ITEM	1	SPECIF Min	ICATION Max	INSPECTIC 1st Sample	2nd Sample	REMARKS
1	INSPECTION ITEM TENSILE (ksi) YIFLD STRENGTH	1	SPECIF Min 60	Max	INSPECTIC 1st Sample 76.4	ON RESULT 2nd Sample 76.5	REMARKS OK
1	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH FLONGATION	1	SPECIF Min 60	ICATION Max	INSPECTIC 1st Sample 76.4	ON RESULT 2nd Sample 76.5	REMARKS OK
1 2 3 4	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS	1 -	SPECIF Min 60 69 - 1	Max Max	INSPECTIC 1st Sample 76.4	ON RESULT 2nd Sample 76.5 86 HBB	REMARKS OK
1 2 3 4 5	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING	1	SPECIF Min 60 69 - 1	ICATION Max 	INSPECTIC 1st Sample 76.4 86 HRB	ON RESULT 2nd Sample 76.5 86 HRB	REMARKS OK OK OK
1 3 4 5 6	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE	1 -	SPECIF Min 60 69 - 1 VIS	ICATION Max - - 00 HRB <u>µ</u> UAL	INSPECTIC 1st Sample 76.4 86 HRB 4 0K	DN RESULT 2nd Sample 76.5 86 HRB 40 0K	REMARKS OK OK OK
1 2 3 4 5 6	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE	1	SPECIF Min 60 69 - 1 VIS	ICATION Max 00 HRB LUAL	INSPECTIC 1st Sample 76.4 86 HRB <u>µ</u> OK	NR RESULT 2nd Sample 76.5 86 HRB <u>µ</u> OK	REMARKS OK OK OK OK
1 3 4 5 6	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE	1 -	SPECIF Min 60 69 - 1 VIS	ICATION Max 000 HRB UAL	INSPECTIC 1st Sample 76.4 86 HRB <u>µ</u> OK	NR RESULT 2nd Sample 76.5 86 HRB <u>µ</u> OK	REMARKS OK OK OK OK
1 2 3 4 5 5	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE	1	SPECIF Min 60 69 - 1 VIS SPECIF	ICATION Max 00 HRB μ UAL	INSPECTIC 1st Sample 76.4 86 HRB <u><u><u></u></u> OK INSPECTIC</u>	NR RESULT 2nd Sample 76.5 86 HRB <u>µ</u> OK NRESULT	REMARKS OK OK OK OK
1 2 3 4 5 5	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE PHYSICAL DIMENSIC	1 -	SPECIF Min 60 69 - 1 VIS SPECIF Min	ICATION Max 000 HRB μ UAL ICATION Max	INSPECTIC 1st Sample 76.4 86 HRB <u>µ</u> OK INSPECTIC 1st Sample	NRESULT 2nd Sample 76.5 86 HRB 4 OK NRESULT 2nd Sample	REMARKS OK OK OK OK
1 2 3 4 5	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches	1 -	SPECIF Min 60 69 - 1 VIS SPECIF Min 1.098"	ICATION Max 00 HRB UAL ICATION Max 1.122"	INSPECTIC 1st Sample 76.4 86 HRB Ц ОК INSPECTIC 1st Sample 1.103"	N RESULT 2nd Sample 76.5 86 HRB μ ΟΚ N RESULT 2nd Sample 1.104"	REMARKS OK OK OK OK REMARKS OK
1 2 3 4 5 5	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches)	1	SPECIF Min 60 69 - 1 VIS SPECIF Min 1.098" 1.019"	CATION Max 00 HRB μ UAL CATION Max 1.122" 1.030"	INSPECTIC 1st Sample 76.4 86 HRB μ ΟΚ INSPECTIC 1st Sample 1.103" 1.020"	N RESULT 2nd Sample 76.5 86 HRB μ ΟΚ N RESULT 2nd Sample 1.104" 1.023"	REMARKS OK
1 2 3 4 5 5	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches PITCH DIA (inches) LENGTH (FT)	1	SPECIF Min 60 69 - 1 VIS SPECIF Min 1.098" 1.019" 10'	CATION Max 00 HRB μ UAL CATION Max 1.122" 1.030" (± 1/8")	INSPECTIC 1st Sample 76.4 86 HRB μ ΟΚ INSPECTIC 1st Sample 1.103" 1.020" 10'	N RESULT 2nd Sample 76.5 86 HRB μ ΟΚ NRESULT 2nd Sample 1.104" 1.023" 10'	REMARKS OK
1 2 3 4 5 5 5	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches) PITCH DIA (inches) LENGTH (FT) GO GAUGE	1	SPECIF Min 60 69 - 1 VIS SPECIF Min 1.098" 1.019" 1.019" 1.0' P/	CATION Max 	INSPECTIC 1st Sample 76.4 86 HRB μ OK INSPECTIC Ist Sample 1.103" 1.020" 10' PASS	N RESULT 2nd Sample 76.5 86 HRB μ ΟΚ N RESULT 2nd Sample 1.104" 1.023" 10' PASS	REMARKS OK
1 2 3 4 5 5 1 2 3 1 2 3 1	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches) PITCH DIA (inches) LENGTH (FT) GO GAUGE	1	SPECIF Min 60 69 - 1 VIS SPECIFI Min 1.098" 1.019" 10" P/	CATION Max 00 HRB μ UAL CATION Max 1.122" 1.030" (± 1/8") ASS ΟΤ PASS	INSPECTIC 1st Sample 76.4 86 HRB μ ΟΚ INSPECTIC 1st Sample 1.020" 10' PASS DOES NOT	N RESULT 2nd Sample 76.5 86 HRB μ ΟΚ N RESULT 2nd Sample 1.104" 1.023" 10' PASS DOES NOT	REMARKS OK OK
	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches) PITCH DIA (inches) LENGTH (FT) GO GAUGE	1	SPECIF Min 60 69 - 1 VIS SPECIF Min 1.098" 1.019" 10' P/ DOES N	CATION Max 	INSPECTIC 1st Sample 76.4 86 HRB μ OK INSPECTIO 1st Sample 1.03" 1.020" 10' PASS DOES NOT	N RESULT 2nd Sample 76.5 86 HRB μ ΟΚ N RESULT 2nd Sample 1.104" 1.023" 10' PASS DOES NOT	REMARKS OK OK
	INSPECTION ITEM TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches) LENGTH (FT) GO GAUGE NO-GO GAUGE)	SPECIF Min 60 69 - 1 VIS SPECIFI Min 1.098" 1.019" 10' P/ DOES N	CATION Max 	INSPECTIC 1st Sample 76.4 86 HRB Щ OK INSPECTIC 1st Sample 1.103" 1.020" 10' PASS DOES NOT PASS	N RESULT 2nd Sample 76.5 86 HRB μ ΟΚ N RESULT 2nd Sample 1.104" 1.023" 10' PASS DOES NOT PASS	REMARKS OK

Figure A-7. 1¹/₈-in. (26-mm) Diameter Threaded Rod, Test No. WITD-1

) RASHTRIYA ISPAT NIGAM LIMITED

)

VISAKHAPATNAM STEEL PLANT QUALITY ASSURANCE & TECHNOLOGY DEVELOPMENT DEPARTMENT VISAKHAPATNAM

							TES	T CERT	IFICATI	3								PA	AGE 1 OF 1		
	DETAILS	7						CUSTOM	ER/DEST	INATION	4		1	AGON/TH	RUCK/TR	AILOR N	UMBERS	R.R. W	VEIGHT (TONS)		
MS/R/QAD/RM/ 710601878	22/1/2016-17/	9710/000	838 DAT	E: 14.09.20	16 MA 15/1 Wes	NGAL STE , 'F' RD, B t Bengal, E	EL ENTE ELGACHL ndia	RPRISES I A " HOWI	LTD, RAH, How	rah-Dist,	:	-		₩BIIC 6764			2	30.670			
NOMINAL	NO. OF				CHEMIC	CAL COM	POSITIO	N				MEC	HANIC/	L PROPE	RTIES		COLC	R	GRADE/		
SIZE (mm)	COILS/ BUNDLES/ BILLETS/	C %	MN %	P %	S %	SI %	AL %	CR	CU %	CE %	YS N/mm ²	UTS N/mm ²	%EL	RA %	BEND TEST	RE- BEND TEST	СОВ	е I	DESIGNATION		
28	8	0.190	0.730	0.019	0.019	0.140	0.013	0.008		0.313	324.000	495.000	28.000	45.000	NA	NA	PINK+ORAN	GE 5	SAE1018		
CIFICATION:																					
с	Mn		P		S		Si		AI		r	Cu		Ce	-	v		TI	B		
0.150 - 0.200	0.600 - 0	.900	<= 0.040	0	<= 0.050	1	= 0.300	0.01	0-0.150	<= (0.050	NA		0.250 - 0.	360						
ICAL 200	VS	3	UTS	-	%EL	5		RA	_												
	MS/R/QAD/RM/ 110601878 NOMENAL SIZE (mm) 28 CIFICATION: C 0.150 - 0.200 ICAL 200	DETAILS MS/R/QAD/RM/22/L/2016-17/ 10601878 NOMINAL NO. OF SIZE COILS/ (mm) BUNDLES/ BLLETS/ BLOOMS 28 8 CFEICATION: C Mn 0.150 - 0.200 0.600 - 0 ICAL YS 20 - 450	DETAILS MS/R/QAD/RM/22/L/2016-17/9710/000 10601878 NOMINAL NO. OF SIZE COILS/ C (mm) BUNDLES/ BILLETS/ % BILDOMS 28 8 0.190 CIFICATION: C Mn 0.150 - 0.200 0.660 - 0.900 ICAL VS	DETAILS MS/R/QAD/RM/22/L/2016-17/9710/000838 DAT NOMENAL NO. OF COILS/ NOMENAL NO. OF MN SIZE COILS/ C MN BLLETS/ % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %	DETAILS MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.20 I10601878 DATE: 14.09.20 NOMINAL NO. OF OATE: 14.09.20 NOMINAL NO. OF OATE: 14.09.20 NOMINAL NO. OF OATE: 14.09.20 ILLETS/ C MN P BILLETS/ % % % 28 8 0.190 0.730 0.019 CIFICATION: C Mn P O.150 - 0.200 0.600 - 0.900 <= 0.040 ICAL VS UTS O.00 S O.019	DETAILS MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MG01878 DATE: 14.09.2016 NOMINAL NO. OF CHEMIC SIZE COILS/ C MN P S BUNDLES/ BUNDLES/ MN P S 28 8 0.190 0.730 0.019 0.019 CIFICATION: C Mn P S 0.150 - 0.200 0.600 - 0.900 <= 0.040	DETAILS MANGAL STE MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STE 15/1, F RD, B West Bengal, b West Bengal, b 110601878 DATE: 14.09.2016 MANGAL STE NOMINAL NO. OF CHEMICAL COM SIZE COILS/ C MN (mm) BUNDLES/ MN P S BILLETS/ % % % % 28 8 0.190 0.019 0.140 CIFICATION: C Mn P S 0.150 - 0.200 0.600 - 0.900 <= 0.040	DETAILS MANGAL STEEL ENTE MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTE 1/16601878 DATE: 14.09.2016 MANGAL STEEL ENTE NOMINAL NO. OF CHEMICAL COMPOSITIO SIZE COILS/ C MN (mm) BUNDLES/ C MN BILLETS/ % % % % 28 8 0.190 0.730 0.019 0.140 0.013 CETCATION: C Mn P S Si Si 0.150 0.200 0.660 - 0.900 <= 0.040	TEST CERT DETAILS CUSTOM MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES I/10601878 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES NOMINAL NO. OF CHEMICAL COMPOSITION SIZE COILS/ C MN P S NOMINAL NO. OF CHEMICAL COMPOSITION SIZE COILS/ C MN P S ILLETS/ % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %	TEST CERTIFICATI DETAILS CUSTOMER/DEST MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, How West Bengal, India NOMINAL NO. OF CHEMICAL COMPOSITION SIZE COILS/ C MN P SI AL CR CU NOMINAL NO. OF CHEMICAL COMPOSITION SIZE COILS/ C MN P S AL CR CUE BUNDLES/ C MN P S SI AL CC Mn P S SI AL CIFICATION: CIFICATION: CIFICATION: CIFICATION: CUTS <th< td=""><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, , HOWRAH, Howrah-Dist, West Bengal, India V10601878 DATE: 14.09.2016 NOMINAL NO. OF CHEMICAL COMPOSITION SIZE COILS/ C MN P S I AL CR CU CE NOMINAL NO. OF CHEMICAL COMPOSITION SIZE COILS/ C MN P S I AL CR BUNDLES/ (mm) BULETS/ BILLETS/ BILLETS/ BILLETS/ 28 S I AL CR C Mn P S i AI C C Mn P S i AI C Mn P S i <th <="" colspan="2" td=""><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA., HOWRAH, Howrah-Dist, West Bengal, India NOMINAL NO. OF CHEMICAL COMPOSITION SI AL CR YS NOMINAL NO. OF CHEMICAL COMPOSITION SIZE CULLS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDOMS O 0.730 0.019 0.140 0.013 324.000 C Mn P SI AL CR VS COILS/ (mm) BILDETS/ BILDOMS Nome 0.313 324.000 C Mn P Si AI Cr Mn P Si AI Cr C Mn P Si</td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09-2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India MOMINAL NO.05 CHEMICAL COMPOSITION MEC NOMINAL NO. 0F CHEMICAL COMPOSITION MEC SIZE COILS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDOMS C MN P S SI AL CR VITS 28 8 0.190 0.730 0.019 0.140 0.013 0.008 </td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION V MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India V NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICA SIZE COILS/ (mm) C MN P S SI AL CR CU CE YS UTS %eEL 8 0.190 0.730 0.019 0.140 0.013 0.008 0.313 324.000 495.000 28.000 CIFICATION: C Mn P S Si AI Cr Cu Ce VS 28 8 0.190 0.730 0.019 0.140 0.013 0.008 0.313 324.000 495.000 28.000 CIFICATION: C Mn P Si AI Cr Cu </td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TI MANGAL STEEL ENTERPRISES LTD, IS/I, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIC 6764 NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPE SIZE COILS/ BILLETS/ BILLETS/ BILLETS/ 28 0.019 0.019 0.140 0.013 0.24.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.0</td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TR MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09-2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIC 6764. NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPERTIES SIZE COILS/ BUNDLES/ BLLETS/ BLLETS/ BLLETS/ 28 C MN P S SI AL CR CU CE YS VEL RA BEND TEST BLLETS/ BLLETS/ BLLETS/ BLLETS/ BLOOMS % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %</td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR N MS/R/QAD/RM/22/J/2016-17/9710/000838 DATE: 14.09.2016 WBIC 6764. NS/R/QAD/RM/22/J/2016-17/9710/000838 DATE: 14.09.2016 WAGON/TRUCK/TRAILOR N WBIC 6764. NOMINAL NO.0.0F CHEMICAL COMPOSITION MECHANICAL PROPERTIES SIZE COILS/ C MMN P S SI AL CR VISTON MECHANICAL PROPERTIES SIZE COILS/ C MIN P S SI AL CE YS UTS VESTER PROFERTIES COILS/ C MIN P S SI AL Cr VE SILLETS' % S</td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR NUMBERS MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIIC 6764. NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPERTIES COLO CODE SIZE COLLS/ COLLS/ C MN P SI AL CR COLO CODE 28 0.190 0.019 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190</td><td>TEST CERTIFICATE P DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR NUMBERS R.R. W MS/R/QAD/RM/22/J/2016-17/9710/0000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIIC 6764. 30.670 NOMINAL NO.00 F CHEMICAL COMPOSITION MECHANICAL PROPERTIES COUR SIZE COLS/ BILDETS/ C MN P SIZE COLS/ BILDETS/ C MIN P S SI AL COLOR COLS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ B</td></th></td></th<>	TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, , HOWRAH, Howrah-Dist, West Bengal, India V10601878 DATE: 14.09.2016 NOMINAL NO. OF CHEMICAL COMPOSITION SIZE COILS/ C MN P S I AL CR CU CE NOMINAL NO. OF CHEMICAL COMPOSITION SIZE COILS/ C MN P S I AL CR BUNDLES/ (mm) BULETS/ BILLETS/ BILLETS/ BILLETS/ 28 S I AL CR C Mn P S i AI C C Mn P S i AI C Mn P S i <th <="" colspan="2" td=""><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA., HOWRAH, Howrah-Dist, West Bengal, India NOMINAL NO. OF CHEMICAL COMPOSITION SI AL CR YS NOMINAL NO. OF CHEMICAL COMPOSITION SIZE CULLS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDOMS O 0.730 0.019 0.140 0.013 324.000 C Mn P SI AL CR VS COILS/ (mm) BILDETS/ BILDOMS Nome 0.313 324.000 C Mn P Si AI Cr Mn P Si AI Cr C Mn P Si</td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09-2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India MOMINAL NO.05 CHEMICAL COMPOSITION MEC NOMINAL NO. 0F CHEMICAL COMPOSITION MEC SIZE COILS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDOMS C MN P S SI AL CR VITS 28 8 0.190 0.730 0.019 0.140 0.013 0.008 </td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION V MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India V NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICA SIZE COILS/ (mm) C MN P S SI AL CR CU CE YS UTS %eEL 8 0.190 0.730 0.019 0.140 0.013 0.008 0.313 324.000 495.000 28.000 CIFICATION: C Mn P S Si AI Cr Cu Ce VS 28 8 0.190 0.730 0.019 0.140 0.013 0.008 0.313 324.000 495.000 28.000 CIFICATION: C Mn P Si AI Cr Cu </td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TI MANGAL STEEL ENTERPRISES LTD, IS/I, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIC 6764 NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPE SIZE COILS/ BILLETS/ BILLETS/ BILLETS/ 28 0.019 0.019 0.140 0.013 0.24.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.0</td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TR MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09-2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIC 6764. NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPERTIES SIZE COILS/ BUNDLES/ BLLETS/ BLLETS/ BLLETS/ 28 C MN P S SI AL CR CU CE YS VEL RA BEND TEST BLLETS/ BLLETS/ BLLETS/ BLLETS/ BLOOMS % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %</td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR N MS/R/QAD/RM/22/J/2016-17/9710/000838 DATE: 14.09.2016 WBIC 6764. NS/R/QAD/RM/22/J/2016-17/9710/000838 DATE: 14.09.2016 WAGON/TRUCK/TRAILOR N WBIC 6764. NOMINAL NO.0.0F CHEMICAL COMPOSITION MECHANICAL PROPERTIES SIZE COILS/ C MMN P S SI AL CR VISTON MECHANICAL PROPERTIES SIZE COILS/ C MIN P S SI AL CE YS UTS VESTER PROFERTIES COILS/ C MIN P S SI AL Cr VE SILLETS' % S</td><td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR NUMBERS MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIIC 6764. NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPERTIES COLO CODE SIZE COLLS/ COLLS/ C MN P SI AL CR COLO CODE 28 0.190 0.019 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190</td><td>TEST CERTIFICATE P DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR NUMBERS R.R. W MS/R/QAD/RM/22/J/2016-17/9710/0000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIIC 6764. 30.670 NOMINAL NO.00 F CHEMICAL COMPOSITION MECHANICAL PROPERTIES COUR SIZE COLS/ BILDETS/ C MN P SIZE COLS/ BILDETS/ C MIN P S SI AL COLOR COLS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ B</td></th>	<td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA., HOWRAH, Howrah-Dist, West Bengal, India NOMINAL NO. OF CHEMICAL COMPOSITION SI AL CR YS NOMINAL NO. OF CHEMICAL COMPOSITION SIZE CULLS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDOMS O 0.730 0.019 0.140 0.013 324.000 C Mn P SI AL CR VS COILS/ (mm) BILDETS/ BILDOMS Nome 0.313 324.000 C Mn P Si AI Cr Mn P Si AI Cr C Mn P Si</td> <td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09-2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India MOMINAL NO.05 CHEMICAL COMPOSITION MEC NOMINAL NO. 0F CHEMICAL COMPOSITION MEC SIZE COILS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDOMS C MN P S SI AL CR VITS 28 8 0.190 0.730 0.019 0.140 0.013 0.008 </td> <td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION V MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India V NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICA SIZE COILS/ (mm) C MN P S SI AL CR CU CE YS UTS %eEL 8 0.190 0.730 0.019 0.140 0.013 0.008 0.313 324.000 495.000 28.000 CIFICATION: C Mn P S Si AI Cr Cu Ce VS 28 8 0.190 0.730 0.019 0.140 0.013 0.008 0.313 324.000 495.000 28.000 CIFICATION: C Mn P Si AI Cr Cu </td> <td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TI MANGAL STEEL ENTERPRISES LTD, IS/I, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIC 6764 NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPE SIZE COILS/ BILLETS/ BILLETS/ BILLETS/ 28 0.019 0.019 0.140 0.013 0.24.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.0</td> <td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TR MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09-2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIC 6764. NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPERTIES SIZE COILS/ BUNDLES/ BLLETS/ BLLETS/ BLLETS/ 28 C MN P S SI AL CR CU CE YS VEL RA BEND TEST BLLETS/ BLLETS/ BLLETS/ BLLETS/ BLOOMS % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %</td> <td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR N MS/R/QAD/RM/22/J/2016-17/9710/000838 DATE: 14.09.2016 WBIC 6764. NS/R/QAD/RM/22/J/2016-17/9710/000838 DATE: 14.09.2016 WAGON/TRUCK/TRAILOR N WBIC 6764. NOMINAL NO.0.0F CHEMICAL COMPOSITION MECHANICAL PROPERTIES SIZE COILS/ C MMN P S SI AL CR VISTON MECHANICAL PROPERTIES SIZE COILS/ C MIN P S SI AL CE YS UTS VESTER PROFERTIES COILS/ C MIN P S SI AL Cr VE SILLETS' % S</td> <td>TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR NUMBERS MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIIC 6764. NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPERTIES COLO CODE SIZE COLLS/ COLLS/ C MN P SI AL CR COLO CODE 28 0.190 0.019 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190</td> <td>TEST CERTIFICATE P DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR NUMBERS R.R. W MS/R/QAD/RM/22/J/2016-17/9710/0000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIIC 6764. 30.670 NOMINAL NO.00 F CHEMICAL COMPOSITION MECHANICAL PROPERTIES COUR SIZE COLS/ BILDETS/ C MN P SIZE COLS/ BILDETS/ C MIN P S SI AL COLOR COLS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ B</td>		TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA., HOWRAH, Howrah-Dist, West Bengal, India NOMINAL NO. OF CHEMICAL COMPOSITION SI AL CR YS NOMINAL NO. OF CHEMICAL COMPOSITION SIZE CULLS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDOMS O 0.730 0.019 0.140 0.013 324.000 C Mn P SI AL CR VS COILS/ (mm) BILDETS/ BILDOMS Nome 0.313 324.000 C Mn P Si AI Cr Mn P Si AI Cr C Mn P Si	TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09-2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India MOMINAL NO.05 CHEMICAL COMPOSITION MEC NOMINAL NO. 0F CHEMICAL COMPOSITION MEC SIZE COILS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDOMS C MN P S SI AL CR VITS 28 8 0.190 0.730 0.019 0.140 0.013 0.008	TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION V MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India V NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICA SIZE COILS/ (mm) C MN P S SI AL CR CU CE YS UTS %eEL 8 0.190 0.730 0.019 0.140 0.013 0.008 0.313 324.000 495.000 28.000 CIFICATION: C Mn P S Si AI Cr Cu Ce VS 28 8 0.190 0.730 0.019 0.140 0.013 0.008 0.313 324.000 495.000 28.000 CIFICATION: C Mn P Si AI Cr Cu	TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TI MANGAL STEEL ENTERPRISES LTD, IS/I, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIC 6764 NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPE SIZE COILS/ BILLETS/ BILLETS/ BILLETS/ 28 0.019 0.019 0.140 0.013 0.24.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.000 45.0	TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TR MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09-2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIC 6764. NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPERTIES SIZE COILS/ BUNDLES/ BLLETS/ BLLETS/ BLLETS/ 28 C MN P S SI AL CR CU CE YS VEL RA BEND TEST BLLETS/ BLLETS/ BLLETS/ BLLETS/ BLOOMS % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %	TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR N MS/R/QAD/RM/22/J/2016-17/9710/000838 DATE: 14.09.2016 WBIC 6764. NS/R/QAD/RM/22/J/2016-17/9710/000838 DATE: 14.09.2016 WAGON/TRUCK/TRAILOR N WBIC 6764. NOMINAL NO.0.0F CHEMICAL COMPOSITION MECHANICAL PROPERTIES SIZE COILS/ C MMN P S SI AL CR VISTON MECHANICAL PROPERTIES SIZE COILS/ C MIN P S SI AL CE YS UTS VESTER PROFERTIES COILS/ C MIN P S SI AL Cr VE SILLETS' % S	TEST CERTIFICATE DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR NUMBERS MS/R/QAD/RM/22/L/2016-17/9710/000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIIC 6764. NOMINAL NO. OF CHEMICAL COMPOSITION MECHANICAL PROPERTIES COLO CODE SIZE COLLS/ COLLS/ C MN P SI AL CR COLO CODE 28 0.190 0.019 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190	TEST CERTIFICATE P DETAILS CUSTOMER/DESTINATION WAGON/TRUCK/TRAILOR NUMBERS R.R. W MS/R/QAD/RM/22/J/2016-17/9710/0000838 DATE: 14.09.2016 MANGAL STEEL ENTERPRISES LTD, 15/1, F RD, BELGACHIA, HOWRAH, Howrah-Dist, West Bengal, India WBIIC 6764. 30.670 NOMINAL NO.00 F CHEMICAL COMPOSITION MECHANICAL PROPERTIES COUR SIZE COLS/ BILDETS/ C MN P SIZE COLS/ BILDETS/ C MIN P S SI AL COLOR COLS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ BILDETS/ B

AVERAGE WEIGHT OF EACH BUNDLE/COIL/BILLET/BLOOM IS 3.834 TONS APPROXIMATELY MANUFACUTRING ROUTE: BOF-LF/IRUT-CCM-BILLETS-ROUND REDUCTION RATIO: 125.28 : 1

र्वावन मी

FOR (QA & TD) VISAKHAPATNAM STEEL PLANT

Figure A-8. 1¹/₈-in. (26-mm) Diameter Threaded Rod, Test No. WITD-1

119

275 Bird Creek A ort of Catoosa, (ng Tulsa Ave. DK 74015					TEST	RE	PORT			DA Tin Usi	TE 03/13 IE 20:13 ER J.DUE	8/2017 3:36 30IS	٢
66031-1127	WI DO 1/2" R#17-	T BARR THICK 568 AP	IER TI SQUARE RIL 20	E DOWN WASHI 17	I ERS		S 137 H Kan P 401 T NEV O	716 Isas City New Co N CENTU	Warehous antury Par JRY KS	e kway				
Irder Mate 0281814-0060 701	erial No. 672240TM	Descrip	tion 72 X 240	A36 TEN	IPERPASS S	Qu TPMLPL	antity 3	Weight 7,351.200	Custome	Part	C	istomer PO	5	Ship Date 3/13/2017
						Chemical Ar	alvsis			25				
leat No. B702406 Produced from Coil	Vendor	STEEL DY	NAMICS CC	ILUMBUS		DOMESTIC	Mill	STEEL D	YNAMICS C	OLUMBUS	Me	lited and Man	ufactured in	n the USA
arbon Manganese	Phosphorus 0.0160	Sulphur 0.0020	Silicon 0.0300	Nickel 0.0300	Chromium 0.0700	Molybdenum 0.0200	Boron 0.0001	Copper 0.1000	Aluminum 0.0300	Titanium 0.0030	Vanadium 0.0050	Columbium 0.0030	Nitrogen 0.0072	Tin 0.0070
					Mecha	inical / Physic	cal Prope	rties						
Aill Coil No. 17B727	160													
Tensile	Yield		Elong	Rckwl		Grain	Charpy	c	Charpy Dr	CH	arpy Sz	Temper	ature	Olsen
62700.000	46500.000		36.30				0		NA					
63000.000	45900.000		33.30		92 M		0.		. NA					
62600.000	44100.000		36.50				0		NA					
62400.000	44600.000		38.20				0		NA					
Batch 0004680	0154 3 EA	7,351.200	в		Batch 000	04681055 3 EA	7,351.20	O LB		Batch (0004681059	3 EA 7,351	.200 LB	
						84 8								
					They.									

Figure A-9. ¹/₂-in. (13-mm) Thick Washer Plate, Test No. WITD-1

0

R#17-674 1-1/8" A563 Grade A Heavy Hex Nuts WI DOT Tie Down May2017 SMT

Certified Material Test Report to BS EN 10204-2004 3.1 FOR ASTM A563-07,GRADE A HEAVY HEX NUTS

FACTORY: ADDRESS	<u>NINGBO I</u> XIJINGTA	HAIXIN HAI	RDWARE C	<u>O.,LTD.</u> ZHEJIAN	G 315205 CH	INA		DATE:	OCT.05.20	14
CUSTOMER: QNTY SHIPPE SAMPLE SIZE SIZE & DESCR	FASTENA D: : RIPTION:	L COMPAN 2700PCS ACC. TO (1.1/8-7(PL)	Y PURCHA ASME B18 √)	<u>SINGIM</u> . 18 . 1 - 11	PORT TRAFI	EIC	MI	LOT NO PO NO PART NO FG DATE:	507975000 180091083 36521 SEP.15.201	1
STEEL PROPE STEEL GRADE CHEMISTRY C	RTIES 3: COMPOSITIO	4 <u>5#</u> DN:		SIZE	:: <u>32mm</u>			HEAT NO	<u>C40</u>	70634
CHEMIST	С %	Mn %	Р%	S %	Si %	Cr %	Ni %	Cu %	Mo %	OTHERS
SPE:	MIN 0.40	MAX 1.00	MAX 0.04	MAX 0.05	MAX 0.40					
TEST:	0.45	0.58	0.028	0.005	0.25					
DIMENSIONA CHARACTERI ************* APPEARANCE WIDTH A/F WIDTH A/C THREAD HEIGHT MARK	L INSPECTIO STICS ********	DNS	TEST MET ********* ASTM 1.756" 2.002" ASME 1.079"	THOD ****** F812-12 -1.812" -2.093" B1.1-03 -1.139" /	SPECI SPECIF *******	FICATION TED *****	I: ASME/AN ACTUAL ******** PAS 1.776" 2.031" PAS 1.093" PAS	SI B18.2. RESULT ******** SSED -1.789" -2.067" SSED -1.121" SSED	2 - 2010 ACC. ****** 100 32 32 32 8 32 100	REJ. ******** 0 0 0 0 0 0 0
MECHANICAL	_ PROPERTI	ES:					SPECIFICA	ATION: AS	FM A563-07	GR-A
CHARACTERI ***********	STICS *******	****	TEST MET	'HOD *****	SPEC	CIFIED	ACTUAL ********	RESULT *****	ACC. *******	REJ. ******
HARDNESS :			ASTM E18	-12	Min B68-C	32 Max	HRB	86-93	5	0
PROOF LOAD:			ASTM F60	6-11	MIN1000	00 PSI	1000	00 PSI	5	0
DECARBERT.	ALIUN		SAEL	1/1-9/			PAN	NED		0

 MACROETCH
 ASTM E381-12
 S1/R1/C1~S4/R4/C4
 S2/R2/C2

 ASTM OR SAE SPECIFICATION. WE CERTIFY THATTHIS DATA IS A TRUE REPRESENTATION OF
 INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

 Maker's ISO#00109Q211593ROM/3302
 ISO
 INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

Figure A-10. 1¹/₈-in. (26-mm) Diameter Hex Nuts, Test No. WITD-1

CMC ST 310 Net Cayce S CMC	EEL SOUTH CAROLINA w State Road C 29033-3704	CERTIFIED MILL T For additional o 800-637-	EST REPORT copies call 3227	We heret are accurate an	by certify that the test results presented here Id conform to the reported grade specification Richard S. Ray - CMC Steel SC
1SERIES-BPS					Quality Assurance Manager
HEAT NO.:2056210 SECTION: ROUND 1-1/2 x 20'0" A36/52950 GRADE: ASTM A36-14/A529-14 ROLL DATE: 11/25/2016 MELT DATE: 11/23/2016	S Steel & Pipe Supp O L 555 Poyntz Ave D Manhattan KS US 66502-6085 T 7855875182 O 7855872282	oly Co Inc	S Steel & Pipe H I 1003 Fort G P Catoosa Ok US 74015-0 T 918266632 O	Supply Co ibson Rd 000 5	Delivery#: 81947876 BOL#: 71852389 CUST P0#: 4500275184 CUST P/N: DLVRY LBS / HEAT: 5047.000 LB DLVRY PCS / HEAT: 42 EA
Characteristic	Value	Characteristic	c Value		Characteristic Value
C Mn P S S Cu Cr Ni Mo V Cb Sn Al Ti Sn Al Ti N Carbon Eq A529 Yield Strength test 1	0.17% 0.67% 0.010% 0.22% 0.24% 0.14% 0.12% 0.040% 0.030% 0.000% 0.009% 0.001% 0.001% 0.001% 0.001% 0.39% 52.4ksi 72.8ksi 73.8ksi	Elongation Gage Lgt Reduction of Area Yield to tensile rati Yield Strength Elongation Gage Lgt Reduction of Area Yield to tensile rati C+	n test 1 8/N a test 1 54% io test 1 0.72 n test 2 53.3ks n test 2 73.1ks n test 2 29% n test 2 8/N a test 2 51% o test 2 0.73 (Mn/6) 0.28%		ı

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS :

ALSO MEETS ASTM GRADE A36 REV-03A, A529 GR.50, A572-2015 GR.50, A709 GR.36, A709 GR.50, A992, AASHTO GRADE M270 GR.36, M270 GR.50, CSA G40.21-04 GRAD 44W, 50WASME SA-36 2008A ADDEND A.

11/28/2016 18:40:45 Page 1 OF 1

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015	METALLURGICAL TEST REPORT	PAGE 1 of 1 · DATE 01/03/2017 · TIME 10:08:16 USER WILLIAMR ·
S O L D T O	S H Warehouse 0020 P 1050 Fort Gibson Rd CATOOSA OK 74015-3033 O	
Order Material No. 40277056-0050 70164896TM	Description Quantity Weight Customer Part 1/2 48 X 96 A36 TEMPERPASSED STPMP 15 9,801.600	Customer PO Ship Date 01/03/2017
Heat No. B617195 Vendor Produced from Coll	Chemical Analysis STEEL DYNAMICS COLUMBUS DOMESTIC MIII STEEL DYNAMICS COLUMBUS	Melted and Manufactured in the USA
Carbon Manganese Phosphorus 0.2200 0.4600 0.0100	Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum Itanium Van 0.0040 0.0200 0.0300 0.0500 0.0200 0.0001 0.0900 0.0260 0.0002 0.	.0030 0.0020 0.0078 0.0050
	Mechanical / Physical Properties	
Mill Coill No. 16B701058 Tensile Yield 70100,000 43600.000 67500.000 42000.000 71400,000 44700.000 68200,000 42300.000	Elong Rckwl Grain Charpy Charpy Dr Charpy S 32.00 0 NA 39.20 0 NA 34.20 0 NA 32.70 0 NA	Sz Temperature Olsen
Batch 0004594474 15 EA Batch 0004594490 15 EA	9,801.600 LB Batch 0004594476 15 EA 9,801.600 LB Batch 000453 9,801.600 LB	94489 15 EA 9,801.600 LB

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Figure A-12. ¹/₂-in. (13-mm) Thick Washer Plate, Test No. WITD-2

SUPERPAVE TESTING RESULTS

SAMPLE NUM.:		2017-005	DAT	TE: 0	03/03/17	LOT :	TON :
PLANT:	CA.	THER CONST.	PROJECT NUI	VI.:	540624	LANE :	LIFT :
MIX TYPE:	2	NON-ARTERIAL	LOCATIC	N:	2017	7-01 MIX DESI	GN VERIFY
PLACED BY:	CA.	THER CONST.	JOBMIX:	2017-0	1	AC SOURCE	MONARCH
TARG	ET Pb	5.20	35%-RAP			AC GRADE	64-34
Pb (Igi	nition)	5.39	25%-3A CS	3		Gb @ 60 F	1.0370
	Pbe	3.95	15%-LS MA	N SAND		Gb @ 77 F	1.0309
Gmm	(Rice)	2.464	15%-3/8" LS	CHIPS			DESIGN
Gsb	(Agg.)	2.574	05%-3/4" LS	ROCK		FAA	44.4
	Gse	2.676	05%-RAS			CAA	06/84

GYRATORY VOLUMETRICS

03/13/17

	Superpav	e: SPR	
Level	Nini	Ndes	Nmax
Gyrations	7	65	100
Gmb	2.201	2.393	2.416
%Gmm	89.3	97.1	98.1
Spec.	N/A	96.0-98.0	N/A
	Va	2.9	3 +/- 1
	VMA	12.0	12 Min
	VFA	76.1	70-80
	Mix Adjusted to	3.0 % Air Voids	
	Pb (Est.)	5.35	

IGNITION COMBINES

E	BAND	SPR
1"	100.0	
3/4"	100.0	
5/8"		
1/2"	97.2	
3/8"	95.1	81/96
#4	80.3	
#8	56.0	46/56
#10		
#16	35.5	
#30	23.5	
#50	14.9	12/21
#200	7.9	4/9
DP	1.5	0.7-1.7

DENSITY CORE RESULTS

CORE	THICKNESS	SG	COMPACTION	DATE (N	M/DD/YY)	
NUM.	(in.)	CORE	(%)	RECD.	TESTED	DAYS
1					N/A	
2					N/A	
3				AVG. CO	ИPACT. (%)	

Figure A-13. Asphalt, Test No. WITD-2

			-1 400	NEOATE WONNONEET		
CONTR SUPERPA	ACTOR VE LEVEL	Cather SF	Const. PR	Specific Gravity of Coarse Aggregate (AASHTO T 85)	GsbC	(Coarse)
MIX	TYPE	NON-AR	TERIAL	Oven Dry Weight (A)	20	086.4
JOB	MIX	201	7-01	SSD Weight (B)	2	107.7
DATE I	REC'D.	02/0	6/17	Weight in Water (C)	1:	315.3
PROJECT	NUMBER	540	624	Bulk S.G. (A/(B-C))	2	.633
Wt. of Sample (Wtt)	9995.0	Wt.	%	Absorption ((B-A)/A)*100		1.0
Wt. of +#4 (Wtc)	%C (100(Wtc/Wtt))	2126.6	21.3	Date Ran	02/	/15/17
Wt. of -#4 (Wtf)	%F (100(Wtf/Wtt))	7868.4	78.7	Ran By		JEB
Fine (Aggregate Angul (AASHTO T 304)	arity		Specific Gravity of Fine Aggregate (AASHTO T 84)	FAA	GsbF(Fine)
Volume of N	leasure (V)	100	0.0	SSD Weight (S)	500.0	500.0
Mass of Empt	y Measure (E)	190	0.0	Oven Dry Weight (A)	493.8	490.3
RU	JN	1	2	Flask Number	1	1
Gross N	lass (D)	334.5	334.4	Flask Weight+Water to Line (B)	672.8	672.8
Net Mass	(F=D-E)	144.5	144.4	Flask+SSD Weight+Water to Line (C)	982.8	981.2
U=[(V-(F/0	G))/V]*100			Volume of Sample (S-(C-B))	190.0	191.6
FINE AGG. AN	GULARITY (U)	44.4	44.4	Bulk S.G. (A/(B+S-C))	2.599	2.559
FAA, Averag	e of two runs	44	.4	Absorption ((S-A)/A)*100	1.3	2.0
	Date Ran	02/2	1/17	Date Ran	02/17/17	02/14/17
	Ran By	JE	B	Ran By	AJR	AJR
	Coores Agen	anata An	au lasihi	GsB (100/((%C/GsbC)+(%F/GsbF)))	2	.574
	Coarse Aggre	egate An	igularity	(ASTNID 5821-95)		
		Total weig	ght of sam	ple (A)	5	00.0
	Mass or cou	int of partic	les with or	ne fractured face (B)		57.0
Mass or count of	Mass or count of	r particles v	vith at leas	st two fractured faces (C)	4	22.0
wass or count o	Dereentere with	usned cate	gory not n	d faces ((B+C)(A*100)		21.0
	Percentage with	cles with at	least two	fractured faces ((C/A)*100)		90
	Fercentage of parti		least two	Dote Bon	02	04
				Date Rail Ran By	02/	
	FI	at and E	longate	d Particles (ASTM D 4791)		
Sieve	Size	Total Wt.	Fail Wt.	% Flat and Elongated Particles		
1.0 in. (2	5.0 mm)			0.0%	l .	
3/4 in. (1	9.0 mm)			0.0%	1	
1/2 in. (1	2.5 mm)	222.4	0.0	0.0%		
3/8 in. (9	9.5 mm)	187.2	0.0	0.0%		
				Total % Flat and Elongated Particles		0%
				Date Ran	02/	/21/17
				Ran By		JEB
	ndu al de dus usue al	Sand	Equiva	lent (AASHTO T 176)	r	
Soaking Start	Sedimentation Start	Clay	Sand	Sand Equivalent		
				0.0		
				0.0		
				0.0		-
				Sand Equivalent Average		U
				Date Ran		
				Kan By	1	

CITY OF LINCOLN MATERIALS TESTING LAB ASPHALT AGGREGATE WORKSHEET

Figure A-14. Asphalt, Test No. WITD-2

	CATHER CONST.				C	ONTR	ACTOR	TEST	S				
	TYPE 2 (SPR)												
	2017-01					AGGRI	EGATE (GRADA	TIONS				
%	MATERIAL	S.G.	1"	3/4	1/2	3/8	#4	#8	#16	#30	#50	#200	SOURCE
0 0 0 0	2A GRAVEL-LR QTZ. MAN SAND-EVERIST QTZ. 3/4" ROCK QTZ. 3/16" DOWN												
0 15	5/8" SPECIAL-KER. 3/8" LS CHIPS-MM		100.0	100.0	100.0	99.0	33.0	3.0	2.0	1.0	1.0	1.0	02/06/17
0 5 0	SCREENINGS-KER. 3/4" LS-MM		100.0	100.0	40.0	12.0	6.0	5.0	4.0	3.0	2.0	1.0	02/06/17
0 0 15 25	47B GRAVEL-LR WASH SAND-WSG LS MAN SAND-MM 3A CSG-VONTZ CONST.		100.0 100.0	100.0 100.0	100.0 100.0	100.0 100.0	94.0 93.0	64.0 56.0	32.0 34.0	12.0 20.0	3.0 12.0	1.5 5.5	02/06/17 02/06/17
5	RAS		100.0	100.0	100.0	100.0	99.0	95.0	79.0	61.0	53.0	32.0	02/06/17
35	RAP		100.0	100.0	97.0	94.0	83.0	64.0	47.0	34.0	22.0	9.0	02/06/17
100	BLEND		100.0	100.0	96.0	93.4	76.6	51.5	34.2	22.1	14.1	6.6	
	GRADATION BAND % P	ASSIN	3				TES CAL. B	T COM	PARIS IGNI	on Tion	1	POWEF	2
[SIEVE	"SPR"	BAND					CITY	LAB		0	.45	
ľ	200	4.0	9.0			#200	6.6	5.9	7.9	7.0	, i	0.312	
	50	12.0	21.0			#50	14.1	13.1	14.9	14.7		0.582	
	30					#30	22.1	20.8	23.6	23.2		0.795	
	16					#16	34.2	32.4	35.5	35.6		1.077	
	8	46.0	56.0			#8	51.5	51.0	56.0	53.6		1.472	
	4					#4	76.6	77.4	80.3	76.2		2.016	
	3/8"	81.0	96.0			3/8"	93.4	94.5	95.1	92.7	400	2.754	
	1/2"					1/2"	96.0	96.8	97.2	94.4	100	3.116	
	3/4"					3/4"	100.0	99.9	100.0	100.0		3.762	
L	I					'	100.0	100.0	100.0	100.0		4.237	
	CATHER CONST.					CITY	LAB TI	STS					
	11PE 2 (SPR)					1000			TIONO				
06	MATERIAL	SG	1"	3//	1/2	AGGR	#AIE (#9 T	#16	#30	#50	#200	SOURCE
- 0	2A GRAVEL-LR	0.0.		5/4	1/2	3/0	π-1	m U	#10	#30	#50	#200	GOORGE
0 0 0 0	QTZ. MAN SAND-EVERIST QTZ. 3/4" ROCK QTZ. 3/16" DOWN 5/8" SPECIAL-KER.												
15 0	3/8" LS CHIPS-MM SCREENINGS-KER.		100.0	100.0	100.0	99.3	35.9	3.2	1.6	1.2	1.1	1.0	02/13/17
5 0 0	3/4" LS-MM 1/4" LS CHIPS 47B GRAVEL-LR		100.0	98.9	43.0	12.6	6.3	4.6	3.1	2.2	1.7	1.4	02/13/17
15	LS MAN SAND-MM		100 0	100.0	100.0	100.0	92.1	59.3	27.0	98	28	12	02/13/17
25	3A CSG-VONTZ CONST.		100.0	100.0	100.0	100.0	92.0	53.1	29.6	16.7	9.6	3.8	02/13/17
5	RAS		100.0	100.0	100.0	100.0	98.2	94.3	76.3	59.0	50.2	29.4	02/13/17
35	RAP		100.0	100.0	98.9	97.1	85.5	66.9	47.8	34.0	21.4	8.8	02/13/17
100	BLEND		100.0	99.9	96.8	94.5	77.4	51.0	32.4	20.8	13.1	5.9	
								*				*	* INDEPENDENT ADJ.

CATHER CONST. TYPE 2 (SPR) 2017

Figure A-15. Asphalt, Test No. WITD-2

Figure A-16. Asphalt, Test No. WITD-2

Appendix B. Vehicle Center of Gravity Determination

Date:	5/30/2017	Test Name:	VVII D-1	VIN:		BIGKAASZ	49304
Year:	2011	Make:	Dodge	Model:		Ram 1500	
Vehicle CG	Determinatio Equipment	on		Weight (lb)	Vertical CG (in)	Vertical M (lb-in.)	
+	Unballasted	Truck (Curb)		4950	28	138909.38	
+	Hub	· · · · ·		19	15	285	
+	Brake activa	ation cylinder &	frame	7	26 1/2	185.5	
+	Pneumatic t	tank (Nitrogen)		28	26	728	
+	Strobe/Brak	e Battery		5	24 3/4	123.75	
+	Brake Rece	iver/Wires		5	51 1/2	257.5	
+	CG Plate in	cluding DAS		42	29 1/2	1239	
-	Battery	•		-33	39	-1287	
-	Oil			-2	27	-54	
_	Interior			-80	26 1/4	-2100	
-	Fuel			-172	18	-3096	
-	Coolant			-8	34	-272	
- 1	Washer flui	d		-2	34	-68	
+	Water Balla	st (In Fuel Tan	<)	158	18	2844	
L	Onboard Su	pplemental Bat	ttery	12	25 1/2	306	
т					24.2/4	2220 25	
T Note: (+) is adde	Steel Ballas d equipment to	t vehicle, (-) is remov Estimated Tota Vertical CG	ved equipment f al Weight (lb) Location (in.)	67 from vehicle 4996 28.0883	34 3/4	140329.38	
Note: (+) is adde	Steel Ballas d equipment to ensions for (140 5/8	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in.	ved equipment i al Weight (lb) Location (in.) ons Front Tr	67 from vehicle 4996 28.0883	68 5/8	140329.38	
Note: (+) is adde Vehicle Dime Wheel Base:	Steel Ballas d equipment to ensions for (140 5/8	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in.	ved equipment i al Weight (lb) Location (in.) o <u>ns</u> Front Tr Rear Tr	67 from vehicle 28.0883 rack Width: rack Width:	<u> </u>	in.	
Note: (+) is adde Vehicle Dime Wheel Base: Center of Gr	Steel Ballas d equipment to ensions for (140 5/8	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS	ved equipment i al Weight (lb) Location (in.) ons Front Tr Rear Tr CH Targets	67 from vehicle 28.0883 ack Width: rack Width:	68 5/8 68 Test Inertial	140329.38 in.	Difference
Note: (+) is adde Vehicle Dime Wheel Base: Center of Gr Test Inertial V	Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb)	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 :	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr BH Targets ± 110	67 from vehicle 28.0883 rack Width: rack Width:	<u>68 5/8</u> 68 Test Inertial 5000	in.	Difference
Note: (+) is adde Vehicle Dime Wheel Base: Center of Gr. Test Inertial V Longitudinal (Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) 2G (in.)	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 :	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr Rear Tr 6H Targets ± 110 ± 4	from vehicle 4996 28.0883 rack Width: rack Width:	<u>68 5/8</u> 68 Test Inertial 5000 65.053125	in.	Difference 0.0 2.05312
Note: (+) is adde Vehicle Dime Wheel Base: Center of Gr Test Inertial V Longitudinal C Lateral CG (i	Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) 2G (in.) n.)	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr Rear Tr SH Targets ± 110 ± 4	67 from vehicle 28.0883 rack Width: rack Width:	68 5/8 68 Test Inertial 5000 65.053125 -0.901725	in.	Difference 0.0 2.05312 N/
Note: (+) is adde Vehicle Dime Wheel Base: Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) 2G (in.) n.) in.)	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : 03 : NA 28 0	ved equipment f al Weight (Ib) Location (in.) ons Front Tr Rear Tr BH Targets ± 110 ± 4 or greater	67 from vehicle 28.0883 rack Width: ack Width:	<u>68 5/8</u> 68 Test Inertial 5000 65.053125 -0.901725 28.09	in.	Difference 0.0 2.05312 NA 0.08835
Note: (+) is adde Vehicle Dime Wheel Base: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIG	Steel Ballas d equipment to ansions for (140 5/8 avity Veight (lb) CG (in.) n.) is measured fro measured fron HT (lb)	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : 03 : 03 : 04 : 04 : 05 : 000 : 10 : 10 : 10 : 10 : 10 : 10 : 1	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr 6H Targets ± 110 ± 4 or greater vehicle ve to vehicle rig	67 from vehicle 28.0883 rack Width: ack Width: ht (passenger	68 5/8 68 68 7est Inertial 5000 65.053125 -0.901725 28.09) side TEST INER	in. in.	Difference 0.0 2.05312 NA 0.08835
Note: (+) is adde Vehicle Dime Wheel Base: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIG	Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) CG (in.) n.) is measured from imasured from HT (lb)	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 o m front axle of test n centerline - positi	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr CH Targets ± 110 ± 4 or greater vehicle ve to vehicle rig	67 from vehicle 28.0883 rack Width: rack Width: ht (passenger	<u>68 5/8</u> 68 <u>7est Inertial</u> 5000 65.053125 -0.901725 28.09) side TEST INER	in. in. TIAL WEIGH	Difference 0.0 2.05312 NA 0.08835
Note: (+) is adde Vehicle Dime Wheel Base: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIG	Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) CG (in.) n.) is measured from HT (lb) Left	t vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 0 m front axle of test n centerline - positi	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr CH Targets ± 110 ± 4 or greater vehicle ve to vehicle rig	67 from vehicle 28.0883 ack Width: ack Width: ht (passenger	68 5/8 68 68 7est Inertial 5000 65.053125 -0.901725 28.09) side TEST INER	<u>in.</u> in. in. TIAL WEIGH	Difference 0.0 2.05312 NA 0.08835
Vehicle Dime Wheel Base: Wheel Base: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIG	Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) CG (in.) n.) is measured from HT (lb) Left 1375	tt vehicle, (-) is remove Estimated Tota Vertical CG C.G. Calculation in. 2270P MAS 5000 : 63 : 04 83 : 04 10 : 10 : 10 : 10 : 10 : 10 : 10 : 10 :	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr CHTargets ± 110 ± 4 or greater vehicle ve to vehicle rig	67 from vehicle 28.0883 ack Width: ack Width: ht (passenger	68 5/8 68 68 7est Inertial 5000 65.053125 -0.901725 28.09) side TEST INER	in. in. in. TIAL WEIGH	Difference 0.0 2.05312 N/ 0.08835 IT (Ib) Right 1300
Note: (+) is adde Vehicle Dime Wheel Base: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIG Front Rear	Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) CG (in.) n.) is measured from HT (lb) Left 1375 1153	tt vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 0 m front axle of test n centerline - positi Right 1314 1108	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr CH Targets ± 110 ± 4 or greater vehicle ve to vehicle rig	67 from vehicle 28.0883 ack Width: ack Width: ht (passenger	<u>68 5/8</u> 68 68 <u>7est Inertial</u> 5000 65.053125 -0.901725 28.09) side TEST INER Front Rear	in. in. in. TIAL WEIGH Left 1387 1179	Difference 0.0 2.05312 NA 0.08835 IT (Ib) Right 1300 1134
Vehicle Dime Wheel Base: Wheel Base: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIG Front Rear FRONT	Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) CG (in.) n.) in.) is measured from HT (lb) Left 1375 1153 2689	tt vehicle, (-) is remove Estimated Tota Vertical CG C.G. Calculation in. 2270P MAS 5000 : 63 : NA 28 of m front axle of test n centerline - positi Right 1314 1108 lb	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr 6H Targets ± 110 ± 4 or greater vehicle ve to vehicle rig	67 from vehicle 28.0883 rack Width: ack Width: ht (passenger	68 5/8 68 68 7est Inertial 5000 65.053125 -0.901725 28.09) side TEST INER Front Rear FRONT	<u>in.</u> in. in. TIAL WEIGH Left 1387 1179 2687	Difference 0.0 2.05312 NA 0.08835 IT (Ib) Right 1300 1134 Ib
Vehicle Dime Wheel Base: Wheel Base: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIG Front Rear FRONT REAR	Steel Ballas d equipment to ensions for (140 5/8 avity Veight (lb) CG (in.) n.) is measured from HT (lb) Left 1375 1153 2689 2261	tt vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : 03 : 04 63 : 04 63 : 05000 : 63 : 04 63 : 05000 : 63 : 05000 : 63 : 04 63 : 05000 : 63 : 05000 : 10 : 10 : 10 : 10 : 10 : 10 : 10 :	ved equipment f al Weight (lb) Location (in.) ons Front Tr Rear Tr 6H Targets ± 110 ± 4 or greater vehicle ve to vehicle rig	1 67 from vehicle 28.0883 rack Width: ack Width: ht (passenger	68 5/8 68 68 7est Inertial 5000 65.053125 -0.901725 28.09) side TEST INER Front Rear FRONT REAR	2328.23 140329.38 in. in. in. TIAL WEIGH Left 1387 1179 2687 2313	Difference 0.(2.05312 NA 0.08835 IT (Ib) Right 1300 1134 Ib Ib

Figure B-1. Vehicle Mass Distribution, Test No. WITD-1

Date:	12/14/2017	Test Name:	WITD-2	VIN:	1D7R	B1GP4AS1	21538
Year:	2010	Make:	Dodge	Model:		Ram 1500	
Vehicle CG D VEHICLE)eterminatio Equipment	'n		Weight (lb)	Vertical CG (in.)	Vertical M (lb-in.)	
+	Unballasted	Truck (Curb)		5075	28 5/8	145271.88	7
+	Hub			19	15 3/4	299.25	1
+	Brake activa	tion cylinder &	frame	7	25	175	
+	Pneumatic ta	ank (Nitrogen)		28	27	756	
+	Strobe/Brake	e Battery		5	26 1/2	132.5	
+	Brake Recei	ver/Wires		5	52 1/4	261.25	1
+	CG Plate inc	luding DAS		42	29 1/2	1239	1
-	Battery			-52	42	-2184	1
-	Oil			-10	26 1/2	-265	
-	Interior			-98	37 1/2	-3675	
-	Fuel			-171	19	-3249	
	Coolant			-7	34 1/2	-241.5	1
-	Washer fluid	ł		-7	33	-231	
+	Water Ballas	st (In Fuel Tank	:)	96	16 1/4	1560	1
	Onboard Sur	pplemental Bat	tery	12	26 3/4	321	1
+						0	
+ Note: (+) is added	equipment to v	rehicle, (-) is remov Estimated Tota Vertical CG I	ved equipment f al Weight (lb) Location (in.)	rom vehicle 4944 28.3516		0 140170.38	3
+ Note: (+) is added Vehicle Dime i Wheel Base:	l equipment to v nsions for C 141 1/4	vehicle, (-) is remov Estimated Tota Vertical CG I :.G. Calculatio in.	red equipment f al Weight (lb) Location (in.) ns Front Tr	4944 28.3516 ack Width:	68 5/8	140170.38	-
+ Note: (+) is added Vehicle Dime i Wheel Base:	l equipment to v nsions for C 141 1/4	vehicle, (-) is remov Estimated Tota Vertical CG I 2.G. Calculatio in.	ved equipment f al Weight (lb) Location (in.) n <u>s</u> Front Tr Rear Tr	irom vehicle 4944 28.3516 ack Width: ack Width:	<u>68 5/8</u> 68 1/8	140170.38 in.	-
+ Note: (+) is added Vehicle Dimen Wheel Base: Center of Gra	nsions for C 141 1/4 vity	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculation in. 2270P MAS	ved equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets	ack Width: ack Width:	68 5/8 68 1/8 Test Inertial	0 140170.38 in. in.	Difference
+ Note: (+) is added Vehicle Dimer Wheel Base: Center of Gra Test Inertial W	nsions for C 141 1/4 vity 'eight (lb)	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ±	red equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets : 110	ack Width:	68 5/8 68 1/8 Test Inertial 5003	u 140170.38 in. in.	Difference
+ Note: (+) is added Vehicle Dimer Wheel Base: Center of Gra Test Inertial W Longitudinal C	nsions for C 141 1/4 vity /eight (lb) G (in.)	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ±	red equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets : 110 : 4	irom vehicle 4944 28.3516 ack Width: ack Width:	68 5/8 68 1/8 Test Inertial 5003 62.36683	140170.38 in. in.	Differenco 3.0 -0.6331
+ Note: (+) is added Vehicle Dimer Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in	nsions for C 141 1/4 vity /eight (Ib) G (in.) ı.)	vehicle, (-) is remov Estimated Tota Vertical CG I :.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA	red equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets ± 110 ± 4	ack Width:	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698	in. in.	Difference 3.(-0.6331) N/
+ Note: (+) is added Vehicle Dimer Wheel Base: Center of Gra Test Inertial W _ongitudinal C _ateral CG (in Vertical CG (in	vity (eight (lb) G (in.) I.)	zehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c	red equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 10 4	ack Width: ack Width:	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35	0 140170.38 in. in.	Difference 3.0 -0.6331 N/ 0.3516
+ Note: (+) is added Vehicle Dimer Wheel Base: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is	nsions for C 141 1/4 vity (eight (lb) G (in.) I.) s measured fror	zehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test	ved equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 10 4 vehicle	ack Width: ack Width:	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35	0 140170.38 in. in.	Difference 3.0 -0.6331 N/ 0.3516
+ Note: (+) is added Vehicle Dimer Wheel Base: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	nsions for C 141 1/4 vity /eight (Ib) G (in.) I.) s measured from	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test i centerline - positiv	red equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 or greater vehicle re to vehicle rig	tom vehicle	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35	140170.38 in. in.	Difference 3.(-0.6331 N/ 0.3516
+ Note: (+) is added Vehicle Dimer Wheel Base: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	nsions for C 141 1/4 vity /eight (Ib) G (in.) n.) s measured from it (Ib)	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test i centerline - positiv	red equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 5 7 greater vehicle re to vehicle rigi	trom vehicle	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35) side TEST INER	140170.38 in. in.	Difference 3.(-0.6331) N/ 0.3516 HT (Ib)
+ Note: (+) is added Vehicle Dimer Wheel Base: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	vity (eight (Ib) G (in.) 1.) s measured from IT (Ib)	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test i centerline - positiv	ved equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 10 5 4 or greater vehicle ve to vehicle rig	trom vehicle 4944 28.3516 ack Width: ack Width: ht (passenger	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35) side TEST INER	140170.38 in. in. TIAL WEIGI	Difference 3.1 -0.6331 N/ 0.3516 HT (Ib) Bight
+ Note: (+) is added Vehicle Dimen Wheel Base: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	nsions for C 141 1/4 vity (eight (lb) G (in.) 1.) s measured from measured from IT (lb) Left 1455	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test i centerline - positiv Right 1392	ved equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 or greater vehicle ve to vehicle rig	trom vehicle 4944 28.3516 ack Width: ack Width: ht (passenger	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35) side TEST INER	140170.38 in. in. TIAL WEIGI	Difference 3.1 -0.6331 N/ 0.3516 HT (Ib) Right
+ Note: (+) is added Vehicle Dimen Wheel Base: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH Front	nsions for C 141 1/4 vity (eight (lb) G (in.) 1.) s measured from measured from IT (lb) Left 1455	rehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test is centerline - positiv Right 1393 1105	ved equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 or greater vehicle ve to vehicle rigi	trom vehicle 4944 28.3516 ack Width: ack Width: ht (passenger	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35) side TEST INER Front	0 140170.38 in. in. TIAL WEIGI Left 1375	Difference 3.1 -0.6331 N/ 0.3516 HT (Ib) Right 1419
+ Note: (+) is added Vehicle Dimer Wheel Base: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	nsions for C 141 1/4 vity /eight (Ib) G (in.) n.) s measured from is measured from IT (Ib) Left 1455 1122	rehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test centerline - positiv Right 1393 1105	red equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 Targeater vehicle re to vehicle rig	trom vehicle	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35) side TEST INER Front Rear	in. in. in. TIAL WEIGI Left 1375 1103	Difference 3.0 -0.6331 N/ 0.3516 HT (Ib) Right 1419 1106
+ Note: (+) is added Vehicle Dimen Wheel Base: Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear FRONT	nsions for C 141 1/4 vity leight (Ib) G (in.) n.) s measured from measured from IT (Ib) Left 1455 1122 2848	rehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test i centerline - positiv Right 1393 1105 Ib	red equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 Targeter vehicle re to vehicle rigi	trom vehicle 4944 28.3516 ack Width: ack Width: ht (passenger	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35) side TEST INER Front Rear Front Rear	in. in. in. TIAL WEIGI Left 1375 1103 2794	Difference 3.0 -0.63311 N/ 0.3516 HT (Ib) Right 1419 1106 Ib
+ Note: (+) is added Vehicle Dimen Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear FRONT REAR	nsions for C 141 1/4 vity /eight (Ib) G (in.) i.) s measured from iT (Ib) Left 1455 1122 2848 2227	Pehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c n front axle of test in centerline - positiv Right 1393 1105 Ib Ib	ved equipment f al Weight (lb) Location (in.) ns Front Tr Rear Tr H Targets 110 4 or greater vehicle ve to vehicle rigi	trom vehicle 4944 28.3516 ack Width: ack Width: ht (passenger	68 5/8 68 1/8 Test Inertial 5003 62.36683 0.3211698 28.35) side TEST INER Front Rear FRONT REAR	in. in. in. TIAL WEIGI Left 1375 1103 2794 2209	Difference 3.0 -0.63311 N/ 0.3516 HT (Ib) Right 1419 1106 Ib Ib

Figure B-2. Vehicle Mass Distribution, Test No. WITD-2

Appendix C. Static Soil Tests

Figure C-1. Soil Strength, Initial Calibration Tests

Figure C-2. Static Soil Test, Test No. WITD-2

Appendix D. Vehicle Deformation Records
DINT X X Y X X Y X Y X <thy< th=""> X <thy< th=""></thy<></thy<>	Date: Year:	5/30/2017 2011		Test Name: Make:	WIT Doe	D-1 dge	VIN: Model:	1D7R	B1GKXAS2 Ram 1500	49304	
POINT X Y Z X Y Z' AX AY AZ Total A 1 24.824 12.303 4.016 24.712 12.633 4.182 -0.118 0.380 0.166 0.386 2 22.665 15.728 2.514 22.527 16.149 2708 0.128 0.421 0.194 0.481 3 26.813 0.2725 -0.066 226.678 20.084 0.128 0.424 0.784 5 21.499 11.905 2.925 16.088 0.472 -0.136 0.284 0.176 0.326 7 23.47 20.72 -1.976 23.319 21.190 -1.722 -0.186 0.218 0.224 0.376 9 13.226 10.301 0.759 18.201 10.052 0.879 0.022 0.134 0.138 0.230 9 13.226 10.301 0.757 12.203 10.52 1.377 0.324 0.137 0.324 <td></td> <td></td> <td></td> <td>-</td> <td>VEHICLE FLO</td> <td>E PRE/POS ORPAN - S</td> <td>r CRUSH ET 1</td> <td></td> <td></td> <td></td> <td></td>				-	VEHICLE FLO	E PRE/POS ORPAN - S	r CRUSH ET 1				
POINT (in) (in) <t< td=""><td></td><td>Х</td><td>Y</td><td>Z</td><td>Χ'</td><td>Ϋ́</td><td>Z'</td><td>ΔX</td><td>ΔΥ</td><td>ΔZ</td><td>Total ∆</td></t<>		Х	Y	Z	Χ'	Ϋ́	Z'	ΔX	ΔΥ	ΔZ	Total ∆
1 244824 12303 4.016 24.712 12.833 4.182 -0.113 0.0330 0.165 0.386 2 25.655 15.728 2.514 25.527 1.6149 2.708 0.128 0.421 0.194 0.481 3 26.613 20.725 -0.065 26.678 20.841 0.224 0.023 0.244 0.196 0.337 4 26.625 27.451 1.656 21.787 2.008 0.644 0.127 0.424 0.784 5 21.499 11.309 2.396 21.416 11.573 2.592 -0.003 0.264 0.198 0.337 6 22.431 16.826 0.336 2.258 10.337 1.562 1.679 -0.025 0.131 0.324 0.138 0.234 0.138 0.234 0.131 0.234 0.131 0.236 10 19.313 15.304 1.756 1.937 1.670 -0.025 0.334 0.121 0.342 0.241 0.365 11 20.276 2.14176 1.670 1.6563	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
2 25655 15726 -0.065 26678 0.081 0.222 0.224 0.218 0.0567 0.425 4 26825 27.451 1.585 26178 27.578 2.008 0.422 0.224 0.127 0.424 0.764 5 21.499 11.309 2.396 21.446 11.573 2.529 0.063 0.264 0.196 0.339 6 22.431 15.825 0.336 22.295 16.088 0.472 0.136 0.263 0.137 0.326 7 23.477 20.972 - 1.976 23.319 21.190 -1.722 0.0186 0.218 0.254 0.370 8 23.298 28.262 -1.237 23.266 28.443 -1.099 0.032 0.181 0.138 0.254 10 19.313 15.304 -1.750 19.273 15.552 -1.670 -0.040 0.228 0.140 0.266 11 20.275 21.121 -3.761 20.227 21.343 -3.642 -0.049 0.222 0.140 0.266 12 19.986 27.758 -2.983 19.892 27.980 -2.781 -0.096 0.221 0.157 0.130 0.265 13 15.232 10.170 -1.227 15.209 10.327 -1.097 -0.023 0.157 0.130 0.265 14 16.506 14.466 -4.4207 16.559 14.357 -4.099 0.063 0.292 0.041 0.211 15 16.751 21.326 -4.237 16.701 21.534 -4.177 -0.049 0.290 0.060 0.223 17 12.037 9.692 -2.386 12.019 9.926 -2.321 -0.018 0.233 0.074 0.248 19 12.583 21.034 -4.237 16.701 21.534 -4.177 -0.049 0.209 0.060 0.223 17 12.037 9.692 -2.396 12.019 9.926 -2.321 -0.018 0.233 0.074 0.248 19 12.583 21.034 -4.290 12.552 21.178 -4.277 -0.061 0.144 0.013 0.157 12 1.9662 21.1774 -5.203 5.656 12.038 -5.172 -0.016 0.233 0.074 0.248 19 12.583 21.034 -4.290 12.552 21.178 -4.277 -0.061 0.144 0.013 0.157 22 5.648 15.450 -4.965 5.541 12.198 -3.438 0.110 0.187 -0.030 0.244 23 5.491 21.761 -4.314 5.411 21.963 -4.320 -0.060 0.202 -0.066 0.214 21 5.672 11.774 -5.203 5.656 12.038 -5.172 -0.016 0.224 0.006 0.214 22 5.648 15.60 -4.4650 -4.466 5.544 10.569 -4.462 0.006 0.214 0.013 0.157 22 12.249 27.375 5.811 32.191 15.587 -5.049 -0.016 0.154 -0.096 0.214 22 5.648 15.640 -4.985 5.541 12.1963 -4.320 -0.060 0.202 -0.006 0.214 22 5.648 15.640 -4.985 5.541 12.1963 -4.320 -0.060 0.224 0.006 0.214 23 5.491 12.761 -3.656 5.641 12.068 -0.024 0.003 0.244 23 5.491 12.761 -3.655 5.841 12.1963 -4.320 -0.060 0.224 0.006 0.214 24 5.711 27.641 -3.763 5.821 -2.948 -3.783 0.110 0.187 -0.003 0.165 27 -0.375 18.860 -0.714 -0.489 11.558 -1.418 -0.082 0.164 0.0061 0.178 20 DDCR	1	24.824	12.303	4.016	24.712	12.633	4.182	-0.113	0.330	0.165	0.386
3 26 913 20 225 -0.065 26 678 20 891 0.292 -0.234 0.136 0.357 0.455 4 26.825 27 449 11309 2.396 26 178 77578 2008 -0.648 0.127 0.424 0.784 5 21.499 11309 2.396 21.416 11.573 2.592 0.063 0.024 0.196 0.339 6 22.431 15 825 0.336 22.295 16.088 0.472 0.0138 0.226 0.137 0.326 7 23.477 20.972 -1.976 23.319 21.190 -1.722 -0.158 0.218 0.254 0.370 8 23.298 28 252 -1.237 23.266 28.443 -1.099 -0.025 0.324 0.121 0.346 10 19.313 15.304 -1.750 19.273 15.552 -1.670 -0.040 0.248 0.079 0.254 11 20.275 21.121 -3.781 20.227 21.943 -3.642 -0.040 0.224 0.121 0.346 12 19.988 27.758 -2.933 19.892 27.980 -2.781 -0.096 0.221 0.140 0.266 13 15.232 10.170 -1.227 15.299 10.327 -1.097 -0.023 0.167 0.157 0.130 0.205 14 16506 14.466 -4.460 16.559 14.957 -4.099 0.068 0.221 0.140 0.226 15 16.761 21.326 -4.237 16.701 21.534 -4177 -0.049 0.029 0.091 0.311 15 16.761 21.326 -4.237 16.701 21.534 -4177 -0.049 0.029 0.090 0.022 16 16.465 27.630 -3.696 16.464 27.821 -3.688 -0.018 0.233 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.367 -5.049 -0.019 0.230 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.367 -5.049 -0.018 0.233 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.867 -5.049 -0.018 0.233 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.867 -5.049 -0.018 0.233 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.867 -5.049 -0.018 0.233 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.867 -5.049 -0.018 0.233 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.867 -5.049 -0.018 0.233 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.867 -5.049 -0.018 0.233 0.074 0.245 19 12.663 21.034 -4.290 12.522 21.178 -4.320 0.006 0.207 0.064 0.217 20 12.649 27.968 -3.679 12.582 28.122 -3.771 -0.067 0.158 0.0927 0.198 22 5.548 15.450 -4.985 5.541 15.993 -4.962 -0.016 0.144 0.013 0.157 20 12.649 27.968 -3.679 12.582 28.122 -3.771 -0.067 0.154 0.0031 0.266 22 5.548 15.450 0.126 -0.490 26.415 0.127 -0.069 0.164 0.0031 0.227 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 21 5.6 -0.421 12.6250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178	2	25.655	15.728	2.514	25.527	16.149	2.708	-0.128	0.421	0.194	0.481
4 26.820 27.431 1.1265 27.078 20.08 -0.649 0.127 0.424 0.784 5 21.446 11.573 2592 -0.083 0.224 0.196 0.339 6 22.431 15.825 0.336 22.285 16.088 0.472 -0.136 0.263 0.137 0.326 7 23.347 20.972 -1.976 23.319 21.190 -1.722 -0.136 0.263 0.137 0.326 9 18.226 10.0310 0.759 18.201 10.625 0.879 -0.022 0.141 0.134 0.254 0.370 9 18.226 10.0310 0.759 18.201 10.625 0.879 -0.022 0.140 0.266 12 19.988 27.758 -2.933 19.892 27.890 -2.781 -0.063 0.221 0.157 0.140 0.226 14 16.506 14.056 -4.490 16.559 14.957 -4.999 0.053 0.224 0.016 0.241 0.127 0.140 0.127 0.140 <t< td=""><td>3</td><td>26.913</td><td>20.725</td><td>-0.065</td><td>26.678</td><td>20.881</td><td>0.292</td><td>-0.234</td><td>0.156</td><td>0.357</td><td>0.455</td></t<>	3	26.913	20.725	-0.065	26.678	20.881	0.292	-0.234	0.156	0.357	0.455
3 21489 11309 2386 22481 11573 2392 -0.085 0.284 0.186 0.385 7 23477 20972 -1.976 23319 21.190 -1.722 -0.186 0.283 0.137 0.326 8 23286 28.2822 -1.237 23.266 28.443 1.099 -0.032 0.181 0.136 0.324 0.121 0.326 9 18.226 10.301 0.759 18.201 10.625 0.879 -0.026 0.324 0.121 0.346 10 19.313 15.304 -1.750 19.273 15.552 -1.670 -0.040 0.244 0.079 0.284 11 20.275 21.121 -3.781 20.227 27.810 -0.996 0.222 0.140 0.265 12 19.988 27.786 -0.933 14.857 -4.399 0.063 0.292 0.081 0.311 15 16.751 12.1326 -4.4307 16.559 14.957 -4.399 0.0632 0.0282 0.081 0.231 1	4	26.825	27.451	1.585	26.178	27.578	2.008	-0.648	0.127	0.424	0.784
0 22431 10362 0.330 0.137 0.233 0.137 0.330 7 23247 2072 -1.976 23.319 21.190 -1.722 -0.158 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.024 0.0370 8 23.286 28.262 -1.237 23.266 28.443 -1.096 -0.025 0.324 0.017 0.346 10 19.313 15.304 -1.750 19.273 15.552 -1.670 -0.049 0.222 0.140 0.266 12 19.988 27.788 -2.933 19.892 27.980 -2.781 -0.063 0.627 0.130 0.205 14 16.506 14.466 -4.430 16.559 14.967 -4.399 0.063 0.292 0.081 0.311 15 16.761 21.326 14.277 1.067 10.027 0.130 0.226 0.223 0.074 0.243 0.023 0.074 0.243 12 0.565 14.9	0	21.499	15.905	2.390	21.416	11.573	2.592	-0.083	0.264	0.196	0.339
1 23477 20322 1370 1130 1122 0132 01210 02214 022111171 021111 02156 02	7	22.431	15.625	0.336	22.295	21 100	0.472	-0.130	0.263	0.137	0.320
9 12200 12200 11207 12200 10025 0.025 0.024 0.130 0.130 0.130 10 19.313 15.304 -1.750 19.273 15.552 -1.670 -0.049 0.222 0.140 0.264 11 20.275 21.121 -3.781 20.227 12.13 -3.642 0.049 0.222 0.140 0.264 12 19.988 27.758 -2.933 19.892 27.800 -2.781 -0.049 0.222 0.140 0.265 13 15.232 10.170 -1.227 15.209 10.327 -1.087 -0.023 0.157 0.130 0.205 14 16.509 14.957 4.399 0.053 0.292 0.091 0.311 15 16.751 21.304 4.377 10.018 0.217 0.188 12.09 13.379 -5.113 12.191 13.587 -5.149 0.019 0.207 0.064 0.218 17 12.037 9.692 -2.336 12.018 4.277 0.001 0.144 0	8	23.477	20.972	-1.370	23.319	21.190	-1.722	-0.130	0.210	0.234	0.370
0 19313 15304 -1.750 19.225 -1.670 -0.040 0.224 0.121 0.040 11 20.275 21.121 -3.781 20.227 21.343 -3.642 -0.040 0.224 0.140 0.266 12 19.988 27.786 -2.933 19.892 27.800 -2.781 -0.096 0.221 0.152 0.265 13 15.232 10.170 -1.227 15.209 10.327 -1.097 -0.023 0.157 0.130 0.205 14 16506 14.4665 -4.400 16.559 14.957 4.339 0.053 0.222 0.080 0.211 0.152 0.227 0.186 15 16.751 21.326 -3.695 14.644 27.821 -3.668 -0.041 0.191 0.027 0.188 17 12.037 9.692 -3.896 12.518 21.174 4.277 -0.061 0.144 0.013 0.167 18 12.209 13.578 5.513 15.866 12.044 -0.013 0.020 0.181	a	18,226	10.301	0.759	18 201	10.625	0.879	-0.032	0.324	0.130	0.230
11 12275 12121 -3.781 12227 12.832 -3.842 -0.049 0.222 0.103 0.247 12 19.988 27.756 -2.933 19.892 27.980 -2.781 -0.023 0.157 0.130 0.205 14 16.502 14.957 -1.097 -0.023 0.157 0.130 0.205 14 16.505 14.957 -4.399 0.063 0.220 0.080 0.223 16 16.455 27.630 -3.685 16.454 27.821 -3.668 -0.041 0.191 0.027 0.080 0.223 16 16.455 27.630 -3.685 16.454 27.821 -3.668 -0.041 0.191 0.027 0.084 0.225 0.141 0.141 0.023 0.074 0.224 12.03 13.79 5.113 12.191 13.587 5.547 1.018 0.291 0.019 0.207 0.064 0.218 12 14.640 -4.366	10	19.313	15.304	-1.750	19.201	15 552	-1 670	-0.020	0.248	0.121	0.264
12 12 12 12 12 10 10 0.152 0.221 0.152 0.221 0.152 0.225 13 15.332 10.170 -1.227 15.209 10.327 -1.097 -0.023 0.157 0.130 0.225 14 115.506 14.4665 -4.440 16.559 14.957 -4.399 0.053 0.292 0.091 0.311 15 16.751 21.326 -4.237 16.701 21.534 -4.177 -0.049 0.209 0.060 0.223 16 16.495 27.630 -3.695 16.454 27.821 -3.668 -0.041 0.191 0.027 0.198 17 12.037 9.692 -2.396 12.019 9.926 -2.321 -0.018 0.233 0.074 0.245 18 12.209 13.679 12.522 21.178 -4.277 -0.061 0.144 0.013 0.157 20 12.649 27.969 -3.679 12.562 28.122 -3.771 -0.067 0.153 -0.024 0.031 0.264 </td <td>11</td> <td>20.275</td> <td>21 121</td> <td>-3 781</td> <td>20 227</td> <td>21 343</td> <td>-3 642</td> <td>-0.049</td> <td>0.222</td> <td>0.140</td> <td>0.266</td>	11	20.275	21 121	-3 781	20 227	21 343	-3 642	-0.049	0.222	0.140	0.266
13 15:32 10:170 -1:27 15:209 10:32 -1:12 0:023 0:157 0:130 0:205 14 16:506 14:465 -4:490 16:559 14:957 -4:399 0:033 0:292 0:091 0:310 0:223 16 16:751 12:326 -4:237 16:701 21:334 -4:177 -0:049 0:000 0:223 16 16:455 27:630 -3:695 16:454 27:821 -3:668 -0:041 0:191 0:207 0:060 0:223 17 12:037 9:692 -2:386 12:019 9:926 -2:321 -0:018 0:233 0:074 0:245 18 12:029 13:379 -5:019 12:552 28:122 -3:771 0:067 0:153 -0:027 0:064 0:218 19 12:649 27:959 -5:62 28:122 -3:771 -0:067 0:153 -0:092 0:191 21 5:672 17:71 -3:679	12	19.988	27 758	-2.933	19 892	27 980	-2 781	-0.096	0 221	0 152	0 285
14 16.506 14.665 -4.490 16.559 14.857 -4.399 0.053 0.292 0.091 0.311 15 16.751 21.326 -4.237 16.701 21.534 -4.177 -0.049 0.209 0.060 0.223 16 16.495 27.630 -3.685 16.445 27.821 -3.685 16.445 27.821 -3.685 16.445 27.821 -3.686 0.041 0.191 0.027 0.188 17 12.209 13.379 -5.113 12.191 13.587 -5.049 -0.019 0.207 0.064 0.218 18 12.209 13.379 -5.113 12.191 13.587 -6.049 -0.019 0.207 0.064 0.218 20 12.649 27.969 -3.679 12.582 28.122 -3.771 -0.067 0.153 -0.092 0.181 21 5.672 17.746 -3.373 5.666 12.038 -5.172 -0.016 0.264 0.031 0.264 22 5.548 15.450 4.985 5.541 15.83	13	15.232	10,170	-1.227	15.209	10.327	-1.097	-0.023	0.157	0.130	0.205
15 16.751 21.326 -4.237 16.701 21.534 -4.177 -0.049 0.209 0.060 0.223 16 16.495 27.630 -3.695 16.454 27.821 -3.666 -0.041 0.191 0.027 0.188 17 12.037 9.692 -2.396 12.191 9.926 -2.321 -0.0141 0.191 0.027 0.044 0.245 18 12.209 13.379 -5.113 12.191 13.587 -5.049 -0.019 0.207 0.064 0.245 19 12.583 21.034 -4.230 12.582 28.122 -3.771 -0.061 0.144 0.013 0.157 20 12.649 27.969 -3.679 12.582 28.122 -3.771 -0.067 0.153 -0.092 0.191 21 5.672 11.774 -5.203 5.666 12.038 -5.172 -0.016 0.224 0.023 0.244 0.023 0.245 22 5.548 15.450 -4.375 5.621 17.683 -4.962 0.007 0.184 </td <td>14</td> <td>16.506</td> <td>14.665</td> <td>-4,490</td> <td>16.559</td> <td>14.957</td> <td>-4.399</td> <td>0.053</td> <td>0.292</td> <td>0.091</td> <td>0.311</td>	14	16.506	14.665	-4,490	16.559	14.957	-4.399	0.053	0.292	0.091	0.311
16 16.495 27.630 -3.695 16.454 27.821 -3.688 -0.041 0.191 0.027 0.198 17 12.037 9.692 -2.396 12.019 9.926 -2.321 -0.018 0.233 0.074 0.245 18 12.209 13.379 5.113 12.191 13.587 5.049 -0.019 0.207 0.064 0.218 19 12.649 27.969 -3.679 12.582 28.122 -3.771 -0.061 0.144 0.013 0.157 20 12.649 27.969 -3.679 12.582 28.122 -3.771 -0.061 0.244 0.023 0.922 0.191 21 5.672 11.774 -5.203 5.666 12.038 -5.172 -0.016 0.244 0.023 0.224 22 5.548 15.450 -4.985 5.541 15.093 -4.320 -0.000 0.224 0.020 -0.006 0.217 24 5.711 27.641 -3.753 5.821 27.648 -3.783 0.110 0.187 -0.030	15	16.751	21.326	-4.237	16.701	21.534	-4.177	-0.049	0.209	0.060	0.223
17 12.037 9.692 -2.396 12.019 9.926 -2.321 -0.018 0.233 0.074 0.245 18 12.209 13.379 -5.113 12.191 13.587 -5.049 0.019 0.207 0.064 0.218 19 12.583 21.034 -4.290 12.522 21.178 -4.277 -0.061 0.144 0.013 0.052 0.181 20 12.649 27.969 -3.679 12.582 28.122 -3.771 -0.067 0.153 -0.092 0.191 21 5.672 11.774 -5.203 5.666 12.038 -5.172 -0.016 0.284 0.023 0.286 22 5.548 15.450 -4.962 -0.007 0.244 0.023 0.245 23 5.491 21.761 -4.314 5.411 15.683 -4.962 -0.006 0.221 -0.006 0.217 24 5.711 27.461 -3.753 5.821 27.648 -3.783 0.110 0.187 -0.0030 0.137 26 -0.464	16	16.495	27.630	-3.695	16.454	27.821	-3.668	-0.041	0.191	0.027	0.198
18 12.209 13.379 -5.113 12.191 13.587 -5.049 -0.019 0.207 0.064 0.218 19 12.649 27.969 -3.679 12.582 21.178 -4.277 -0.061 0.144 0.013 0.157 20 12.649 27.969 -3.679 12.582 28.122 -3.771 -0.067 0.163 -0.092 0.191 21 5.672 11.774 -5.203 5.656 12.038 -5.172 -0.016 0.224 0.023 0.245 22 5.548 15.450 -4.986 5.541 15.693 -4.962 -0.000 0.202 -0.006 0.217 24 5.711 27.641 -3.753 5.821 27.648 -3.783 0.110 0.187 -0.030 0.219 25 -0.407 11.394 -1.413 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 26 -0.464 14.761 -1.066 -0.555 14.898 -1.068 -0.091 0.137 -0.003 0.164 <	17	12.037	9.692	-2.396	12.019	9.926	-2.321	-0.018	0.233	0.074	0.245
19 12583 21.034 4290 12522 21.178 -4.277 -0.061 0.144 0.013 0.157 20 12649 27.969 -3.679 12.582 28.122 -3.771 -0.067 0.153 -0.092 0.191 21 5.672 11.774 -5.203 5.656 12.038 -5.172 -0.016 0.264 0.031 0.286 22 5.548 15.450 -4.985 5.541 15.993 -4.962 -0.007 0.244 0.023 0.245 23 5.491 21.761 -4.314 5.411 21.963 -4.320 -0.080 0.202 -0.006 0.217 24 5.711 27.461 -3.753 5.821 27.648 -3.783 0.110 0.187 -0.030 0.219 25 -0.407 11.394 -1.413 -0.499 11.558 -1.418 -0.082 0.164 -0.006 0.184 26 -0.464 14.761 -1.066 0.555 14.898 -1.068 -0.091 0.137 -0.003 0.165 27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 DDDDR DDDR DDDR DDDR DDDR	18	12.209	13.379	-5.113	12.191	13.587	-5.049	-0.019	0.207	0.064	0.218
20 12.649 27.969 -3.679 12.582 28.122 -3.771 -0.067 0.153 -0.092 0.191 21 5.672 11.774 -5.203 5.656 12.038 -5.172 -0.016 0.264 0.031 0.266 22 5.548 15.450 -4.985 5.541 15.693 -4.362 -0.007 0.244 0.023 0.245 23 5.491 21.761 -4.314 5.411 21.963 -4.320 -0.080 0.202 -0.006 0.217 24 5.711 27.461 -3.753 5.821 27.648 -3.783 0.110 0.187 -0.030 0.219 25 -0.407 11.394 -1.413 -0.489 11.558 -1.418 -0.082 0.164 -0.006 0.184 26 -0.464 14.761 -1.066 -0.555 14.898 -1.068 -0.091 0.137 -0.003 0.165 27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 DDER	19	12.583	21.034	-4.290	12.522	21.178	-4.277	-0.061	0.144	0.013	0.157
21 5.672 11.774 -5.203 5.656 12.038 -5.172 -0.016 0.264 0.031 0.286 22 5.548 15.450 -4.985 5.541 15.093 -4.962 -0.007 0.244 0.023 0.245 23 5.491 21.761 -4.314 5.411 121.963 -4.320 -0.080 0.202 -0.006 0.217 24 5.711 27.461 -3.753 5.821 27.648 -3.783 0.110 0.187 -0.006 0.217 25 -0.407 11.394 -1.413 -0.489 11.558 -1.418 -0.082 0.164 -0.006 0.184 26 -0.404 14.761 -1.066 -0.555 14.898 -1.068 -0.010 0.137 -0.003 0.165 27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178	20	12.649	27.969	-3.679	12.582	28.122	-3.771	-0.067	0.153	-0.092	0.191
22 5.548 15.450 -4.985 5.541 15.693 -4.962 -0.007 0.244 0.023 0.245 23 5.491 21.761 -4.314 5.411 21.963 -4.320 -0.080 0.202 -0.006 0.217 24 5.711 27.648 -3.763 0.110 0.187 -0.030 0.219 25 -0.407 11.394 -1.413 -0.489 11.558 -1.418 -0.082 0.164 -0.006 0.184 26 -0.464 14.761 -1.066 -0.555 14.898 -1.068 -0.091 0.137 -0.003 0.165 27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 DEDR 3 4 2 2 11 12 9 10 11 12 <tr< td=""><td>21</td><td>5.672</td><td>11.774</td><td>-5.203</td><td>5.656</td><td>12.038</td><td>-5.172</td><td>-0.016</td><td>0.264</td><td>0.031</td><td>0.266</td></tr<>	21	5.672	11.774	-5.203	5.656	12.038	-5.172	-0.016	0.264	0.031	0.266
23 5.491 21.761 -4.314 5.411 21.963 -4.320 -0.080 0.202 -0.006 0.217 24 5.711 27.461 -3.753 5.821 27.648 -3.783 0.110 0.187 -0.030 0.219 25 -0.407 11.394 -1.413 -0.489 11.558 -1.418 -0.082 0.164 -0.006 0.184 26 -0.464 14.761 -1.066 -0.555 14.898 -1.068 -0.091 0.137 -0.003 0.165 27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 DASHBOARD 3 4 2 1 22 23 24 DODR 2 1 22 23 24 DDDR 2 1 22 23 24	22	5.548	15.450	-4.985	5.541	15.693	-4.962	-0.007	0.244	0.023	0.245
24 5.711 27.461 -3.753 5.821 27.648 -3.783 0.110 0.187 -0.030 0.219 25 -0.407 11.394 -1.413 -0.489 11.558 -1.418 -0.082 0.164 -0.006 0.184 26 -0.464 14.761 -1.066 -0.555 14.888 -1.068 -0.091 0.137 -0.003 0.165 27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 DASHBDARD 2 1 22 23 24 0 001 0.178 0 000 0.164 0.001 0.178 0 000 0.164 0.000 0.178 0 000 0.178 0.178 0 000 0.178 0.178 0 000 0.178 0.1788 0 000 0.178 0.1788 0	23	5.491	21.761	-4.314	5.411	21.963	-4.320	-0.080	0.202	-0.006	0.217
25 -0.407 11.394 -1.413 -0.489 11.558 -1.418 -0.082 0.164 -0.006 0.184 26 -0.464 14.761 -1.063 0.555 14.898 -1.068 -0.091 0.137 -0.003 0.165 27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 DASHBOARD 3 4 12 0 0 0 0 0 0 0 0 0 0 0 0 0	24	5.711	27.461	-3.753	5.821	27.648	-3.783	0.110	0.187	-0.030	0.219
26 -0.464 14.761 -1.066 -0.555 14.898 -1.068 -0.091 0.137 -0.003 0.165 27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 DASHBUARD 3 4 1 2 5 6 7 8 9 10 11 12 9 14 15 16 13 14 15 16 17 18 19 20 21 22 23 24 DDDR	25	-0.407	11.394	-1.413	-0.489	11.558	-1.418	-0.082	0.164	-0.006	0.184
27 -0.375 18.860 -0.714 -0.483 19.109 -0.702 -0.108 0.249 0.012 0.272 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 DASHBOARD 5 6 7 8 9 10 11 12 9 14 15 16 13 14 15 16 17 18 19 20 21 22 23 24 DODR	26	-0.464	14.761	-1.066	-0.555	14.898	-1.068	-0.091	0.137	-0.003	0.165
DASHBOARD 1 28 -0.421 26.250 0.126 -0.490 26.415 0.127 -0.069 0.164 0.001 0.178 0.104 0.001 0.178 0.104 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.164 0.001 0.178 0.001 0.178 0.001 0.164 0.001 0.178 0.001 0.178 0.001 0.164 0.001 0.178 0.001 0.164 0.001 0.178 0.001 0.178 0.001 0.164 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.178 0.001 0.001 0.178 0.001	27	-0.375	18.860	-0.714	-0.483	19.109	-0.702	-0.108	0.249	0.012	0.272
DASHBOARD 3 4 5 6 7 8 9 10 11 12 9 10 12 10 12 10 10 10 10 10 12 10 10 10 10 10 10 1	28	-0.421	26.250	0.126	-0.490	26.415	0.127	-0.069	0.164	0.001	0.178
DASHBOARD 3 4 1 2 1 2 1 2 1 1 9 10 11 12 9 10 11 12 9 14 15 16 13 14 15 16 17 18 19 20 21 22 23 24 DODR											
	DOOR-				DAS	HBOAR	D 5 9 13 17 18 21 :	2 3 7 10 11 4 15 19 22 23	4 8 12 16 20 24	_ D	DOR

Figure D-1. Floor Pan Deformation Data – Set 1, Test No. WITD-1

⊗ Z

		ake. Do	odge	Model:		Ram 1500		
		VEHICLE	E PRE/POS ⁻ ORPAN - S	F CRUSH ET 2				
Х	Y Z	X	Ϋ́	Z'	ΔX	ΔΥ	ΔZ	Total ∆
POINT (in.)	(in.) (in	.) (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1 49.889	12.268 4.6	04 49.821	12.398	4.454	-0.069	0.129	-0.149	0.209
2 50.785	15.612 2.8	20 50.656	15.761	2.668	-0.129	0.150	-0.153	0.250
3 52.079	20.257 -0.0	46 51.841	20.275	-0.118	-0.238	0.018	-0.072	0.249
4 02.144 5 46.530	21.173 1.2	19 01.031	27.023	1.072	-0.613	-0.150	-0.147	0.048
6 47.456	15.484 0.6	33 40.434 33 47.423	15.579	2.940	-0.076	0.131	-0.140	0.211
7 48.647	20 459 -1 9	72 48 501	20 459	-2 125	-0.002	0.004	-0.153	0.227
8 48.674	27.826 -1.6	84 48.593	27.724	-2.075	-0.081	-0.102	-0.391	0.412
9 43.238	10.179 1.4	77 43.181	10.219	1.354	-0.057	0.040	-0.123	0.141
10 44.370	14.999 -1.4	40 44.336	14.898	-1.591	-0.034	-0.101	-0.152	0.185
11 45.508	20.604 -3.7	60 45.383	20.515	-4.048	-0.125	-0.089	-0.288	0.326
12 45.343	27.317 -3.3	69 45.261	27.211	-3.679	-0.082	-0.107	-0.310	0.338
13 40.213	9.922 -0.4	77 40.215	9.896	-0.633	0.002	-0.027	-0.155	0.158
14 41.559	14.142 -4.0	40 41.562	14.103	-4.253	0.003	-0.038	-0.213	0.217
15 41.908	20.813 -4.2	48 41.802	20.748	-4.569	-0.107	-0.064	-0.321	0.344
16 41.790	27.177 -4.1	37 41.758	27.097	-4.564	-0.033	-0.080	-0.427	0.436
17 37.051	9.446 -1.6	43 36.984	9.409	-1.770	-0.067	-0.037	-0.128	0.149
18 37.283	12.899 -4.5	78 37.216	12.852	-4.777	-0.067	-0.047	-0.199	0.216
19 37.763	20.624 -4.2	83 37.665	20.487	-4.623	-0.099	-0.138	-0.340	0.380
20 37.967	21.577 -4.1	43 37.934 75 30.501	27.407	-4.072	-0.053	-0.170	-0.529	0.356
21 30.009	15 129 -4.6	02 30.642	15.068	-4.741	-0.030	-0.059	-0.732	0.201
23 30.678	21 485 -4.3	55 30.613	21 400	-4.695	-0.072	-0.086	-0.202	0.356
24 31 131	27 157 -4 1	91 31.088	27.040	-4 621	-0.042	-0.118	-0.430	0.448
25 24.611	11.438 -0.7	48 24,556	11.396	-0.925	-0.055	-0.042	-0.177	0.190
26 24.564	14.787 -0.6	42 24.510	14.731	-0.853	-0.054	-0.056	-0.212	0.225
27 24.709	18.893 -0.5	69 24.678	18.862	-0.826	-0.031	-0.031	-0.257	0.261
28 24.858	26.360 -0.2	37 24.828	26.278	-0.587	-0.030	-0.082	-0.350	0.360
		DAS	HBDAR	D 5 6 9 1 13 14 17 18 21 2 25 2	$\begin{array}{c} 3 \\ 5 \\ 7 \\ 0 \\ 11 \\ 15 \\ 19 \\ 2 \\ 23 \\ 6 \\ 27 \\ \end{array}$	4 8 12 16 20 24 28		JOR

Figure D-2. Floor Pan Deformation Data – Set 2, Test No. WITD-1

								,			
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	<u>ΔΖ</u> (in.)	Total ∆ (in.)
	1	10.989	-3.237	25.037	10.932	-2.931	25.058	-0.056	0.305	0.021	0.311
т	2	13.262	14.861	25.185	13.170	15.114	25.347	-0.092	0.253	0.162	0.314
ASF	3	13.624	25.591	26.984	13.531	25.907	27.131	-0.093	0.316	0.147	0.360
DA	4	8.391	-2.100	13.574	8.343	-1.809	13.655	-0.049	0.291	0.081	0.306
	5	10.319	16.698	15.920	10.249	16.964	16.101	-0.070	0.266	0.181	0.329
	6	11.021	28.462	17.712	10.866	28.772	17.902	-0.154	0.310	0.190	0.395
ᆈᆈ	7	19.994	31.654	6.444	19.826	31.397	6.539	-0.168	-0.257	0.095	0.321
AN	8	24.101	31.745	8.356	23.903	31.751	8.483	-0.198	0.006	0.126	0.235
υ d	9	19.741	32.245	-0.349	19.675	32.288	-0.305	-0.066	0.043	0.045	0.090
Щ	10	11.563	31.050	24.538	10.790	31.596	24.726	-0.773	0.546	0.188	0.965
	11	-1.001	30.910	24.769	-1.730	32.162	24.945	-0.729	1.252	0.176	1.459
ЕĞ	12	-14.455	30.925	24.930	-15.205	32.738	25.115	-0.750	1.813	0.185	1.970
DO	13	14.100	33.183	12.598	13.320	32.997	12.641	-0.780	-0.186	0.043	0.803
AP.	14	0.950	33.885	12.784	0.335	34.721	12.890	-0.614	0.836	0.106	1.043
=	15	-12.423	32.936	12.506	-13.053	33.721	12.545	-0.630	0.784	0.039	1.007
	16	7.050	-4.744	41.065	6.827	-4.622	41.094	-0.223	0.122	0.029	0.256
	17	6.762	1.935	41.762	6.558	2.142	41.794	-0.204	0.207	0.032	0.292
	18	5.828	8.289	42.365	5.627	8.322	42.399	-0.201	0.033	0.035	0.206
	19	4.545	14.234	42.772	4.193	14.346	42.876	-0.351	0.113	0.104	0.383
	20	2.625	19.507	43.022	2.239	19.661	43.131	-0.386	0.154	0.109	0.430
	21	1.062	-5.137	43.764	0.871	-5.019	43.724	-0.192	0.118	-0.040	0.228
Ч	22	0.648	0.658	44.371	0.419	0.814	44.365	-0.229	0.156	-0.005	0.277
0	23	-0.106	6.382	44.884	-0.342	6.414	44.891	-0.236	0.032	0.007	0.238
R	24	-1.390	11.600	45.330	-1.666	11.685	45.354	-0.276	0.085	0.025	0.290
	25	-3.048	17.150	45.666	-3.407	17.216	45.719	-0.359	0.066	0.054	0.369
-	26	-4.031	-5.352	44.644	-4.184	-5.257	44.562	-0.153	0.096	-0.081	0.198
	27	-4.976	-0.038	45.241	-5.204	0.112	45.191	-0.227	0.150	-0.050	0.277
	28	-5.733	6.030	45.698	-6.065	6.127	45.679	-0.333	0.097	-0.019	0.347
	29	-6.244	10.027	45.958	-6.550	10.116	45.947	-0.306	0.089	-0.011	0.319
	30	-7.153	16.429	46.275	-7.494	16.591	46.292	-0.341	0.162	0.017	0.378
с	31	4.249	23.251	40.676	4.043	23.410	40.838	-0.205	0.159	0.162	0.306
FA	32	9.121	24.676	38.055	8.792	24.813	38.188	-0.329	0.137	0.133	0.380
	33	14.204	26.220	34.740	13.902	26.378	34.786	-0.302	0.158	0.046	0.344
LL.	34	19.397	27.797	30.633	19.084	27.969	30.737	-0.313	0.172	0.104	0.372
	35	-18.148	30.887	8.362	-18.321	30.806	8.360	-0.174	-0.081	-0.002	0.192
с	36	-23.305	30.798	8.591	-23.477	30.333	8.564	-0.171	-0.465	-0.027	0.496
БB	37	-18.895	29.972	16.908	-19.167	29.814	16.956	-0.272	-0.158	0.047	0.318
	38	-23.155	29.956	16.641	-23.404	29.599	16.536	-0.249	-0.357	-0.105	0.448
ш	39	-19.780	28.707	25.588	-20.083	28.564	25.591	-0.303	-0.143	0.003	0.335
1	40	-23.622	28.685	25.570	-23.865	28.434	25.560	-0.243	-0.251	-0.009	0.350

Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. WITD-1

COF COF COF COF COF COF COF COF	X (in.) 1 35.711 2 38.364 3 38.938 4 33.159 5 35.438 6 36.37 7 45.330 8 49.499 9 45.14 10 37.038 11 24.410 12 10.982 13 39.530 14 26.449 15 13.04 15 13.04 16 31.75 17 31.55 18 30.818 19 29.580 20 27.780	Y (in.) -1.566 16.395 27.232 -1.153 17.632 29.627 31.933 31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	Z (in.) 26.601 25.555 26.619 15.115 16.150 17.110 5.695 7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	X' (in.) 35.828 38.398 39.021 33.191 35.476 36.351 45.296 49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	Y' (in.) -1.173 16.730 27.705 -0.936 17.934 29.936 31.359 31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	Z' (in.) 26.596 25.318 26.283 15.105 16.008 16.871 5.325 7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184	ΔX (in.) 0.117 0.034 0.083 0.032 0.038 -0.020 -0.034 -0.110 -0.074 -0.683 -0.573 -0.624 -0.532 -0.529 -0.529	ΔY (in.) 0.393 0.335 0.473 0.217 0.303 0.309 -0.430 -0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	ΔZ (in.) -0.006 -0.237 -0.336 -0.010 -0.143 -0.238 -0.370 -0.467 -0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	Total △ (in.) 0.410 0.412 0.586 0.219 0.337 0.390 0.568 0.502 0.502 0.502 0.966 1.517 2.068 0.813 1.022 0.973
COF COF COF COF COF COF COF COF	1 35.71* 2 38.364 3 38.938 4 33.156 5 35.438 6 36.37' 7 45.330 8 49.493 9 45.14* 10 37.038 11 24.410 12 10.982 13 39.530 14 26.448 15 13.04* 16 31.75* 18 30.818 19 29.580 20 27.780	-1.566 16.395 27.232 -1.153 17.632 29.627 31.789 31.933 31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	26.601 25.555 26.619 15.115 16.150 17.110 5.695 7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	35.828 38.398 39.021 33.191 35.476 36.351 45.296 49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	-1.173 16.730 27.705 -0.936 17.934 29.936 31.359 31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556	26.596 25.318 26.283 15.105 16.008 16.871 5.325 7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184	0.117 0.034 0.083 0.032 0.038 -0.020 -0.034 -0.110 -0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529	0.393 0.335 0.473 0.217 0.303 0.309 -0.430 -0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.006 -0.237 -0.336 -0.010 -0.143 -0.238 -0.370 -0.467 -0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.410 0.412 0.586 0.219 0.337 0.390 0.568 0.502 0.502 0.966 1.517 2.068 0.813 1.022 0.973
COF COF COF COF COF COF COF COF	2 38.364 3 38.936 4 33.156 5 35.436 6 36.37' 7 45.330 8 49.496 9 45.14' 10 37.036 11 24.410 12 10.982 13 39.530 14 26.449 15 13.04' 16 31.75' 17 31.55' 18 30.816 19 29.580 20 27.780	16.395 27.232 -1.153 17.632 29.627 31.933 31.916 32.610 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	25.555 26.619 15.115 16.150 17.110 5.695 7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	38.398 39.021 33.191 35.476 36.351 45.296 49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	16.730 27.705 -0.936 17.934 29.936 31.359 31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	25.318 26.283 15.105 16.008 16.871 5.325 7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184	0.034 0.083 0.032 0.038 -0.020 -0.034 -0.110 -0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529 -0.529	0.335 0.473 0.217 0.303 0.309 -0.430 -0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.237 -0.336 -0.010 -0.143 -0.238 -0.370 -0.467 -0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.412 0.586 0.219 0.337 0.390 0.568 0.502 0.966 1.517 2.068 0.813 1.022 0.973
COF	3 38.938 4 33.159 5 35.438 6 36.37' 7 45.330 8 49.499 9 45.14' 10 37.038 11 24.410 12 10.982 13 39.530 14 26.448 15 13.04' 16 31.75' 17 31.55' 18 30.818 20 27.780 20 27.780	27.232 -1.153 17.632 29.627 31.789 31.933 31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	26.619 15.115 16.150 17.110 5.695 7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	39.021 33.191 35.476 36.351 45.296 49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	27.705 -0.936 17.934 29.936 31.359 31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	26.283 15.105 16.008 16.871 5.325 7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184 42.721	0.083 0.032 0.038 -0.020 -0.034 -0.110 -0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529 -0.529	0.473 0.217 0.303 0.309 -0.430 -0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.336 -0.010 -0.143 -0.238 -0.370 -0.467 -0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.586 0.219 0.337 0.390 0.568 0.502 0.966 1.517 2.068 0.813 1.022 0.973
COF COF COF COF COF COF COF COF	4 33.159 5 35.436 6 36.37' 7 45.330 8 49.499 9 45.14' 10 37.036 11 24.410 12 10.982 13 39.530 14 26.449 15 13.04' 16 31.75' 17 31.55' 18 30.816 19 29.580 20 27.780	-1.153 17.632 29.627 31.789 31.933 31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	15.115 16.150 17.110 5.695 7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	33.191 35.476 36.351 45.296 49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	-0.936 17.934 29.936 31.359 31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	15.105 16.008 16.871 5.325 7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184	0.032 0.038 -0.020 -0.034 -0.110 -0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529 -0.529	0.217 0.303 0.309 -0.430 -0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.010 -0.143 -0.238 -0.370 -0.467 -0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.219 0.337 0.390 0.568 0.502 0.966 1.517 2.068 0.813 1.022 0.973
COPF 200F 200F 200F 200F 200F 200F 200F 20	5 35.438 6 36.37' 7 45.330 8 49.499 9 45.14' 10 37.038 11 24.410 12 10.982 13 39.530 14 26.449 15 13.04' 16 31.75' 17 31.55' 18 30.816 19 29.580 20 27.780	17.632 29.627 31.789 31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	16.150 17.110 5.695 7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	35.476 36.351 45.296 49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	17.934 29.936 31.359 31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	16.008 16.871 5.325 7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184 42.721	0.038 -0.020 -0.034 -0.110 -0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529 -0.529	0.303 0.309 -0.430 -0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.143 -0.238 -0.370 -0.467 -0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.337 0.390 0.568 0.502 0.502 0.966 1.517 2.068 0.813 1.022 0.973
300F 100P	6 36.37' 7 45.330 8 49.499 9 45.14' 10 37.038 11 24.410 12 10.982 13 39.533 14 26.448 15 13.04' 16 31.75' 17 31.55' 18 30.818 20 27.780 20 27.780	29.627 31.789 31.933 31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	17.110 5.695 7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	36.351 45.296 49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	29.936 31.359 31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	16.871 5.325 7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184 42.721	-0.020 -0.034 -0.110 -0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529 -0.529	0.309 -0.430 -0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.238 -0.370 -0.467 -0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.390 0.568 0.502 0.966 1.517 2.068 0.813 1.022 0.973
COF 200F 200F 200F 200F 200F 200F 200F 20	7 45.330 8 49.499 9 45.14" 10 37.038 11 24.410 12 10.982 13 39.530 14 26.448 15 13.04" 16 31.75" 17 31.55" 18 30.818 19 29.580 20 27.780	31.789 31.933 31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	5.695 7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	45.296 49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	31.359 31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	5.325 7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184	-0.034 -0.110 -0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529	-0.430 -0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.370 -0.467 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.568 0.502 0.966 1.517 2.068 0.813 1.022 0.973
COF	8 49.499 9 45.14" 10 37.038 11 24.410 12 10.982 13 39.530 14 26.448 15 13.04" 16 31.75" 17 31.55" 18 30.816 19 29.580 20 27.780	31.933 31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	7.622 -1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	49.389 45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	31.788 31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	7.155 -1.589 23.412 23.654 23.813 11.275 11.464 11.184	-0.110 -0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529	-0.145 -0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.467 -0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.502 0.502 0.966 1.517 2.068 0.813 1.022 0.973
COF	9 45.14* 10 37.038 11 24.410 12 10.982 13 39.533 14 26.448 15 13.04* 16 31.75* 17 31.55* 18 30.818 19 29.580 20 27.780	31.916 32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	-1.143 23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	45.067 36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	31.698 33.209 34.048 34.909 33.565 35.574 34.813 -1.556 5.244	-1.589 23.412 23.654 23.813 11.275 11.464 11.184	-0.074 -0.683 -0.588 -0.573 -0.624 -0.532 -0.529	-0.218 0.599 1.348 1.943 -0.286 0.763 0.719	-0.446 -0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.502 0.966 1.517 2.068 0.813 1.022 0.973
III IMPACT SIDE	10 37.036 11 24.410 12 10.982 13 39.530 14 26.448 15 13.047 16 31.757 17 31.557 18 30.816 19 29.580 20 27.780	32.610 32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	23.742 24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	36.355 23.821 10.408 38.906 25.917 12.512 31.768 31.556	33.209 34.048 34.909 33.565 35.574 34.813 -1.556	23.412 23.654 23.813 11.275 11.464 11.184	-0.683 -0.588 -0.573 -0.624 -0.532 -0.529	0.599 1.348 1.943 -0.286 0.763 0.719	-0.329 -0.372 -0.418 -0.437 -0.424 -0.387	0.966 1.517 2.068 0.813 1.022 0.973
IMPACT SID IMPACT SID 1 1 1 1 1 1 1 1 1 1 1 1 1	11 24.410 12 10.982 13 39.530 14 26.448 15 13.04' 16 31.75' 17 31.55' 18 30.818 19 29.580 20 27.780	32.700 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	24.026 24.231 11.712 11.888 11.571 42.763 43.009 43.142	23.821 10.408 38.906 25.917 12.512 31.768 31.556	34.048 34.909 33.565 35.574 34.813 -1.556	23.654 23.813 11.275 11.464 11.184	-0.588 -0.573 -0.624 -0.532 -0.529	1.348 1.943 -0.286 0.763 0.719	-0.372 -0.418 -0.437 -0.424 -0.387	1.517 2.068 0.813 1.022 0.973
IMPACT S IMPACT	12 10.982 13 39.530 14 26.443 15 13.04' 16 31.75' 17 31.55' 18 30.815 19 29.580 20 27.780	2 32.966 33.851 34.811 34.094 -1.949 4.895 11.140 17.146	24.231 11.712 11.888 11.571 42.763 43.009 43.142	10.408 38.906 25.917 12.512 31.768 31.556	34.909 33.565 35.574 34.813 -1.556	23.813 11.275 11.464 11.184	-0.573 -0.624 -0.532 -0.529	1.943 -0.286 0.763 0.719	-0.418 -0.437 -0.424 -0.387	2.068 0.813 1.022 0.973
IWDAC IMPAC IM	13 39.530 14 26.443 15 13.04' 16 31.75' 17 31.55' 18 30.815 19 29.580 20 27.780 24 27.26	33.851 34.811 34.094 -1.949 4.895 11.140 17.146	11.712 11.888 11.571 42.763 43.009 43.142	38.906 25.917 12.512 31.768 31.556	33.565 35.574 34.813 -1.556	11.275 11.464 11.184	-0.624 -0.532 -0.529	-0.286 0.763 0.719	-0.437 -0.424 -0.387	0.813 1.022 0.973
AWI 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	14 26.443 15 13.04' 16 31.75' 17 31.55' 18 30.815 19 29.580 20 27.780 24 27.28	34.811 34.094 -1.949 4.895 11.140 17.146	11.888 11.571 42.763 43.009 43.142	25.917 12.512 31.768 31.556	35.574 34.813 -1.556	11.464 11.184	-0.532 -0.529	0.763 0.719	-0.424 -0.387	1.022 0.973
2 11 1 1 1 1 1 1 1 1 1 1 1 1	15 13.04' 16 31.75' 17 31.55' 18 30.815 19 29.580 20 27.780 24 57.780	34.094 -1.949 4.895 11.140 17.146	11.571 42.763 43.009 43.142	12.512 31.768 31.556	34.813 -1.556	11.184	-0.529	0.719	-0.387	0.973
11 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16 31.75* 17 31.55* 18 30.815 19 29.580 20 27.780 24 25.7780	-1.949 4.895 11.140 17.146	42.763 43.009 43.142	31.768 31.556	-1.556	40 701	0.047			
1 1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 31.55° 18 30.815 19 29.580 20 27.780 21 25.500	4.895 11.140 17.146	43.009 43.142	31.556	E 244	42.121	0.017	0.393	-0.042	0.395
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 30.818 19 29.580 20 27.780 21 25.720	11.140 17.146	43.142		0.014	42.914	0.005	0.420	-0.096	0.430
1: 2 2 Ц 0 2 2 2 2 2 2 2 2 2	19 29.580 20 27.780 21 25.700	17.146		30.848	11.586	42.975	0.032	0.446	-0.166	0.477
2 2 2 00 2 2	20 27.780		43.166	29.591	17.625	42.946	0.010	0.479	-0.220	0.527
Ц 00 22 00 21	04 05 700	22.514	43.032	27.693	22.881	42.827	-0.087	0.368	-0.205	0.430
Ц ОО 2	21 25.733	-1.998	45.475	25.797	-1.564	45.407	0.064	0.434	-0.068	0.444
	22 25.37*	3.870	45.697	25.529	4.300	45.562	0.158	0.430	-0.135	0.477
~ ~	23 24.806	9.607	45.795	24.898	10.016	45.632	0.092	0.409	-0.163	0.450
Ľ 2	24 23.626	14.829	45.873	23.684	15.235	45.678	0.057	0.406	-0.195	0.454
2	25 22.018	20.512	45.830	21.983	20.858	45.614	-0.035	0.346	-0.216	0.409
2	26 20.598	-2.001	46.370	20.762	-1.593	46.274	0.164	0.408	-0.096	0.450
2	27 19.667	3.360	46.610	19.821	3.791	46.478	0.154	0.431	-0.133	0.476
2	28 19.131	9.361	46.638	19.233	9.782	46.467	0.103	0.422	-0.170	0.466
2	29 18.64	13.482	46.625	18.780	13.841	46.426	0.140	0.359	-0.199	0.434
3	30 17.842	19.902	46.498	17.941	20.354	46.251	0.099	0.451	-0.247	0.524
~ 3	31 29.553	26.093	40.533	29.480	26.440	40.203	-0.073	0.347	-0.329	0.484
Y 3	32 34.415	27.226	37.770	34.306	27.565	37.453	-0.109	0.339	-0.316	0.476
	33 39.483	28.411	34.252	39.458	28.754	33.856	-0.025	0.342	-0.396	0.524
<u>۵</u> 3	34 44.749	29.614	30.082	44.559	29.882	29.692	-0.190	0.268	-0.390	0.511
3	35 7.279	31.872	7.656	7.109	31.691	7.389	-0.170	-0.182	-0.266	0.365
3	36 2.084	31 899	7 920	1.978	31 342	7 616	-0.106	-0.557	-0.304	0.643
A 3	37 6.472	31,565	16.248	6.341	31,414	15,907	-0.131	-0.151	-0.340	0.395
	38 2.277	31.614	15 915	2 089	31,250	15 590	-0.188	-0.365	-0.325	0.523
<u>۵</u>	39 5.623	30,925	24,936	5.388	30.877	24,709	-0.235	-0.048	-0.228	0.331
4			04.004	1.588	30.825	24.672	-0.209	-0.142	-0.323	0.409

Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. WITD-1

Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. WITD-1

Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. WITD-1

Date: Year:	12/14/2017 2010		Fest Name: Make:	WIT Do	⁻ D-2 dge	VIN: Model:	1D7R	B1GP4AS1 Ram 1500	21538		
				VEHICLE	PRE/POST DRPAN - SE	CRUSH T 1					
	Х	Y	Z	X'	Ϋ́	Z'	ΔX	ΔΥ	ΔZ	Total ∆	Crush
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	29.231	-22.278	1.548	19.527	-16.715	8.500	9.704	5.563	6.952	13.170	11.937
2	31.164	-17.832	0.001	22.797	-12.5/1	7.992	8.368	5.261	7.991	12./10	11.5/0
3	32.108	-12.484	-1.060	26.624	-12.044	4.211	5.483	0.440	5.2/1	7.618	7.606
4	28.896	-0.779	-0.375	27.770	-0.005	1.200	0.547	0.173	1.630	1.989	12 070
6	20.540	-23.109	-2.204	18 011	-13.065	4.274	8.655	4.640	7 580	12 /11	11 511
7	27.364	-12 595	-3.445	22 240	-10.877	1 424	5 124	1 717	4 869	7 274	7.069
8	26.030	-6.247	-3 756	25.071	-6.615	-2 436	0.959	-0.368	1 319	1.672	1.631
9	22.811	-23.215	-5.406	14.693	-15.073	2.312	8.118	8.142	7.718	13.848	7.718
10	22.826	-17.838	-5.411	15.997	-13.557	0.754	6.829	4.281	6.165	10.147	6.165
11	22.942	-10.986	-5.421	20.433	-10.455	-2.927	2.509	0.531	2.494	3.577	2.494
12	22.968	-6.438	-5.450	22.252	-6.718	-4.759	0.717	-0.280	0.691	1.034	0.691
13	18.448	-22.622	-7.316	11.831	-18.897	-0.814	6.618	3.725	6.502	9.997	6.502
14	18.195	-17.699	-7.268	14.594	-16.107	-3.613	3.601	1.592	3.655	5.372	3.655
15	18.032	-11.750	-7.250	17.516	-12.163	-6.935	0.515	-0.413	0.315	0.732	0.315
16	18.021	-6.704	-7.287	17.837	-7.252	-7.030	0.184	-0.548	0.257	0.633	0.257
17	13.466	-22.695	-7.206	10.636	-21.471	-4.823	2.830	1.224	2.383	3.897	2.383
18	13.282	-17.999	-7.152	12.521	-18.173	-7.246	0.761	-0.174	-0.094	0.786	-0.094
19	13.253	-11.377	-6.988	12.623	-12.474	-7.394	0.631	-1.097	-0.406	1.329	-0.406
20	13.100	-6.428	-7.153	13.000	-6.879	-7.042	0.100	-0.452	0.111	0.476	0.111
21	7.085	-22.379	-7.031	6.497	-22.401	-0.744	0.088	-0.072	0.287	0.508	0.287
22	6.002	-17.013	7.021	6.905	-17.990	7 299	0.472	-0.103	-0.000	0.769	-0.000
23	6.902	-6.420	-7.022	6.925	-6.640	-7.200	0.170	-0.200	-0.200	0.379	-0.200
24	-0.395	-0.420	-2.873	_0.920	-0.040	-7.071	0.070	-0.220	-0.013	0.231	-0.013
26	-0.200	-15 052	-2.856	-0.290	-15 026	-2.567	0.082	0.000	0.420	0.302	0.420
27	-0.137	-11.761	-2.857	-0.251	-11.776	-2.660	0.114	-0.015	0.196	0.227	0.196
28	-0.112	-5.593	-2.874	-0.226	-5.620	-2.869	0.114	-0.027	0.004	0.117	0.004
Note: Crus	h column is d	leformation	perpendicul	ar to the pla	ine area of i	nterest					
DOOR-			2 1 5 9 1 13 1 17 1	3 D 7 0 11 4 15 8 19	ASHBD 4 12 16 20					DC	IOR
			21 2	26 27	24 28×1 Z	Y					

Figure D-7. Floor Pan Deformation Data – Set 1, Test No. WITD-2

10011	-	Make:	WIT Do	D-2 dge	VIN: Model:	1D7R	B1GP4AS1 Ram 1500	21538		
			VEHICLE FLOC	PRE/POST DRPAN - SE	CRUSH T 2					
Х	Y	Z	X	Ϋ́	Z'	ΔΧ	ΔΥ	ΔZ	Total ∆	Crush
POINT (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1 56.511	-20.848	4.824	46.075	-16.194	11.544	10.436	4.654	6.720	13.256	12.413
2 58.464	-16.318	3.346	49.437	-11.615	11.354	9.028	4.703	8.007	12.951	12.067
3 59.363	-11.076	2.353	53.384	-10.988	7.774	5.979	0.088	5.421	8.071	8.071
4 55.980	-5.365	2.872	54.589	-5.451	4.945	1.391	-0.086	2.073	2.498	2.496
5 53.972	-21.807	0.967	43.700	-16.171	9.674	10.271	5.636	8.707	14.597	13.465
6 54.989	-16.268	-0.076	45.725	-12.089	7.365	9.264	4.1/9	7.441	12.596	11.882
7 54.657	-11.134	-0.239	49.241	-9.747	4.761	0.410	1.387	5.000	7.500	1.370
0 50.200	-4.790	-0.545	41 620	-0.404	5 130	9.901	7 767	7.440	13 002	7.440
10 50.258	-16 500	-2.315	41.029	-12 536	3 731	7 214	3 964	6 116	10.255	6 116
11 50.312	-9.688	-2.362	47 643	-9.319	0.342	2 669	0.369	2 704	3.818	2 704
12 50.223	-5.011	-2.415	49,491	-5,526	-1.362	0.732	-0.514	1,053	1.382	1.053
13 46.110	-21.367	-4.434	39.010	-17.909	1.817	7.100	3.458	6.251	10.072	6.251
14 45.740	-16.367	-4.397	41.894	-15.054	-0.775	3.846	1.313	3.622	5.444	3.622
15 45.530	-10.480	-4.413	45.006	-10.984	-3.822	0.524	-0.504	0.591	0.937	0.591
16 45.393	-5.405	-4.418	45.277	-6.169	-3.856	0.116	-0.765	0.562	0.956	0.562
17 41.068	-21.550	-4.508	38.096	-20.412	-2.344	2.973	1.138	2.164	3.849	2.164
18 40.793	-16.766	-4.458	40.048	-17.045	-4.612	0.745	-0.279	-0.155	0.810	-0.155
19 40.714	-10.180	-4.294	40.102	-11.287	-4.617	0.611	-1.106	-0.323	1.304	-0.323
20 40.434	-5.237	-4.465	40.446	-5.745	-4.145	-0.012	-0.508	0.320	0.600	0.320
21 34.711	-21.320	-4.564	34.042	-21.350	-4.537	0.669	-0.030	0.027	0.670	0.027
22 34.252	-16.773	-4.566	33.879	-16.913	-5.303	0.373	-0.140	-0.738	0.838	-0.738
23 34.421	-10.639	-4.557	34.209	-10.858	-4.825	0.212	-0.219	-0.267	0.405	-0.267
24 34.369	-5.3/2	-4.588	34.335	-5.564	-4.506	0.034	-0.192	0.082	0.211	0.082
25 27.122	-19.141	-0.678	26.974	-19.200	-0.5/1	0.14/	-0.058	0.107	0.191	0.107
26 27.123	-14.051	-0.657	27.038	-14.164	-0.585	0.085	-0.113	0.072	0.159	0.072
28 27.131	-10.704	-0.007	27.004	-10.001	-0.012	0.047	-0.077	0.045	0.101	0.045
20 27.002	-4.010	-0.071	27.000	-4.030	-0.700	0.043	-0.000	-0.000	0.103	-0.000
		1 9 13 17 21 25	$ \begin{array}{c} D 4 \\ \frac{2}{6} & 7 \\ 10 & 11 \\ 14 & 15 \\ 18 & 19 \\ 22 & 23 \\ 26 & 27 \\ \hline 26 & 27 \\ \end{array} $	ASHBD 4 8 12 16 20 24 28	ARD				DC	IDR

Figure D-8. Floor Pan Deformation Data – Set 2, Test No. WITD-2

_				VEHI	ICLE PRE/F ERIOR CR	POST CRU USH - SET	SH 1					
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)	Crush (in.)
	1	16.730	-23.418	24.761	16.036	-22.525	27.957	0.693	0.893	3.196	3.390	3.390
-	2	14.945	-3.501	24.854	14.418	-2.916	25.807	0.527	0.585	0.953	1.237	1.237
₽SF	3	12.016	6.286	24.682	11.844	6.925	25.299	0.172	-0.638	0.617	0.904	0.904
<u>à</u>	4	11.869	-23.280	13.940	9.446	-22.608	18.03/	2.423	0.406	4.097	4.808	4.808
	6	9.026	6 185	13.630	9.000	6.489	14.527	0.892	-0.305	0.888	2.000	2.000
	7	20.529	-25 986	3.531	14 888	-23 694	8 165	5.642	2 292	4 634	7.652	2 292
ЩЩ	8	20.020	-25.977	-0.659	13 093	-21.306	5 054	7 414	4 671	5 714	10.461	4 671
PA	9	23.248	-26.096	1.765	16.277	-21.707	6.718	6.971	4.389	4.953	9.612	4.389
ш	10	-13.208	-27.373	21.869	-15.281	-29.551	22.966	2.073	-2.178	1.097	3.201	-2.178
<u> </u>	11	-0.482	-27.288	21.376	-2.649	-29.843	23.446	2.167	-2.555	2.071	3.938	-2.555
° HO I	12	12.649	-27.338	20.691	10.460	-30.329	23.645	2.189	-2.991	2.954	4.740	-2.991
DAO DAO	13	-8.529	-28.859	3.026	-10.134	-31.550	4.705	1.605	-2.692	1.678	3.555	-2.692
A −	14	-1.719	-29.089	5.098	-3.350	-30.777	6.885	1.631	-1.688	1.787	2.950	-1.688
=	15	5.739	-29.056	1.470	4.088	-29.235	3.534	1.651	-0.179	2.064	2.649	-0.179
	16	4.795	-16.439	40.572	4.965	-16.119	41.953	-0.170	0.321	1.381	1.428	1.381
-	17	6.539	-10.633	40.674	6.679	-10.283	41.873	-0.140	0.350	1.199	1.257	1.199
-	18	7.629	-5.101	40.748	1.116	-4./58	41.752	-0.148	0.344	1.003	1.0/1	1.003
-	19	0.212	0.620	40.003	0.000	6 178	41.002	-0.172	-0.309	0.799	0.093	0.799
-	20	-1 784	-15 697	40.004	-1 695	-15 305	41.049	-0.004	-0.430 0.301	1 196	1 261	1 1 96
ц. I	22	-0.325	-9.940	43.812	-0.290	-9.532	44,896	-0.035	0.408	1.083	1.158	1.083
<u></u>	23	0.333	-4.191	44.028	0.394	-3.719	44.975	-0.061	0.472	0.947	1.059	0.947
Ř I	24	0.455	1.512	44.197	0.582	2.001	44.985	-0.127	-0.489	0.789	0.937	0.789
	25	-0.260	6.400	44.403	-0.080	6.886	45.057	-0.180	-0.486	0.653	0.834	0.653
	26	-6.171	-15.881	44.284	-6.110	-15.437	45.397	-0.061	0.444	1.113	1.200	1.113
	27	-5.866	-10.281	44.636	-5.766	-9.759	45.675	-0.101	0.521	1.040	1.167	1.040
-	28	-5.672	-4.597	44.909	-5.629	-4.130	45.829	-0.043	0.467	0.920	1.033	0.920
-	29	-5.635	1.639	45.140	-5.551	2.137	45.909	-0.084	-0.497	0.769	0.919	0.769
	30	-5.905	6.349	45.202	-5./33	6.897	45.847	-0.172	-0.548	0.645	0.864	0.645
R	<u>3</u> 1	4.702	-20.996	35.500	4.960	-20.763	40.099	-0.258	0.233	1.686	1./21	0.233
A L	<u></u> ૩૮	9.707	-22.104	30.008	10.220	-22.038	3/.4//	-0.442	0.140	1.9/0	2.024	0.140
ā	34	19.627	-24 458	28 106	19.650	-23.985	31 175	-0.293	0.209	3 070	3 106	0.209
	35	-22 184	-25.343	22 677	-22.338	-25 054	23 574	0.153	0.288	0.896	0.954	0.288
~	36	-18.927	-25.317	22.763	-19.103	-25.080	23.690	0.175	0.237	0.927	0.973	0.237
"AF	37	-22.546	-24.432	29.418	-22.703	-24.048	30.331	0.157	0.384	0.914	1.003	0.384
۳ <u>۲</u>	38	-19.382	-24.399	29.409	-19.514	-24.064	30.339	0.132	0.335	0.929	0.997	0.335
ш [39	-22.934	-21.420	37.826	-22.920	-20.938	38.632	-0.014	0.481	0.806	0.939	0.481
	40	-20.122	-21.353	37.937	-20.069	-20.944	38.720	-0.053	0.410	0.783	0.886	0.410

Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. WITD-2

				INT	ERIOR CR	USH - SET	2					
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)	Crush (in.)
	1	43.023	-22.315	27.495	41.511	-22.104	30.670	1.512	0.211	3.175	3.523	3.523
Т	2	40.975	-2.444	27.528	39.923	-2.466	28.859	1.052	-0.022	1.331	1.697	1.697
ASI	3	37.925	7.319	27.285	37.199	7.466	28.336	0.726	-0.14/	1.050	1.285	1.285
<u> </u>	4	37 479	-22.207	15,707	35,737	-21.945	20.470	2.003	0.044	3.933	2 360	2 360
-	6	35 338	7 108	16 119	34 159	7 179	17.200	1 179	-0.070	1 183	1 672	1.672
<u> </u>	7	47 543	-24 909	6 495	41 650	-22 865	10.865	5 893	2 044	4 370	7 616	2 0 4 4
ШЩ	8	47.701	-24.896	2.199	39,999	-20.354	7.671	7.702	4.542	5.472	10.483	4.542
RA NA	9	50.355	-24.987	4.820	43.227	-20.890	9.737	7.128	4.098	4.917	9.580	4.098
m	10	13.446	-26.664	23.525	10.788	-29.121	23.864	2.658	-2.457	0.339	3.636	-2.457
	11	26.137	-26.366	23.540	23.423	-29.352	25.066	2.714	-2.987	1.526	4.315	-2.987
ЧΩ	12	39.315	-26.229	23.252	36.397	-29.752	25.892	2.918	-3.524	2.639	5.282	-3.524
DO	13	18.810	-28.051	4.905	17.086	-30.825	5.665	1.724	-2.775	0.760	3.354	-2.775
ЧM	14	25.600	-28.177	7.205	23.573	-30.084	8.443	2.027	-1.907	1.238	3.046	-1.907
=	15	33.223	-28.020	3.821	31.207	-28.412	5.540	2.016	-0.393	1.719	2.678	-0.393
	16	30.602	-15.480	42.889	29.699	-16.031	44.128	0.903	-0.552	1.240	1.630	1.240
- 3	17	32.225	-9.594	43.078	31.300	-10.174	44.274	0.925	-0.581	1.196	1.619	1.196
	18	33.186	-4.135	43.202	32.343	-4./15	44.313	0.843	-0.580	1.111	1.511	1.111
112	20	33.710	1.869	43.340	32.940	6 300	44.369	0.770	0.542	0.002	1.390	1.022
- 3	20	23.943	-14 849	45.555	22 767	-15 222	44.040	1 159	-0.373	0.992	1.400	0.992
ТГ ^с	21	25 229	-9.064	45,962	24 132	-9.534	46 904	1.103	-0.070	0.942	1.541	0.942
õ	23	25,782	-3.248	46.212	24,766	-3.804	47.121	1.016	-0.556	0.909	1.472	0.909
RO	24	25.794	2.396	46.388	24.904	1.904	47.249	0.890	0.491	0.861	1.332	0.861
	25	25.048	7.355	46.556	24.156	6.879	47.375	0.892	0.475	0.819	1.301	0.819
	26	19.512	-15.192	46.200	18.501	-15.552	46.937	1.011	-0.360	0.736	1.302	0.736
	27	19.699	-9.483	46.579	18.658	-9.871	47.346	1.041	-0.389	0.767	1.350	0.767
	28	19.731	-3.827	46.866	18.746	-4.234	47.615	0.986	-0.407	0.749	1.303	0.749
-	29	19.698	2.461	47.103	18.733	1.950	47.819	0.965	0.511	0.716	1.306	0.716
	30	19.327	7.192	47.161	18.44/	6.741	47.838	0.880	0.451	0.677	1.198	0.677
R	31	30.614	-20.024	40.793	29.769	-20.616	42.201	0.845	-0.592	1.408	1./46	-0.592
A L	32	30.902	-21.150	35.000	30.291	-21.789	39.839	0.011	-0.039	1.784	1.991	-0.639
E	34	40.000	-22.0/0	30.000	39.970 45 105	-22.799	33 604	0.410	-0.721	2.122	2.219	-0.721
	35	4 475	-24 767	24072	3 661	-24 025	24 007	0.707	_0 150	-0.065	0.832	_0 150
20 20 2 20	36	7 675	-24 691	24.012	6.871	-24.910	24,352	0.803	-0.219	0.103	0.839	-0.219
AR	37	3.802	-23.864	30.799	2.846	-24.052	30.768	0.956	-0.188	-0.031	0.975	-0.188
ЦГ В	38	6.967	-23.775	30.920	6.063	-24.025	30.988	0.903	-0.250	0.068	0.940	-0.250
۵.	39	3.156	-20.884	39.132	2.115	-21.108	39.107	1.041	-0.223	-0.025	1.065	-0.223
	40	5.916	-20.764	39.366	4.870	-21.072	39.401	1.046	-0.308	0.035	1.091	-0.308

Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. WITD-2

Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. WITD-2

Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. WITD-2

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. WITD-1

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. WITD-1

Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. WITD-1

Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. WITD-1

Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. WITD-1

Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. WITD-1

Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. WITD-1

Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. WITD-1

Figure E-8. Acceleration Severity Index (SLICE-1), Test No. WITD-1

Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. WITD-1

Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. WITD-1

Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. WITD-1

Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. WITD-1

Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. WITD-1

160

Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. WITD-1

Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. WITD-1

Figure E-16. Acceleration Severity Index (SLICE-2), Test No. WITD-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. WITD-2

Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. WITD-2

Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. WITD-2

Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. WITD-2

Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. WITD-2

Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. WITD-2

Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. WITD-2

Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. WITD-2

171

Figure F-8. Acceleration Severity Index (SLICE-1), Test No. WITD-2

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. WITD-2

Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. WITD-2

Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. WITD-2

175

Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. WITD-2

Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. WITD-2

Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. WITD-2

Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. WITD-2

179

Figure F-16. Acceleration Severity Index (SLICE-2), Test No. WITD-2

END OF DOCUMENT