

Research Project Number TPF-5(193) Supplement #88

PERFORMANCE EVALUATION OF NEW JERSEY'S PORTABLE CONCRETE BARRIER WITH A TRAFFIC-SIDE PINNED CONFIGURATION AND GROUTED TOES – TEST NO. NJPCB-7

Submitted by

Surajkumar K. Bhakta, M.S.M.E. Former Graduate Research Assistant Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

Ronald K. Faller, Ph.D., P.E. Research Professor MwRSF Director John D. Reid, Ph.D. Professor

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

NEW JERSEY DEPARTMENT OF TRANSPORTATION

1035 Parkway Avenue, Trenton, New Jersey 08625

MwRSF Research Report No. TRP-03-374-18

December 18, 2018

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-374-18	2.			3. Recipient's Accession No.	
4. Title and Subtitle				5. Report Date	
Performance Evaluation of New Jersey's Portable Concrete Barrier with a Traffic-Side Pinned Configuration and Grouted Toes – Test No. NJPCB-7			December 18, 2018		
			6.		
7. Author(s)				8. Performing Organization Report No.	
Bhakta, S.K., Lechtenberg, K.A., Urbank, E.L.	Faller, R.K., Reid,	J.D., Bielenbe	erg, R.W., and	TRP-03-374-18	
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln				10. Project/Task/Work Unit No.	
Main Office: Prem S. Paul Research Center at Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Whittier School		st Site: 36th Street braska 68524	11. Contract © or Grant (G) No. TPF-5(193) Supplement #88	
12. Sponsoring Organization Name and Address New Jersey Department of Transportation			13. Type of Report and Period Covered Final Report: 2015 - 2018		
1035 Parkway Avenue Trenton, New Jersey 08625			14. Sponsoring Agency Code		
15. Supplementary Notes Prepared in cooperation with U.S	. Department of Tra	insportation, I	ederal Highway	Administration.	
 Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration. 16. Abstract This report documents a full-scale crash test conducted in support of a study to investigate the performance of New Jersey Department of Transportation's (NJDOT) Precast Concrete Curb, Construction Barrier, which will be referred to as portable concrete barrier (PCB) in various configurations. This represents the seventh system as part of this study. The primary objective of this research effort was to evaluate the safety performance of the NJDOT PCB, Type 4 (Alternative B) with a traffic-side pinned configuration and grouted toes. Barrier nos. 1 and 10 were anchored on both sides, and barrier nos. 2 through 9 were anchored only to the concrete tarmac through the traffic-side pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins inserted into 1¼-in. (32-mm) diameter holes drilled in the concrete tarmac. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments. The barrier was evaluated according to the Test Level 3 (TL-3) criteria set forth in the <i>Manual for Assessing Safety Hardware, Second Edition</i> (MASH 2016). The research study included one full-scale vehicle crash test with a 2270P pickup truck. Following the successful redirection of the pickup truck, the safety performance of the system was determined to be acceptable according to the test designation no. 3-11 evaluation criteria specified in MASH 2016. TL-3 criteria. This report set was deemed unnecessary due to previous testing. The barrier successfully met MASH 2016 TL-3 criteria. This report is the seventh of nine documents in the nine-test series. 					
17 Deserves et Anglasis (Deservices			10 A		

17. Document Analysis/Descriptors Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Longitudinal Barrier, Portable Concrete Barrier, PCB, Anchored, Pinned, and Barrier Curb		 Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 		
19. Security Class (this report) Unclassified20. Security Class (this page) Unclassified		21. No. of Pages 124	22. Price	

DISCLAIMER STATEMENT

This report was completed with funding from the New Jersey Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Jennifer Schmidt, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) New Jersey Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Assistant Director – Physical Testing Division
J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
C.S. Stolle, Ph.D., Research Assistant Professor
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer
M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate
S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
E.W. Krier, B.S., Construction and Testing Technician II
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
M.A. Rasmussen, Construction and Testing Technician I
M.T. Ramel, B.S.C.M., former Construction and Testing Technician I
J.E. Kohtz, B.S.M.E., CAD Technician
Undergraduate and Graduate Research Assistants

New Jersey Department of Transportation

Dave Bizuga, former Senior Executive Manager, Roadway Design Group 1 Giri Venkiteela, Research Project Manager, NJDOT Bureau of Research Hung Tang, Design Standards Bureau, Roadway Standards Unit Lee Steiner, Project Engineer, Bureau of Traffic Engineering

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	ix
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	
3 DESIGN DETAILS	6
 4 TEST CONDITIONS	25 25 25 25 29 29
 4.5.1 Accelerometers	
4.5.1 Accelerometers4.5.2 Rate Transducers4.5.3 Retroreflective Optic Speed Trap	29

7 COMPARISON TO TEST NO. NYTCB-5				
8 MASH IMPLEME	NTATION			
9 REFERENCES				
10 APPENDICES				
Appendix A.	NJDOT PCB Standard Plans			
	Material Specifications			
Appendix C.	Concrete Tarmac Strength			
Appendix D.	Vehicle Center of Gravity Determination			
Appendix E.	Vehicle Deformation Records			
Appendix F.	Accelerometer and Rate Transducer Data Plots			

LIST OF FIGURES

Figure 1. Test Installation Layout, Test No. NJPCB-7	7
Figure 2. PCB Pin Anchor Details, Test No. NJPCB-7	
Figure 3. PCB Pin Anchor Locations, Test No. NJPCB-7	
Figure 4. PCB Details, Test No. NJPCB-7	10
Figure 5. PCB Reinforcement Details, Test No. NJPCB-7	11
Figure 6. PCB Reinforcement Details - End View, Test No. NJPCB-7	12
Figure 7. PCB Connection Key Assembly Details, Test No. NJPCB-7	
Figure 8. PCB Connection Key Component Details, Test No. NJPCB-7	14
Figure 9. PCB Connection Socket Details, Test No. NJPCB-7	15
Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-7	16
Figure 11. Connection Key Placement Details, Test No. NJPCB-7	17
Figure 12. PCB Reinforcement Details, Test No. NJPCB-7	18
Figure 13. General Notes, Test No. NJPCB-7	
Figure 14. Bill of Materials, Test No. NJPCB-7	20
Figure 15. NJDOT PCB with Traffic-Side Pinned Configuration and Grouted Toes Test	
Installation, Test No. NJPCB-7	
Figure 16. PCB Connection Key and Connection Socket, Test No. NJPCB-7	22
Figure 17. PCB Traffic-Side Pin Anchor Recesses, Test No. NJPCB-7	
Figure 18. Grout at Toes between PCBs, Test No. NJPCB-7	24
Figure 19. Test Vehicle, Test No. NJPCB-7	
Figure 20. Vehicle Dimensions, Test No. NJPCB-7	27
Figure 21. Target Geometry, Test No. NJPCB-7	28
Figure 22. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-7	31
Figure 23. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
NJPCB-7	
Figure 24. Summary of Test Results and Sequential Photographs, Test No. NJPCB-7	38
Figure 25. Additional Sequential Photographs, Test No. NJPCB-7	
Figure 26. Additional Sequential Photographs, Test No. NJPCB-7	
Figure 27. Documentary Photographs, Test No. NJPCB-7	
Figure 28. Documentary Photographs, Test No. NJPCB-7	42
Figure 29. Documentary Photographs, Test No. NJPCB-7	
Figure 30. Documentary Photographs, Test No. NJPCB-7	
Figure 31. Impact Location, Test No. NJPCB-7	
Figure 32. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-7	46
Figure 33. System Damage – Front, Back, Upstream and Downstream Views, Test No.	
NJPCB-7	
Figure 34. Barrier No. 3 – Traffic and Back Side Damage, Test No. NJPCB-7	
Figure 35. Barrier Nos. 4 and 5 Damage, Test No. NJPCB-7	
Figure 36. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-7	
Figure 37. Barrier No. 5 - Traffic and Back Side Damage, Test No. NJPCB-7	
Figure 38. Barrier No. 6 – Traffic and Back Side Damage, Test No. NJPCB-7	
Figure 39. Vehicle Damage, Test No. NJPCB-7	
Figure 40. Vehicle Damage on Impact Side, Test No. NJPCB-7	
Figure 41. Vehicle Windshield Damage, Test No. NJPCB-7	
Figure 42. Occupant Compartment Deformation, Test No. NJPCB-7	

Figure 43. Undercarriage Damage, Test No. NJPCB-7	57
Figure 44. Deflection Comparisons – Test Nos. NJPCB-7, NJPCB-6 and NYTCB-5	
Figure A-1. NJDOT PCB Standard Plans	
Figure A-2. NJDOT PCB Standard Plans	
Figure A-3. NJDOT PCB Standard Plans	
Figure A-4. NJDOT PCB Standard Plans	
Figure A-5. NJDOT PCB Standard Plans	13 76
Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-7 Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-7	
Figure B-3. Alchor Phils Material Certificate, Test No. NJPCB-7	
Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-7	
Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-7	
Figure B-7. Rebar No. 6 Material Certificate, Test No. NJPCB-7	
Figure B-8. Rebar No. 6 Material Certificate, Test No. NJPCB-7	82
Figure B-9. Rebar No. 6 Material Certificate, Test No. NJPCB-7	
Figure B-10. Rebar No. 6 Material Certificate, Test No. NJPCB-7	
Figure B-11. Rebar No. 6 Material Certificate, Test No. NJPCB-7	
Figure B-12. Steel Tube Material Certificate, Test No. NJPCB-7	
Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-7	
Figure B-14. 2-in. × ¹ / ₄ -in. (51-mm × 6-mm) Bent Steel Plate, Test No. NJPCB-7	
Figure B-15. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-7	
Figure B-16. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-7	
Figure B-17. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-7	
Figure B-18. Non-Shrink Grout Specifications, Test No. NJPCB-7	
Figure B-19. Non-Shrink Grout Specifications, Test No. NJPCB-7 Figure B-20. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-7	
Figure C-1. Concrete Tarmac Strength Test	
Figure C-2. Concrete Tarmac Strength Test	
Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-7	
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-7	
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-7	
Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-7	
Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-7	
Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-7	105
Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-7	
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-7	
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-7	
Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-7	
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-7	
Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-7	
Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-7 Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-7	
Figure F-7. Venicle Angular Displacements (SLICE-2), Test No. NJPCB-7 Figure F-8. Acceleration Severity Index (SLICE-2), Test No. NJPCB-7	
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-7	
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-7	
Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-7	
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-7	

Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-7	
Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-7	
Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-7	
Figure F-16. Acceleration Severity Index (SLICE-1), Test No. NJPCB-7	

LIST OF TABLES

Table 1. 2013 NJDOT Roadway Design Manual PCB Guidance [1]	1
Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]	
Table 3. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	3
Table 4. MASH 2016 Evaluation Criteria for Longitudinal Barrier	5
Table 5. Weather Conditions, Test No. NJPCB-7	32
Table 6. Sequential Description of Impact Events, Test No. NJPCB-7	32
Table 7. Maximum Occupant Compartment Deformations by Location	36
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-7	37
Table 9. Summary of Safety Performance Evaluation	59
Table 10. Comparison of Pinned Systems on One Side Only	61
Table B-1. Bill of Materials, Test No. NJPCB-7	75

1 INTRODUCTION

1.1 Background

The New Jersey Department of Transportation (NJDOT) currently uses a New Jersey shape, Precast Concrete Curb, Concrete Barrier, which will be referred to as portable concrete barrier (PCB), with a vertical, I-beam connection pin to attach barriers end to end within their work zones and construction areas. The 2013 NJDOT *Roadway Design Manual* [1] provides guidance on allowable barrier deflections for various classes of PCB joint treatments, as shown in Table 1. The current 2015 NJDOT *Roadway Design Manual* [2] provides guidance on allowable deflections for various connection types, as shown in Table 2.

Table 1 2013 NIDOT Roady	way Design Manual PCB Guidance [1]
Table 1. 2015 NJDOT Koauv	way Design Manual I CD Ouldance [1]

Joint Class	Use	Joint Treatment
А	Allowable movement over 16 to 24 inches	Connection Key only
В	Allowable movement over 11 to 16 inches	Connection Key and grout in every joint
С	Allowable movement of 11 inches	Connection Key and grout in every joint and pin every other unit. In units to be anchored, pin should be required in every recess
D	No allowable movement (i.e., bridge parapet)	Connection Key and grout in every joint and bolt every anchor pocket hole in every unit

Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]

Connection Type	Use	Joint Treatment*
А	Maximum allowable deflection of 41 inches	Connection Key and barrier end sections fully pinned
В	Maximum allowable deflection of 28 inches (Cannot be used with traffic on both sides of the barrier.)	Connection Key, 6" by 6" box beam, and barrier end sections fully pinned
C	Maximum allowable deflection of 11 inches	Connection Key, construction side of all sections pinned, and barrier end sections fully pinned

* Barrier end sections fully pinned – first and last barrier segments of the entire run regardless of connection type have pins in every anchor recess on both sides.

The guidance provided in both the 2013 and 2015 *Roadway Design Manual* was based on test data obtained from previous testing standards, which needs to be updated to be consistent with current crash testing standards and a changing vehicle fleet. Crash testing of other PCB systems under the Test Level 3 (TL-3) criteria of the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [3] has indicated that dynamic barrier deflections can increase significantly

when compared to dynamic deflections based on older crash test data. Thus, a need exists to investigate the performance of the NJDOT PCB system in various configurations in order to provide updated design guidance. The NJDOT PCB standard plans are shown in Appendix A.

1.2 Objective

The objective of this research effort included an evaluation of the safety performance of NJDOT's PCB, Type 4 (Alternative B) with a traffic-side pinned configuration and grouted toes. The system was evaluated according to the Test Level 3 (TL-3) criteria set forth in the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [3].

1.3 Scope

The research objective was achieved through completion of several tasks. One full-scale crash test was conducted on the PCB system according to MASH 2016 test designation no. 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the PCB system.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as PCBs, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [3]. Note that there is no difference between MASH 2009 [4] and MASH 2016 for most longitudinal barriers, such as the PCB system tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 3. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,268)	62 (100)	25	A,D,F,H,I

 Table 3. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 4.

In test no. 7069-3, a rigid, F-shape, concrete bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-8]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ¹/₂-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid barriers as seen in test no. 47 [10]. As such, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2016 criteria and the lack of experience and knowledge regarding the performance of the new vehicle types with certain types of hardware could result in unanticipated barrier performance. Thus, any

tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the PCB system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

Table 4. MASH 2016 Evaluation	Criteria for	Longitudinal Barrier
Table 4. MASH 2010 Evaluation		Longituumai Darrier

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.			
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			
Risk		Occupant Impact Velocity Limits			
		Component	Preferred	Maximum	
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)	
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			
		Occupant Ridedown Acceleration Limits			
		Component	Preferred	Maximum	
		Longitudinal and Lateral	15.0 g's	20.49 g's	

3 DESIGN DETAILS

The test installation consisted of ten 20-ft (6.1-m) long NJDOT PCBs with a traffic-side pinned configuration and grouted toes, as shown in Figures 1 through 14. This system uses NJDOT barriers, Type 4 (Alternative B). Photographs of the test installation are shown in Figures 15 through 18. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The concrete mix for the barrier sections required a minimum 28-day compressive strength of 3,700 psi (25.5 MPa). A minimum concrete cover of 1½ in. (38 mm) was used along all rebar in the barrier. All of the steel reinforcement in the barrier was ASTM A615 Grade 60 rebar and consisted of four No. 6 longitudinal bars, eight No. 4 bars for the vertical stirrups, four No. 6 lateral bars, and nine No. 4 bars for the anchor hole reinforcement loops. The section reinforcement details are shown in Figures 5 and 6.

The barrier sections connected were with connection keys, as shown in Figures 7 through 11 and 16. The connection key assembly consisted of ½-in. (13-mm) thick, ASTM A36 steel plates welded together to form the key shape. A connection socket was configured at each end of the PCB section, as shown in Figures 2, 15, and 16. The connection socket consisted of three ASTM A36 steel plates welded on the sides of an ASTM A500 Grade B or C steel tube, as shown in Figures 9 and 10. The connection key was inserted into the steel tubes of two adjoining PCBs to form the connection, as shown in Figure 11.

Barrier nos. 1 and 10 were anchored to the concrete tarmac on both the traffic side and the back side, while barrier nos. 2 through 9 were anchored to the concrete tarmac only on the traffic side through the pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins inserted into 1¹/₄-in. (32-mm) diameter holes drilled in the concrete tarmac, as shown in Figures 12 and 17. The steel pins were embedded to a depth of 5 in. (127 mm), as shown in Figure 1. During installation, the barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints. After slack was removed from all the joints, the 1¹/₄-in. (32-mm) diameter holes were drilled for the pin anchors at pin recess locations. Five samples of concrete tarmac were tested from five different locations of MwRSF's Outdoor Test Site. The concrete tarmac had a compressive strength ranging between 5,970 and 7,040 psi (41.2 and 48.5 MPa), as shown in Appendix C. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments on both traffic and back sides, as shown in Figures 1, 2, and 18. The grout wedges consisted of a grout mix with a minimum 1-day compressive strength of 1,000 psi (6.9 MPa).

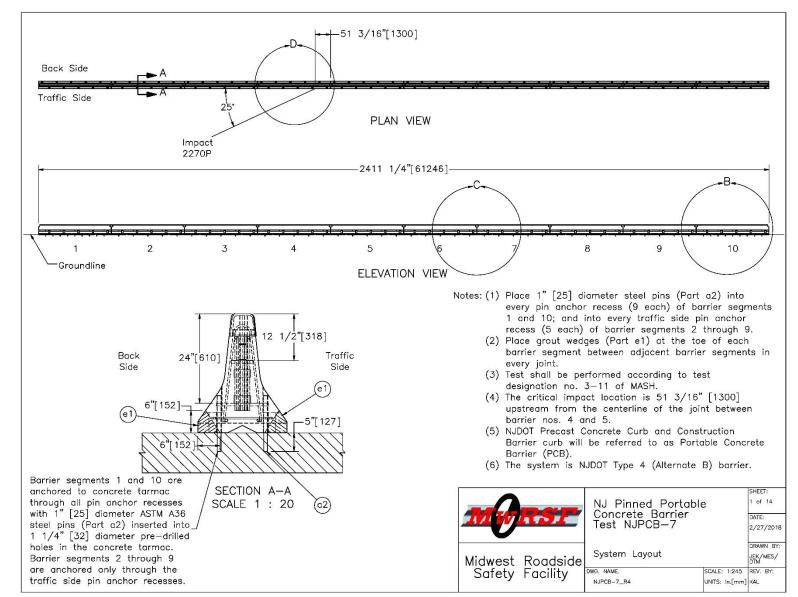


Figure 1. Test Installation Layout, Test No. NJPCB-7

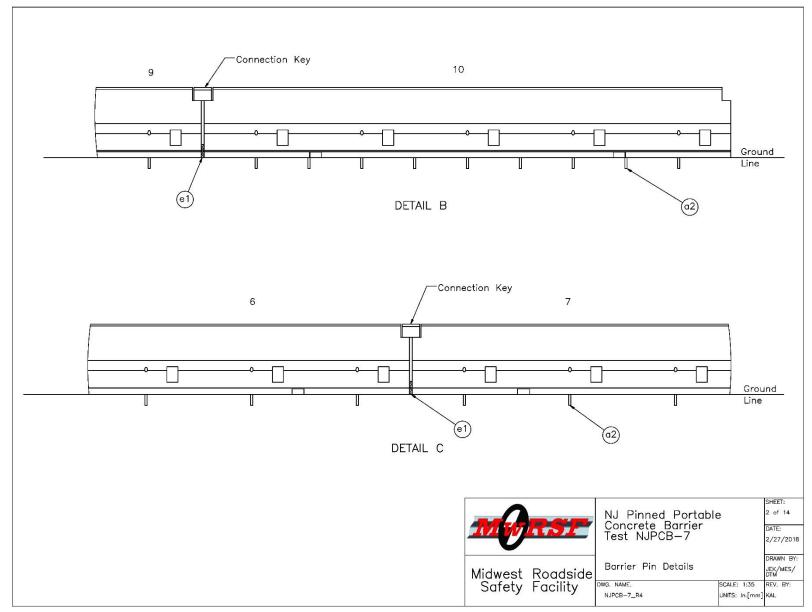


Figure 2. PCB Pin Anchor Details, Test No. NJPCB-7

 ∞

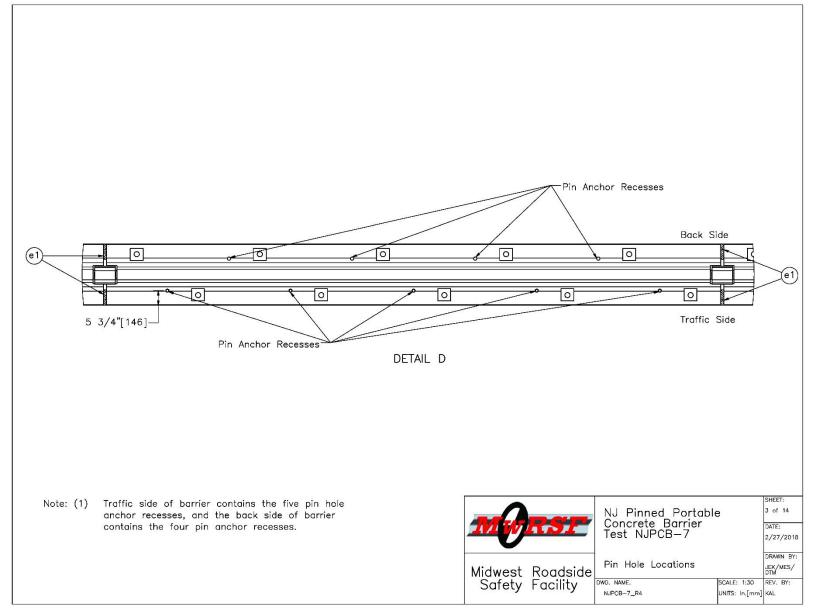


Figure 3. PCB Pin Anchor Locations, Test No. NJPCB-7

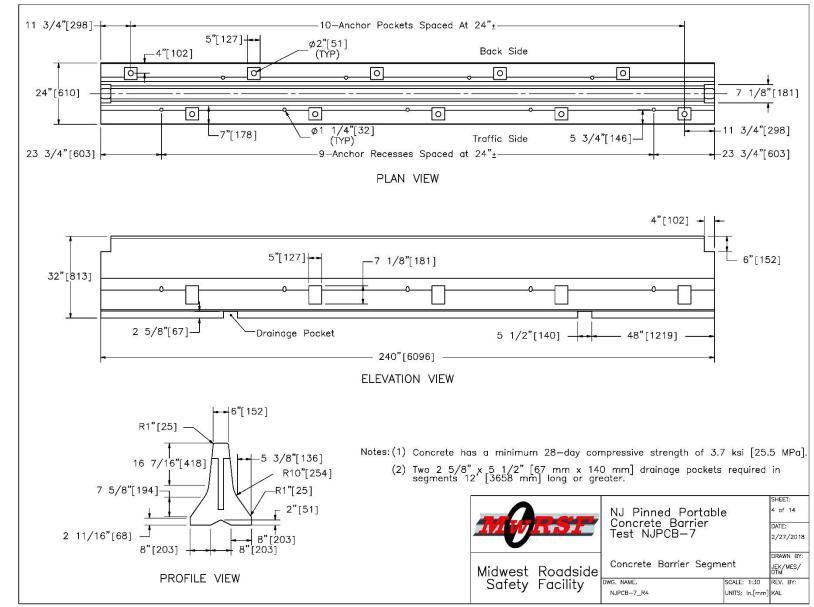


Figure 4. PCB Details, Test No. NJPCB-7

10

December 18, 2018 MwRSF Report No. TRP-03-374-18

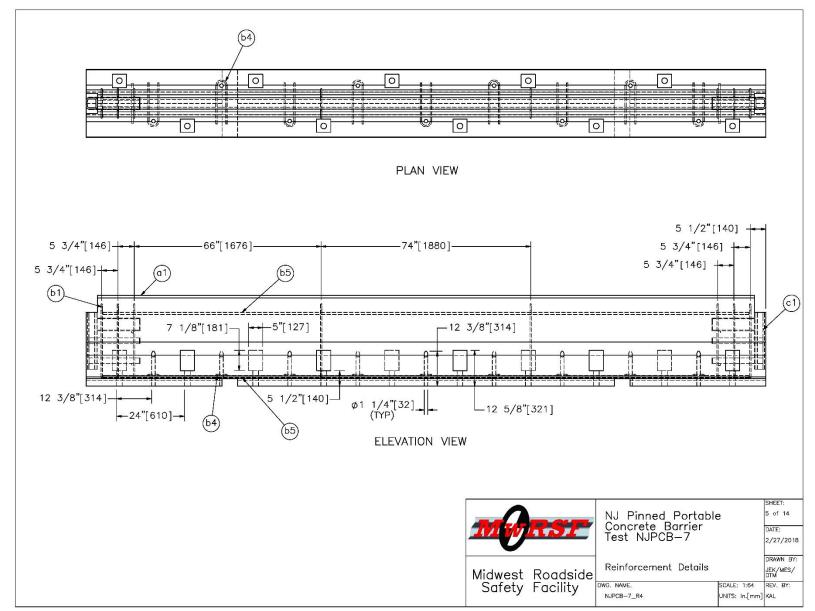


Figure 5. PCB Reinforcement Details, Test No. NJPCB-7

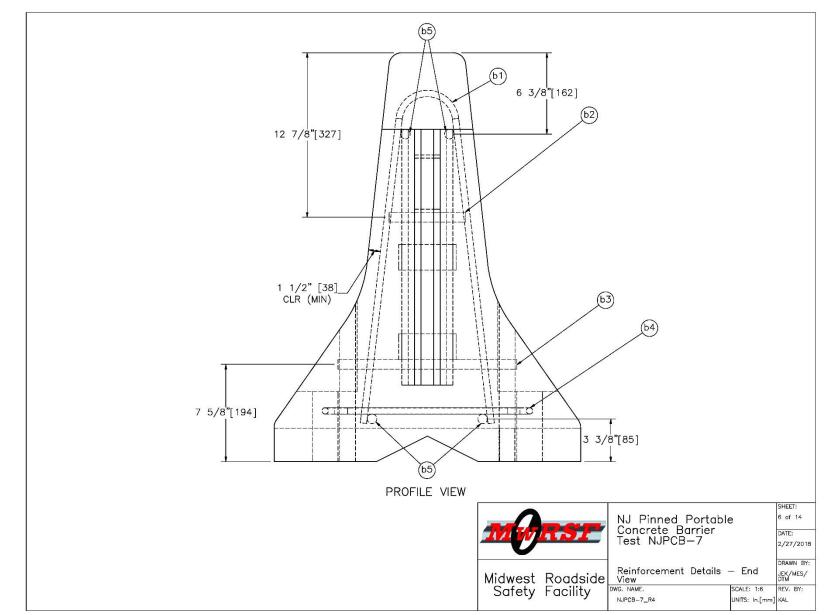


Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-7

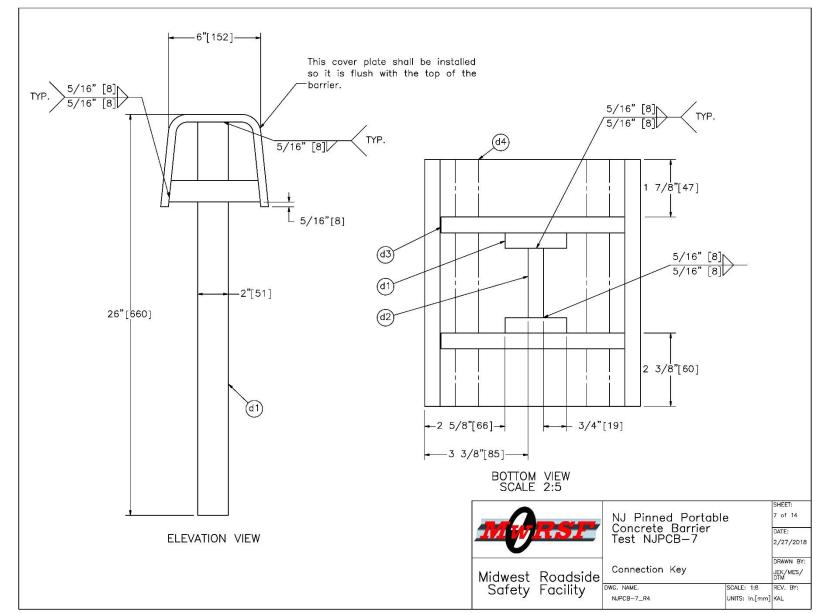


Figure 7. PCB Connection Key Assembly Details, Test No. NJPCB-7

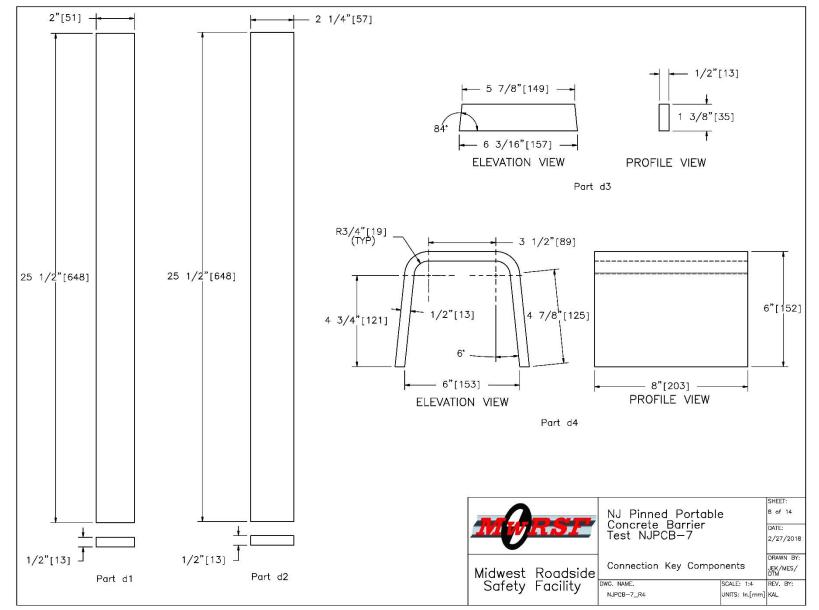


Figure 8. PCB Connection Key Component Details, Test No. NJPCB-7

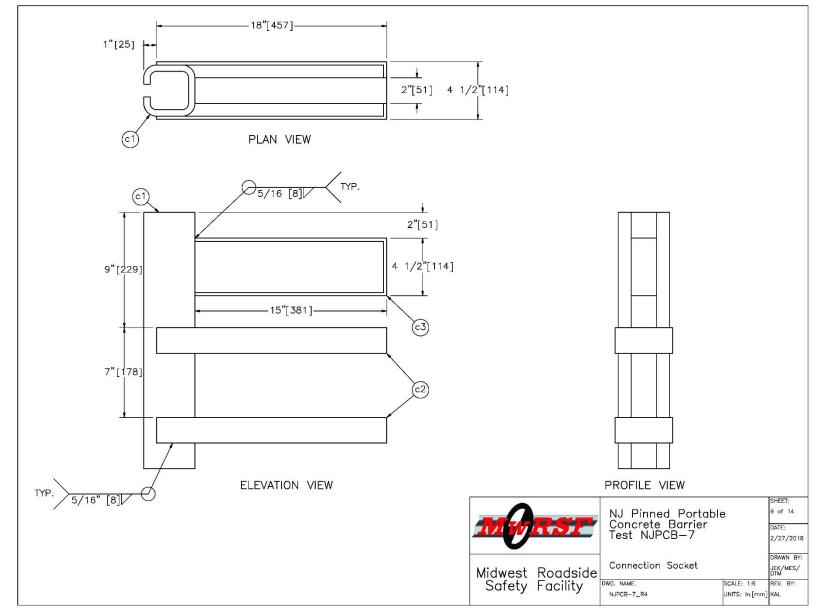


Figure 9. PCB Connection Socket Details, Test No. NJPCB-7

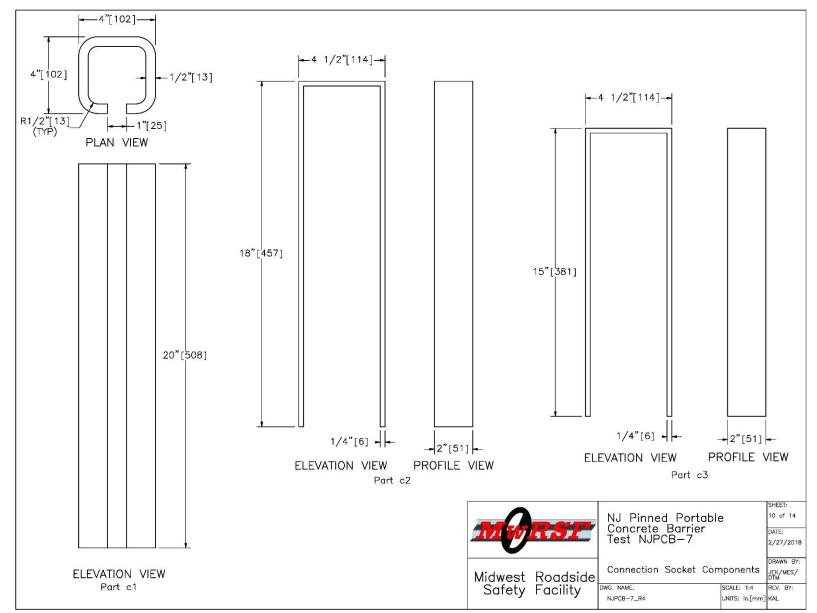


Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-7

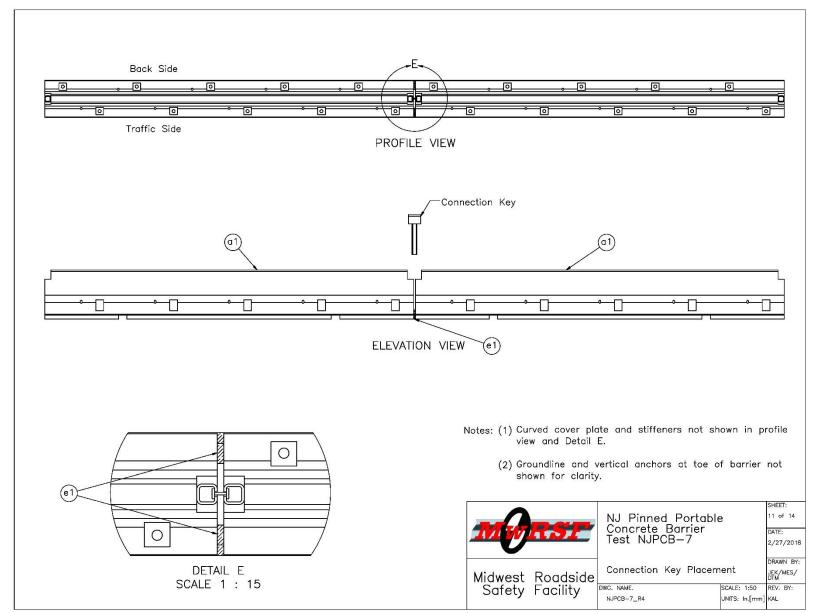


Figure 11. Connection Key Placement Details, Test No. NJPCB-7

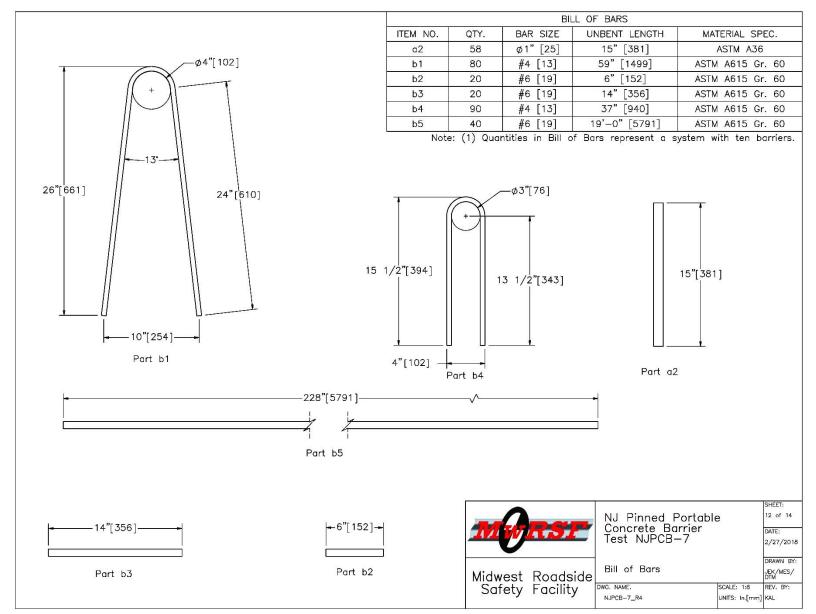


Figure 12. PCB Reinforcement Details, Test No. NJPCB-7

- (1) Minimum concrete clear cover for reinforcement steel shall be 1 1/2" [38 mm].
- (2) All end segments shall be pinned.
- (3) After a segment has been placed and the connection key inserted, pull the unit in a direction parallel to its longitudinal axis to remove any slack in the joint.
- (4) The portable concrete barrier shall be cast in steel forms.
- (5) The portable concrete barrier shall be barrier segments of 20 feet [6,096 mm]. However, other lengths may be used to meet field conditions. The number and placement of the b2 and b3 reinforcement steel will vary with the length of the barrier segment as shown on the table of variable reinforcement steel. The b5 reinforcement steel shall be 10" [254 mm] shorter than the nominal length of the barrier segments.
- (6) Reinforcing shown is the minimum required. Additional reinforcing necessary for handling shall be the option and responsibility of the contractor.
- (7) Welding and fabrication of steel structures shall be in accordance with sections 1 thru 6 of the ANSI/AASHTO/AWS D1.5 bridge welding code and section 10 of the ANSI/AWS D1 structural welding code. Surfaces to be welded shall be free of scale, slag, rust, moisture, grease or any other material that will prevent proper welding or produce objectional furnes. Welding shall be shielded metal arc welding using properly dried 5/32" [4 mm] dia. E7018 electrodes.
- (8) The length of the pins shall be such that a minimum embedment length of 5" [127 mm] is obtained when embedded into concrete pavement. When anchor pins are in place, they shall not project above the plane of the concrete surface of the barrier. Holes in bridge decks shall be 1 1/4" [32 mm] diameter maximum and made with a core drill or any other approved rotary drilling device that does not impart an impact force.
- (9) Use non-shrink grout of a plastic consistency that is listed on the QPL and conforms to ASTM C 1107 with the following amendments:
 1. Ensure that the grout has a working time of at least 30 minutes from the time the water is added.
 - 2. Match the color of the hardened grout, where visible, to the color of the adjacent hardened concrete.
 - 3. Include 1-day strength tests as part of the performance requirements of ASTM C 1107.
 - 4. Ensure that the grout contains no more than 0.05 percent chlorides or 5.0 percent sulfates by weight.
 - 5. Minimum 1-day compressive strength of 1,000 psi [7.0 MPa].
- (10) Use connection key in every joint. Grout is placed at the toe of each barrier segment between adjacent barrier segments in every joint. Pin every segment in all traffic side anchor pin recesses, and pin both end segments in every anchor pin recess.

MURSE	NJ Pinned Portable Concrete Barrier Test NJPCB-7	e	SHEET: 13 of 14 DATE: 2/27/2018
Midwest Roadside	General Notes		DRAWN BY: JEK/MES/ DTM
Safety Facility	DWG. NAME. NJPCB-7_R4	SCALE: None UNITS: In.[mm]	REV. BY: KAL

Figure 13. General Notes, Test No. NJPCB-7

ltern No.	QTY.	Description	Material Spec	Galvanization Spec
a1	10	Concrete Barrier Segment — NJDOT Type 4 Barrier (Alternate B)	f'c = 3,700 psi [25.5 MPa]	
a2	58	1" [25] Dia., 15" [381] Long Steel Anchor Pin	ASTM A36	ASTM A123*
b1	80	1/2" [13] Dia., 59" [1499] Long Bent Rebar	ASTM A615 Gr. 60	(<u>)</u> (
b2	20	3/4" [19] Dia., 6" [152] Long Rebar	ASTM A615 Gr. 60	
b3	20	3/4" [19] Dia., 14" [356] Long Rebar	ASTM A615 Gr. 60	-
b4	90	1/2" [13] Dia., 37" [940] Long Bent Rebar	ASTM A615 Gr. 60	-
b5	40	3/4" [19] Dia., 228" [5791] Long Rebar	ASTM A615 Gr. 60	-
c1	20	4"x4"x1/2" [102x102x13] x 20" [508] Long Tube	ASTM A500 Gr. B or C	
c2	40	40 1/2"x2"x1/4" [1,029x51x6] Bent Steel Plate	ASTM A36	-
c3	20	34 1/2"x2"x1/4" [876x51x6] Bent Steel Plate	ASTM A36	-
d 1	18	25 1/2"x2"x1/2" [648x51x13] Steel Plate	ASTM A36	-
d2	9	25 1/2"x2 1/4"x1/2" [648x57x13] Steel Plate	ASTM A36	-
d3	18	6 3/16"x1 3/8"x1/2" [157x35x13] Steel Plate - Stiffener	ASTM A36	
d4	9	17"x8"x1/2" [432x203x13] Bent Steel Plate - Top Plate	ASTM A36	
e1	1	Non-Shrink Grout	Min. 1—day Compressive Strength 1,000 psi [7.0 MPa]	

* Component does not need to be galvanized for testing purposes.

MURSE	NJ Pinned Portable Concrete Barrier Test NJPCB-7	9	SHEET: 14 of 14 DATE: 2/27/2018
Midwest Roadside	Bill of Materials		DRAWN BY: JEK/MES/ DTM
Safety Facility	DWG. NAME. NJPCB-7_R4	SCALE: None UNITS: In.[mm]	REV. BY: KAL

Figure 14. Bill of Materials, Test No. NJPCB-7



Figure 15. NJDOT PCB with Traffic-Side Pinned Configuration and Grouted Toes Test Installation, Test No. NJPCB-7

Figure 16. PCB Connection Key and Connection Socket, Test No. NJPCB-7

Figure 17. PCB Traffic-Side Pin Anchor Recesses, Test No. NJPCB-7



Figure 18. Grout at Toes between PCBs, Test No. NJPCB-7

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicle

For test no. NJPCB-7, a 2010 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,053 lb (2,292 kg), 5,000 lb (2,268 kg), and 5,155 lb (2,338 kg), respectively. The test vehicle is shown in Figure 19, and vehicle dimensions are shown in Figure 20. Note that pre-test photographs of the vehicle's interior floorboards and undercarriage are not available.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [12] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 20 and 21. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 21. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle. The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on

the high-speed digital videos. A remote-controlled brake system was installed in the test vehicle to bring the vehicle safely to a stop after the test.

Figure 19. Test Vehicle, Test No. NJPCB-7

Date:	Date: 6/9/2017 Test Name:				NJP	CB-7	VIN No:	1D7R	1D7RB1GP7AS162701				
Year:		2010				Mak	ke:	Do	dge	Model:		Ram 1500	
Tire Size:	P	265/70R1	7	Ti	ire Infla	tion Pressu	re:	40	Psi	Odometer:		207988	
		-[]							1		eometry - in as listed below	n. (mm)	
 t Wheel Track								m Wheel Track	a 	a: 77 1/2 _{78±2 (1} c: 228 3/4	950±50)	b: 74 3/8 d: 47 5/8	(1889) (1210)
								i	ļ	e: 140 1/4	6020±325) (3562) 3760±300)		(1022) (1000±75)
le	est Ine	rtial C.M	I.—			a	T	IRE DIA		g: <u>28 1/16</u> min: 2		h: <u>62</u> 1/8	
1			_		Ŵ	+ r +	v 	HEEL DIA		i: <u>12 3/8</u>	(314)	j: <u>24 1/4</u>	(616)
	[]								_	k: <u>22 5/8</u>	(575)	l: <u>28 1/2</u>	(724)
		(\mathbf{Q})	s			$= (\phi)$			_	m: <u>68 3/8</u> 67±1.5 ((1737) 1700±38)	n: 68 1/4 67±1.5	(1734) (1700±38)
						n ———		T		o: <u>46 1/8</u> 43±4 (1	(1172) 100±75)	p: <u>3 5/8</u>	(92)
-	- d -		rear	e -		Wfront	f —			q: <u>32 3/8</u>	(822)	r: <u>18 5/8</u>	(473)
-				— c —			-			s: <u>14 3/8</u>	(365)	t: <u>79 1/4</u>	(2013)
Mass Distrib	ution Ib	o (kg)										nt): 15 1/4	(387)
Gross Static	LF <u>1</u>	459 ((662)	RF_	1412	(640)						ar): <u>15 1/4</u>	(387)
	LR _ 1	146	(520)	RR_	1138	(516)				Cl	Wheel W earance (Fro		(895)
										с	Wheel W learance (Rea		(956)
Weights Ib (kg)		Curb			Test	nertial		Gross	Static		Bottom Fra Height (Fro	me nt): 18 1/8	(460)
W-front	2	825 (1281)		2786	(1264)		2871	(1302)		Bottom Fra Height (Rea	me ar): <u>25 3/8</u>	(645)
W-rear	2	228 (1011)		2214	(1004)		2284	(1036)		Engine Typ	be: Ga	soline
W-total	5	i 053 (i	2292)		5000 5000±110	(2268) 0 (2270±50)		5155 5165±110	(2338) (2343±50)		Engine Siz	ze: 4.7	7L V8
						()			(,	Trans	mission Typ	be: Aut	omatic
GVWR Rating	gs Ib			Du	ummy l	Data					Drive Typ	be: R	WD
Front	360	00				Type:		Hybrid	11		Cab Sty	le: Qua	ad Cab
Rear	390	00				Mass:		155 II)		Bed Leng	th:	76"
Total	680	00			Sea	Position:		Drive	r				
Note ar	Note any damage prior to test: NONE												

Figure 20. Vehicle Dimensions, Test No. NJPCB-7

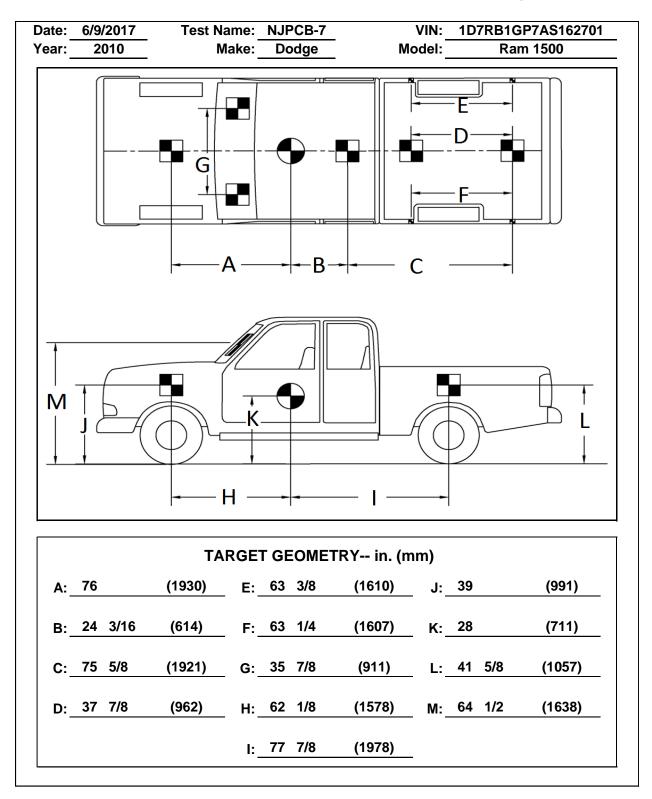


Figure 21. Target Geometry, Test No. NJPCB-7

4.4 Simulated Occupant

For test no. NJPCB-7, A Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 155 lb (70 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

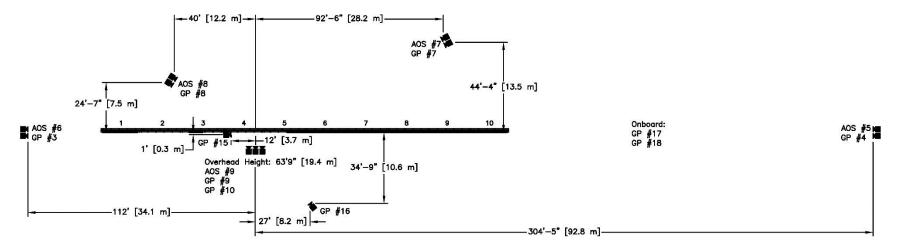
4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometers were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [13].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system, based on mounting location. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems, which were mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders, measured the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras and ten GoPro digital video cameras were utilized to film test no. NJPCB-7. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 22.

The high-speed digital videos were analyzed using TEMA Motion and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed digital videos. A Nikon digital still camera was also used to document pre- and post-test conditions for the test.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	VIVITAR 135mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 35mm Fixed	-
AOS-8	AOS S-VIT 1531	500	KOWA 25mm Fixed	-
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12mm Fixed	-
GP-3	GoPro Hero 3+	120		
GP-4	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	240		
GP-8	GoPro Hero 4	240		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	240		
GP-17	GoPro Hero 4	120		
GP-18	GoPro Hero 4	120		

Figure 22. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-7

5 FULL-SCALE CRASH TEST NO. NJPCB-7

5.1 Weather Conditions

Test no. NJPCB-7 was conducted on July 12, 2017 at approximately 11:30 a.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

 Table 5. Weather Conditions, Test No. NJPCB-7

Temperature	83° F
Humidity	71%
Wind Speed	5 mph
Wind Direction	180° from True North
Sky Conditions	Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.01 in.
Previous 7-Day Precipitation	0.01 in.

5.2 Test Description

The 5,000-lb (2,268-kg) pickup truck impacted the NJDOT PCB, Type 4 (Alternative B) with a traffic-side pinned configuration and grouted toes at a speed of 62.8 mph (101.0 km/h) and at an angle of 25.2 degrees. A summary of the test results and sequential photographs are shown in Figure 24. Additional sequential photographs are shown in Figures 25 and 26. Documentary photographs of the crash test are shown in Figures 27 through 30.

Initial vehicle impact was to occur 4 ft $-3^{3}/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5, as shown in Figure 31, which was selected using Table 2.7 of MASH 2016. The actual point of impact was 4^{7}_{8} in. (124 mm) downstream from the target location. A sequential description of the impact events is contained in Table 6. The vehicle came to rest 229 ft -11 in. (70.1 m) downstream from the impact point and 34 ft -3 in. (10.4 m) laterally away from the traffic side of the barrier, after brakes were applied. The vehicle trajectory and final position are shown in Figures 24 and 32.

TIME	EVENT
(sec)	
0.000	Vehicle's left-front corner impacted barrier no. 4 at 3 ft $-10^{5/16}$ in. (1.2 m) upstream from centerline of joint between barrier nos. 4 and 5.
0.003	Left-front corner of bumper deformed inward.
0.010	Vehicle's left fender contacted barrier no. 4 and deformed. Vehicle's left headlight contacted top of barrier no. 4.

0.014	Vehicle's left headlight deformed.
0.024	Downstream end of barrier no. 4 rolled backward. Vehicle's grille contacted barrier no. 4.
0.028	Vehicle's grille deformed.
0.034	Vehicle's front bumper contacted barrier no. 5. Upstream end of barrier no. 5 rolled backward.
0.036	Vehicle yawed away from system. Vehicle's grille contacted barrier no. 5. Barrier no. 5 rotated clockwise.
0.042	Vehicle pitched upward.
0.044	Vehicle rolled away from system.
0.046	Vehicle's airbags deployed. Vehicle's left-front door contacted barrier no. 4 and deformed. Vehicle's left fender contacted barrier no. 5.
0.055	Downstream end of barrier no. 5 spalled.
0.068	Midspan of barrier no. 4 fractured.
0.084	Vehicle's left-front door contacted barrier no. 5.
0.100	Barrier nos. 6 and 7 rolled backward.
0.114	Vehicle's right-front tire became airborne.
0.126	Midspan of barrier no. 5 fractured.
0.144	Vehicle's left-rear tire contacted barrier no. 4.
0.197	Vehicle was parallel to system at a speed of 50.5 mph (81.3 km/h).
0.200	Vehicle's left-rear quarter panel contacted barrier no. 4, and left taillight deformed.
0.240	Vehicle pitched downward.
0.244	Vehicle's right-rear tire became airborne.
0.257	Barrier no. 4 rolled forward.
0.268	Vehicle's left-front tire became airborne.
0.290	Vehicle exited system at a speed of 50.3 mph (80.9 km/h) and at an angle of 7.1 degrees.
0.330	Barrier nos. 6 and 7 rolled forward.
0.616	Vehicle's right-front tire regained contact with ground.
0.658	Vehicle's front bumper contacted ground.
0.680	Vehicle rolled toward system.
0.716	Vehicle's left headlight disengaged.
0.740	Vehicle's left-front tire regained contact with ground.
0.794	Vehicle pitched upward.
1.002	Vehicle's left-rear tire regained contact with ground.
1.104	Vehicle rolled away from system.

5.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 33 through 37. Barrier damage consisted of contact and gouge marks on the front face of PCB segments, spalling of the concrete, and concrete cracking and fracture. The length of vehicle contact along the barrier was approximately 22 ft – $\frac{3}{8}$ in. (6.7 m), which spanned from 5 ft – $\frac{87}{8}$ in. (1.7 m) upstream from the center of the joint between barrier nos. 4 and 5 through 16 ft – $\frac{31}{2}$ in. (5.0 m) downstream from the center of the joint between barrier nos. 4 and 5.

Tire marks were visible on the front face of barrier nos. 4 and 5. Scrape marks were also found on the front and top faces of barrier nos. 4 and 5. Grout between barrier nos. 3 and 4 and barrier nos. 4 and 5 crumbled. A 31¹/₂-in. (800-mm) long vertical crack was found on the front face of barrier no. 4 that started 56⁷/₈ in. (1,445 mm) downstream from the upstream end and 4¹/₈ in. (105 mm) from the bottom. A 33³/4-in. (857-mm) long vertical crack was found on the front face of barrier no. 4 that started 89³/₄ in. (2,280 mm) downstream from the upstream end. A 45-in. (1,143-mm) long crack was found on the front face of barrier no. 4 located 12⁷/₈ in. (327 mm) downstream from the midspan of the barrier. A 36⁵/₈-in. (930-mm) long crack was found on the front face of barrier no. 4 located 701/4 in. (1,784 mm) upstream from the downstream end of the barrier. A 26¹/₂-in. (673-mm) long crack was found on the back face of barrier no. 4 located 21¹/₂ in. (546 mm) downstream from the midspan of the barrier. A 38¹/₄-in. (972-mm) long crack was found on the front face of barrier no. 5 located 35³/₄ in. (908 mm) upstream from the midspan of the barrier. A 38¹/₂-in. (978-mm) long crack was found on the front face of barrier no. 5 located 11¹/₄ in. (286 mm) downstream from the midspan of the barrier. A 23¹/₂-in. (597-mm) long vertical crack was found on the back face of barrier no. 5 starting 62 in. (1,575 mm) downstream from the upstream end and 2 in. (51 mm) from the bottom. A 46-in. (1,168-mm) long crack was found on the back face of barrier no. 5 located 13¹/₈ in. (333 mm) upstream from the midspan of the barrier. Minor cracks were found on the traffic side of barrier nos. 3, 6, and 7. A $35\frac{1}{2}$ -in. long $\times\frac{1}{2}$ -in. wide (902-mm \times 13-mm) gouge was found 23¹/₂ in. (597 mm) upstream from the downstream end on the front face of barrier no. 5.

Concrete spalling occurred on barrier nos. 4 through 6. The front side of barrier no. 4 experienced 57 in. $\times 11^{3}$ /4 in. $\times 9$ in. (1,448 mm $\times 298$ mm $\times 229$ mm) concrete spalling at the lower downstream corner. A 17¹/4-in. $\times 13^{1}/_{2}$ -in. $\times 3^{1}/_{2}$ -in. (438-mm $\times 343$ -mm $\times 89$ -mm) concrete piece disengaged from barrier no. 4 at the lower-upstream corner on the back face. A 29-in. $\times 5^{3}/_{4}$ -in. (737-mm $\times 146$ -mm $\times 102$ -mm) concrete piece disengaged from the front face of barrier no. 5, 57¹/₂ in. (1,461 mm) downstream from the upstream end of the barrier. A 4¹/₄-in. $\times 9^{1}/_{8}$ -in. $\times 3^{1}/_{4}$ -in. (108-mm $\times 232$ -mm $\times 83$ -mm) concrete piece disengaged from the back face of barrier no. 5 at the lower-upstream corner. A 22³/₄-in. $\times 9^{1}/_{2}$ -in. $\times 3^{3}/_{4}$ -in. (578-mm $\times 241$ -mm $\times 95$ -mm) concrete piece disengaged from the back face of barrier no. 5 at the lower-upstream corner. A 21³/₄-in. $\times 3^{1}/_{4}$ -in. (137-mm $\times 51$ -mm $\times 6$ -mm) concrete piece disengaged from the front face of barrier no. 6 at the lower-upstream corner. A 7¹/₄-in. $\times 3^{1}/_{4}$ -in. (184-mm $\times 83$ -mm) concrete piece disengaged from the front face of barrier no. 6 at the lower-upstream corner. A 7¹/₄-in. $\times 3^{1}/_{4}$ -in. (184-mm $\times 83$ -mm) concrete piece piece disengaged from the front face of barrier no. 6 at the lower-upstream corner. A 7¹/₄-in. $\times 3^{1}/_{4}$ -in. (184-mm $\times 83$ -mm) concrete piece p

The maximum permanent set deflection of the barrier system was 6¹/₄ in. (159 mm) at the downstream end of barrier no. 4, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 11.4 in. (290 mm) at the

upstream end of barrier no. 5, as determined from high-speed digital video analysis. The working width of the system was found to be 35.4 in. (899 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 23. In addition, NJDOT identifies the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For this test, the clear space behind the barrier was 11.4 in. (290 mm).

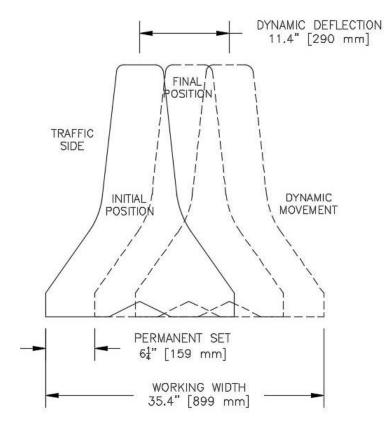


Figure 23. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. NJPCB-7

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 39 through 43. The maximum occupant compartment deformations are listed in Table 7 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the MASH 2016 established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. The left side of the bumper crushed inward. The engine hood separated from the left fender. The left-front fender was deformed inward toward the engine compartment. The left corner of the front bumper was bent inward from the left side. The left-front corner of the frame rail buckled inward. A 2-in. (51-mm) gap occurred between the fender and the front bumper. Kinks and scrapes were observed on the entire front bumper. Denting, scraping, and gouging were observed on the entire left side of the cab. Gouging and contact marks were found

at the bottom of the left-front door, starting at the front of the door and extending across the entire cab and quarter panel. A 13-in. \times 10-in. (330-mm \times 254-mm) dent was found on the rear of the left-front door. The left headlight disengaged away from the vehicle.

The lower-left control arm was scraped and bent. The left-front upper control arm was bent 2 in. (51 mm) upward. The left-front wheel and hub partially disengaged. Tears were found in the left-front tire extending from the outer wall through the tread, and the rim buckled. Scrapes were found on the left-rear tire. The right-side engine cross member was bent. The right side of the windshield had 14-in. (356-mm) diameter spider-web cracking from the deployment of the right-side airbag. A crack extended from the spider-web crack to the lower-left corner, and two additional cracks were found in the lower-left corner of the windshield. The roof and the remaining window glass were undamaged.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	31/4 (83)	≤ 9 (229)
Floor Pan & Transmission Tunnel	3/8 (10)	≤ 12 (305)
A-Pillar	23/8 (60)	≤ 5 (127)
A-Pillar (Lateral)	15/8 (41)	<i>≤</i> 3 (76)
B-Pillar	23/8 (60)	≤ 5 (127)
B-Pillar (Lateral)	3/8 (10)	<i>≤</i> 3 (76)
Side Front Panel (in Front of A-Pillar)	2 (51)	≤ 12 (305)
Side Door (Above Seat)	7/8 (22)	≤ 9 (229)
Side Door (Below Seat)	13/8 (35)	≤ 12 (305)
Roof	1/8 (3)	≤4 (102)
Windshield	0 (0)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	11/2 (38)	N/A

Table 7. Maximum Occupant Compartment Deformations by Location

N/A - Not applicable

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 8. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 8. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 24. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

		Trans	ducer	MASH 2016	
Evaluat	ion Criteria	SLICE-1	SLICE-2 (Primary)	Limits	
OIV	Longitudinal	-14.34 (-4.37)	-14.09 (-4.30)	± 40 (12.2)	
ft/s (m/s)	Lateral	19.23 (5.86)	21.56 (6.57)	± 40 (12.2)	
ORA	Longitudinal	-3.39	-3.65	± 20.49	
g's	Lateral	9.52	7.98	± 20.49	
MAX.	Roll	-33.7	-29.2	± 75	
ANGULAR DISPL.	Pitch	-17.0	-18.6	±75	
deg.	Yaw	41.2	40.2	not required	
	HIV s (m/s)	24.31 (7.41)	26.81 (8.17)	not required	
	PHD g's	9.64	8.08	not required	
	ASI	1.25	1.41	not required	

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-7

5.6 Discussion

The analysis of the test results showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 7.1 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. NJPCB-7 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

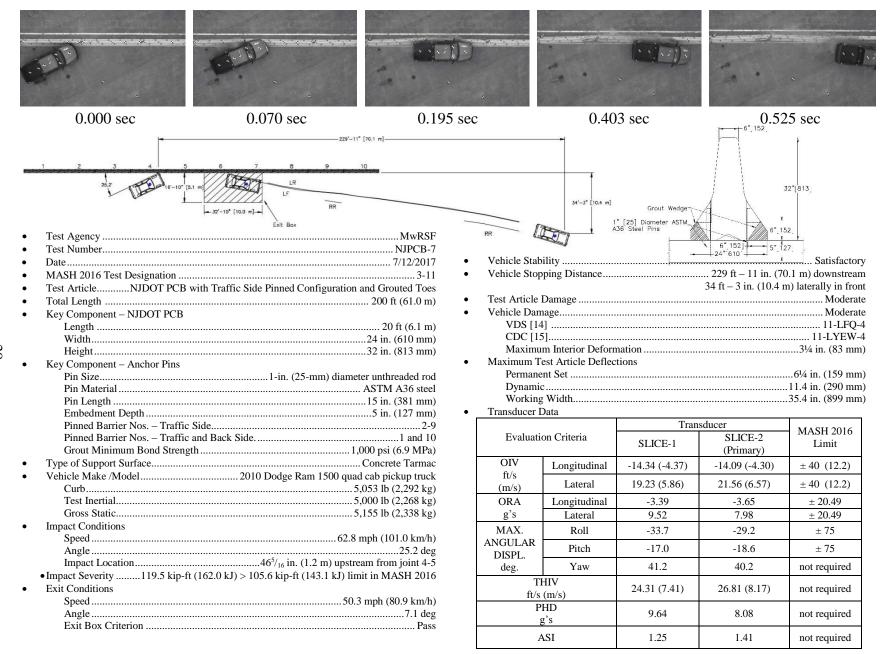


Figure 24. Summary of Test Results and Sequential Photographs, Test No. NJPCB-7

38

0.000 sec

0.084 sec

0.198 sec

0.330 sec

0.526 sec

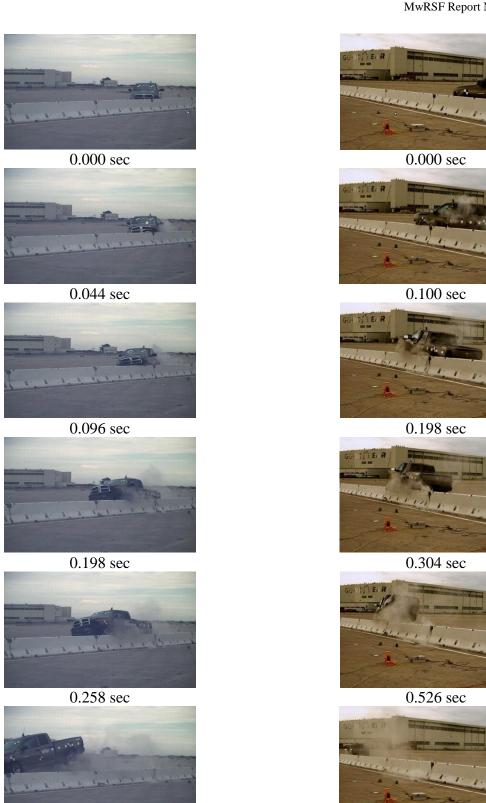
0.658 sec

0.000 sec

0.144 sec

0.206 sec

0.290 sec



0.722 sec

0.830 sec

Figure 25. Additional Sequential Photographs, Test No. NJPCB-7

0.526 sec

1.326 sec

Figure 27. Documentary Photographs, Test No. NJPCB-7

Figure 28. Documentary Photographs, Test No. NJPCB-7

Figure 29. Documentary Photographs, Test No. NJPCB-7

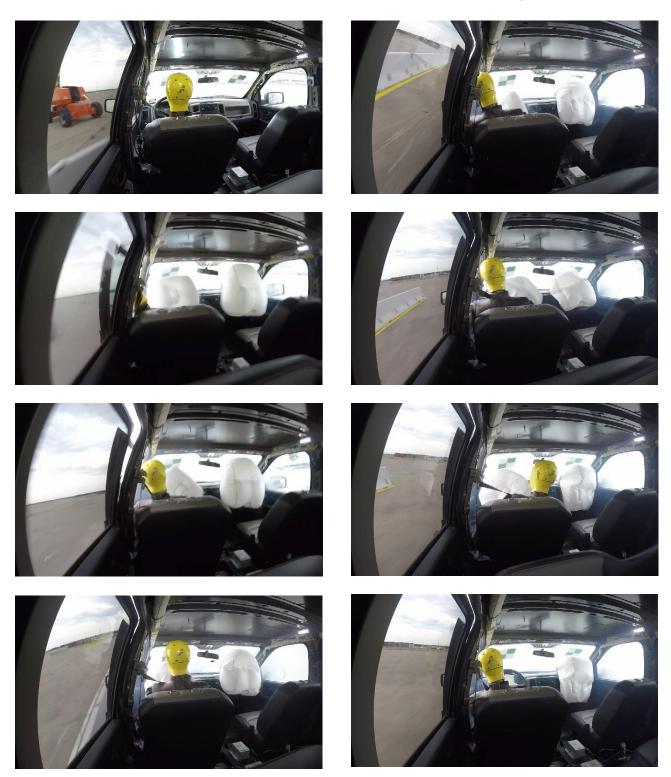
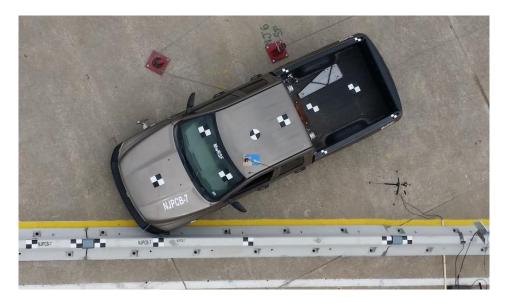



Figure 30. Documentary Photographs, Test No. NJPCB-7



Figure 31. Impact Location, Test No. NJPCB-7

Figure 32. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-7

Figure 33. System Damage - Front, Back, Upstream and Downstream Views, Test No. NJPCB-7

Figure 34. Barrier No. 3 – Traffic and Back Side Damage, Test No. NJPCB-7

December 18, 2018 MwRSF Report No. TRP-03-374-18

Figure 35. Barrier Nos. 4 and 5 Damage, Test No. NJPCB-7

(a) Traffic Side

(b) Back Side Figure 36. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-7

(a) Traffic Side

(b) Back Side

Figure 37. Barrier No. 5 - Traffic and Back Side Damage, Test No. NJPCB-7

(b) Back Side

Figure 38. Barrier No. 6 – Traffic and Back Side Damage, Test No. NJPCB-7

Figure 39. Vehicle Damage, Test No. NJPCB-7

Figure 40. Vehicle Damage on Impact Side, Test No. NJPCB-7

Figure 41. Vehicle Windshield Damage, Test No. NJPCB-7

Figure 42. Occupant Compartment Deformation, Test No. NJPCB-7

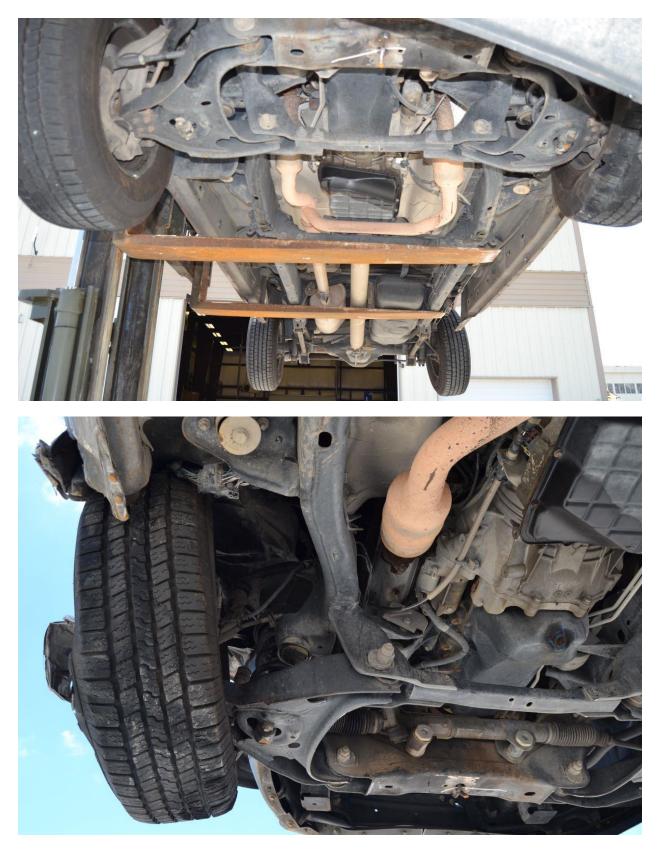


Figure 43. Undercarriage Damage, Test No. NJPCB-7

6 SUMMARY AND CONCLUSIONS

Test no. NJPCB-7 was conducted on the NJDOT PCB system with a traffic-side pinned configuration and grouted toes according to MASH 2016 test designation no. 3-11. This system uses NJDOT barriers, Type 4 (Alternative B). Barrier nos. 1 and 10 were anchored on both sides, and barrier nos. 2 through 9 were anchored to the concrete tarmac on the traffic side through pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments on the traffic and back sides.

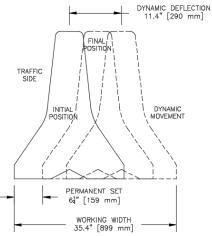
During test no. NJPCB-7, the 5,000-lb (2,268 kg) pickup truck impacted the NJDOT PCB system at a speed of 62.8 mph (101.0 km/h) and at an angle of 25.2 degrees, resulting in an impact severity of 119.5 kip-ft (162.0 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 50.3 mph (80.9 km/h) and at an angle of 7.1 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier and the vehicle. Barrier nos. 3, 4, 5, and 6 experienced spalling and cracking. A dynamic deflection of 11.4 in. (290 mm) and working width of 35.4 in. (899 mm) were observed during the test, as shown in Figure 23. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. NJPCB-7 was determined to satisfy the safety performance criteria for MASH test designation no. 3-11. A summary of the test evaluation is shown in Table 9.

Evaluation Factors		Evaluation Criteria							
Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.							
	D.	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.							
		2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.							
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.							
Occupant Risk	Н.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:							
		Occupa	nt Impact Velocity Limits	5	S				
		Component	Preferred	Maximum					
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)					
	I.	The Occupant Ridedown Section A5.2.2 of MAS satisfy the following limit	H 2016 for calculation						
		Occupant R	Ridedown Acceleration Li	mits	S				
		Component	Preferred	Maximum					
		Longitudinal and Lateral	15.0 g's	20.49 g's					
		MASH 2016 Test	t Designation No.		3-11				
		Final Evaluatio	n (Pass or Fail)		Pass				
	ç	– Satisfactory U – I	Insatisfactory NA - 1	Not Applicable	I				

Table 9. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

7 COMPARISON TO TEST NO. NYTCB-5


A summary of full-scale crash testing on the two pinned configurations with only one side of the NJ PCB system pinned, joint slack removed, and grouted toes is shown in Table 10. Test no. NJPCB-7 evaluated the use of steel pins placed through the front side of every barrier segment in order to anchor the PCBs and reduce barrier deflections. This test was compared to the NJ PCB system with only the back side pinned, joint slack removed, and grouted toes, corresponding to connection type C in the 2015 NJDOT *Roadway Design Manual* (test no. NJPCB-6) [16] and a similar New York PCB system also with only the back side pinned and without removal of joint slack or grouted toes (test no. NYTCB-5) [17]. Results from these tests included the actual impact conditions and impact severity as well as dynamic barrier deflection, permanent set barrier deflection, working width (as measured from the original front face of the barrier), and the clear space behind the barrier. The clear space behind the barrier is used by NJDOT to define the maximum deflection of the back of the barrier from its original position. In addition, the schematic diagrams shown in Figure 44 indicate how the dynamic deflection, permanent set deflection, and working width for each crash test was defined.

A review of the results from test nos. NJPCB-6, NJPCB-7, and NYTCB-5 would suggest that pinning the barriers on the front of the PCB segments provides two benefits as compared to pinning on only the back side. First, pinning the front of the PCBs produced lower deflections for test no. NJPCB-7 as compared to test no. NJPCB-6. Second, in both tests of the back-side pinned barriers, the impacting vehicle climbed the barrier face significantly and rolled away from the barrier face as it was redirected. This finding was due to the back-side pins providing increased constraint to the back of the PCB segments, thus causing increased barrier rotation, which promotes vehicle climb and instability. Test no. NJPCB-7 with the barrier pinned on the front face of the barrier showed improved vehicle stability with less roll and vehicle climb, while the vehicle was in contact with the barrier. Previous research by CALTRANS and MwRSF has noted that anchoring of PCB segments on the front side of the barrier improved stability as well. Thus, pinning the front side versus the back side of NJ PCB segments seems to be slightly more effective in reducing barrier deflections while providing improved vehicle stability.

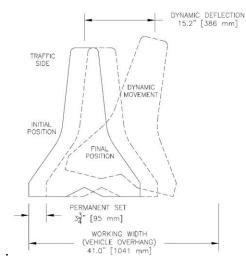
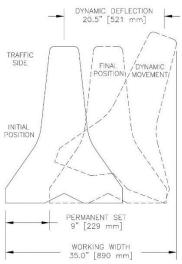

Test No.	Connection Type [2]	System Details	Permanent Set	Dynamic Deflection (DD)	Working Width (WW)	Clear Space Behind Barrier	Vehicle Roll (deg)	Vehicle Pitch (deg)	Vehicle Mass lb (kg)	Impact Speed mph (km/h)	Impact Angle (deg)	Impact Severity kip-ft (kJ)
NJPCB-6 [16]	С	Barriers 1 and 10 pinned, Barriers 2-9 pinned back side only, remove slack, grouted toes	3¾ in. (95 mm)	15.2 in. (386 mm)	41.0 in. (1,041 mm) Vehicle	15.2 in. (386 mm)	28.9	-12.2	5,000 (2,268)	62.9 (101.3)	25.1	119.0 (161.3)
NYTCB-5 [17]	N/A	Barriers 1-10 pinned back side only, slack not removed, no grouted toes	9 in. (229 mm)	20.5 in. (521 mm)	35.0 in. (889 mm)	11 in. (279 mm)	41.8	-21.2	4,953 (2247)	64.3 (103.5)	26.2	133.4 (180.9)
NJPCB-7	N/A	Barriers 1 and 10 pinned, Barriers 2-9 pinned front side only, remove slack, grouted toes	6¼ in. (159 mm)	11.4 in. (290 mm)	35.4 in. (899 mm)	11.4 in. (290 mm)	-29.2	-18.6	5,000 (2,268)	62.8 (101.0)	25.2	119.5 (162.0)

Table 10. Comparison of Pinned Systems on One Side Only


N/A = Not Applicable

NJPCB-7 - Only Front Side Pinned, Joint Slack Removed, Grouted Toes

NJPCB-6 - Only Back Side Pinned, Joint Slack Removed, Grouted Toes

NYTCB-5 - Only Back Side Pinned, Joint Slack Not Removed, No Grouted Toes

Figure 44. Deflection Comparisons - Test Nos. NJPCB-7, NJPCB-6 and NYTCB-5

8 MASH IMPLEMENTATION

The objective of this research was to evaluate the safety performance of NJDOT's PCB system with a traffic-side pinned configuration and grouted toes. The NJDOT barriers, Type 4 (Alternative B), consisted of NJDOT PCBs joined with a connection key. Barrier nos. 1 and 10 were anchored to the concrete roadway surface through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins. Barrier nos. 2 through 9 were anchored to the concrete surface through only the five traffic-side pin anchor recesses. The barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints prior to installation of the steel anchor pins. A wedge of grout was placed at the toe of each joint on both the traffic side and back side of the system.

According to TL-3 evaluation criteria in MASH 2016, two tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 3-10 - an 1100C small car and (2) test designation no. 3-11 - a 2270P pickup truck. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

In test no. 7069-3, a rigid, F-shape bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-9]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ¹/₂-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid concrete barriers as seen in test no. 47 [10]. Therefore, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system. It should be noted that any tests within the evaluation matrix deemed not critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

During test no. NJPCB-7, a 5,000-lb (2,268 kg) pickup truck with a simulated occupant seated in the left-front seat impacted the NJDOT PCB system at a speed of 62.8 mph (101.0 km/h) and at an angle of 25.2 degrees, resulting in an impact severity of 119.5 kip-ft (162.0 kJ). At 0.197 sec after impact, the vehicle became parallel to the system with a speed of 50.5 mph (81.3 km/h). At 0.290 sec, the vehicle exited the system at a speed of 50.3 mph (80.9 km/h) and at an angle of 7.1 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of 3¼ in. (83 mm), which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact and gouge marks on the front face of the PCB segments as well as concrete spalling, cracking, and fracture on barrier nos. 4 and 5. The maximum dynamic barrier deflection was 11.4 in. (290 mm), which included minor tipping of the barrier at the top surface. The working width of the PCB system was 35.4 in. (899 mm). All occupant risk measures were within the recommended limits, and the occupant compartment deformations were also deemed acceptable. Therefore, the NJDOT barriers, Type 4

(Alternative B) pinned only on the traffic side, successfully met all the safety performance criteria of MASH 2016 test designation no. 3-11.

The NJDOT barriers, Type 4 (Alternative B), consisting of NJDOT PCB barriers joined with a connection key, joint slack removed, grouted toes, barrier nos. 1 and 10 pinned on both the traffic side and back side, and barrier nos. 2 through 9 pinned only on the traffic side, were successfully crash tested and evaluated according to the AASHTO MASH 2016 TL-3 criteria. This barrier successfully met all the requirements of MASH 2016 test designation no. 3-11. In addition, the researchers consider the system MASH 2016 compliant based on the successful test designation no. 3-11 test and the previous justification for test designation no. 3-10 being deemed not critical.

A comparison of similar PCB systems with only one side of the system pinned included three systems: (1) a NJ PCB system with barrier nos. 1 and 10 pinned on both front and back sides, pin anchors only on the traffic side of barrier nos. 2 through 9, joint slack removed, and grouted toes (test no. NJPCB-7); (2) a NJ PCB system with barrier nos. 1 and 10 pinned on both front and back sides, pin anchors only on the back side of barrier nos. 2 through 9, joint slack removed, and grouted toes (test no. NJPCB-6) [16]; and (3) a New York PCB system with pin anchors only on the back side of all barriers and without removal of joint slack or grouted toes (test no. NYTCB-5) [17]. A review of these test results (test nos. NJPCB-6, NJPCB-7, and NYTCB-5) revealed benefits to pinning the barriers on the traffic side of the PCB segments when compared to pinning only n the back side. First, pinning the traffic side of the PCBs produced lower deflections for test no. NJPCB-7 as compared to test no. NJPCB-6. Second, in both tests of the back-side pinned barriers, the impacting vehicle climbed the barrier face significantly and rolled away from the traffic-side face of the barrier as it was redirected. This finding is primarily due to the back-side pins providing increased constraint to the back of the PCB segments, thus causing increased barrier rotation and subsequently, promotes vehicle climb and instability. In test no. NJPCB-7, the vehicle showed improved vehicle stability with less climb and roll when in contact with the pinned only on the traffic-side barrier. In addition, previous research by CALTRANS and MwRSF has noted that anchoring of PCB segments on the traffic side of the barrier improved stability as well. Thus, pinning only the traffic side of NJ PCB segments appears to be slightly more effective in reducing barrier deflections while providing improved vehicle stability.

Barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segments, among others. Thus, some variability would be expected in barrier performance even for basically identical systems.

In both the 2013 and 2015 NJDOT *Roadway Design Manual*, the allowable deflection is determined by the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For this test, the clear space behind the barrier was 11.4 in. (290 mm).

9 REFERENCES

- 1. New Jersey Department of Transportation, *Roadway Design Manual*, Revised May 10, 2013.
- 2. New Jersey Department of Transportation, *Roadway Design Manual*, Revised 2015.
- 3. *Manual for Assessing Safety Hardware, Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 4. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 5. Buth, C. E., Hirsch, T. J., and McDevitt, C. F., *Performance Level 2 Bridge Railings*, Transportation Research Record No. 1258, Transportation Research Board, National Research Council, Washington, D.C., 1990.
- 6. *Guide Specifications for Bridge Railings*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 1989
- 7. Bronstad, M. E., Calcote, L. R., and Kimball Jr, C. E., *Concrete Median Barrier Research-Vol.2 Research Report*, Report No. FHWA-RD-77-4, Submitted to the Office of Research and Development, Federal Highway Administration, Performed by Southwest Research Institute, San Antonio, TX, March 1976.
- Buth, C. E., Campise, W. L., Griffin III, L. I., Love, M. L., and Sicking, D. L., *Performance Limits of Longitudinal Barrier Systems-Volume I: Summary Report*, FHWA/RD-86/153, Final Report to the Federal Highway Administration, Office of Safety and Traffic Operations R&D, Performed by Texas Transportation Institute, Texas A&M University, College Station, TX, May 1986.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Permanent New Jersey Safety Shape Barrier – Update to NCHRP 350 Test No. 3-10 (2214NJ-1)*, Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
- 10. Fortuniewicz, J. S., Bryden, J. E., and Phillips, R. G., *Crash Tests of Portable Concrete Median Barrier for Maintenance Zones*, Report No. FHWA/NY/RR-82/102, Final Report to the Office of Research, Development, and Technology, Federal Highway Administration, Performed by the Engineering Research and Development Bureau, New York State Department of Transportation, December 1982.
- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 12. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- 13. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 14. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 15. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Bhakta, S.K., Lechtenberg, K.A., Faller, R.K., Reid, J.D., Bielenberg, R.W., and Urbank, E.L., *Performance Evaluation of New Jersey's Portable Concrete Barrier with a Back Side Pinned Configuration and Grouted Toes – Test No. NJPCB-6*, Report No. TRP-03-373-18, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 2018.
- Lechtenberg, K.A., Faller, R.K., Reid, J.D., and Sicking, D.L., *Dynamic Evaluation of a Pinned Anchoring System for New York State's Temporary Concrete Barriers – Phase II*, Report No. TRP-03-224-10, Project No. TPF-5(193), Supplement #11, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, January 27, 2010.

10 APPENDICES

Appendix A. NJDOT PCB Standard Plans

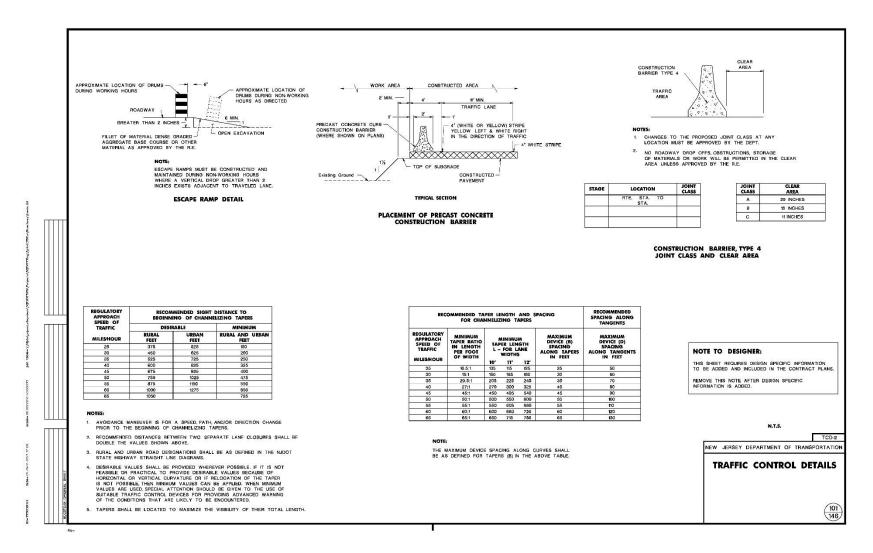


Figure A-1. NJDOT PCB Standard Plans

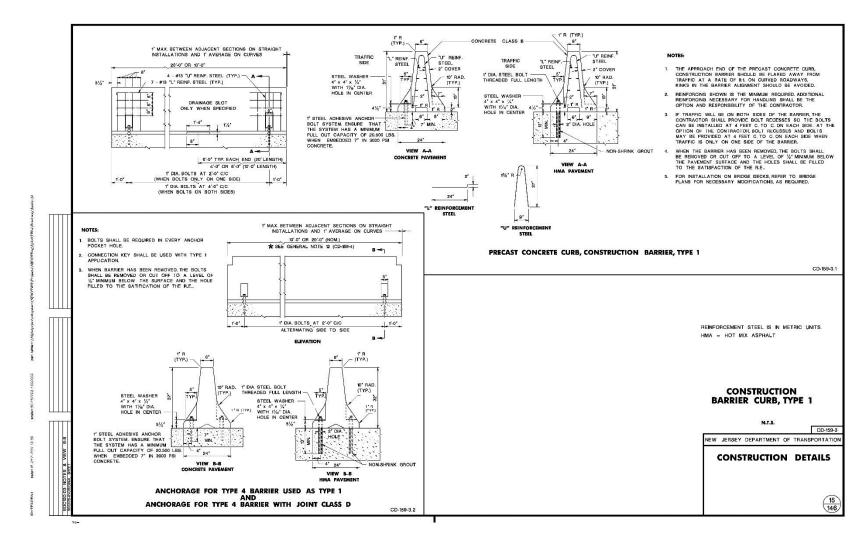


Figure A-2. NJDOT PCB Standard Plans

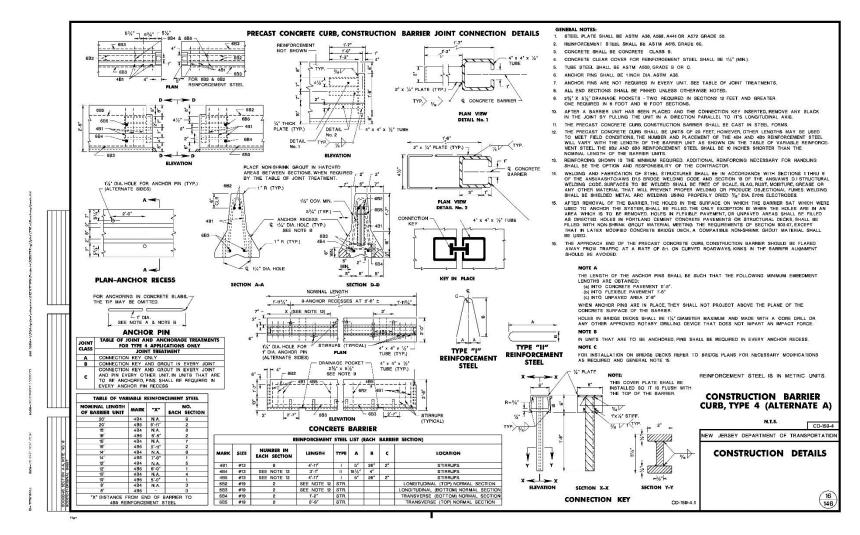
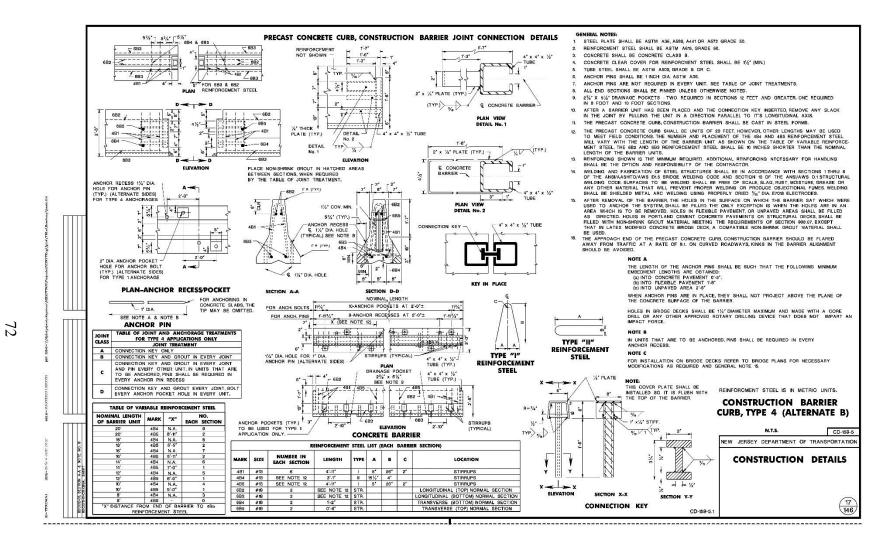



Figure A-3. NJDOT PCB Standard Plans

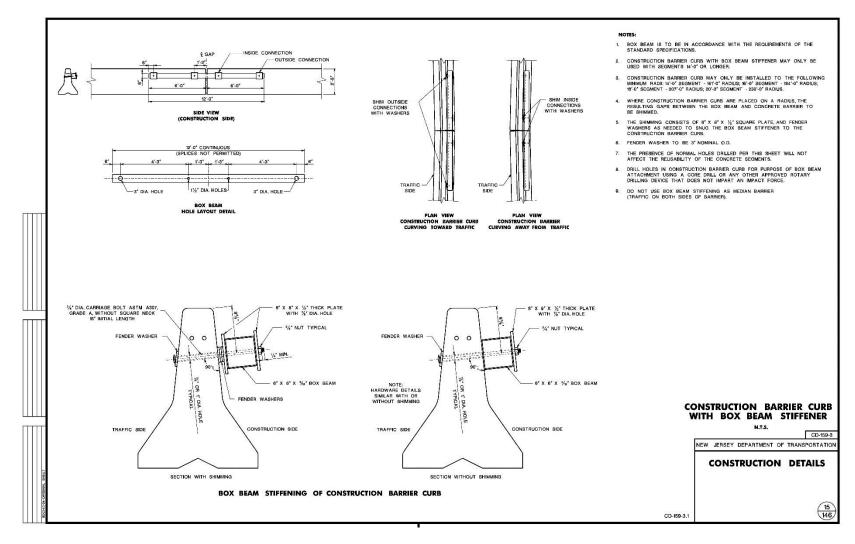


Figure A-5. NJDOT PCB Standard Plans

Appendix B. Material Specifications

Table B-1. Bill of Materials, Test No. NJPCB-7
--

Item No.	Description	Material Specification	Reference
A1	Concrete Barrier Segment	Min. f 'c = 3,700 psi (25.5 MPa)	KU3325
A2	Anchor Steel Pin	ASTM A36	Heat #54153853
B1	Rebar - #4 Vertical Stirrup	ASTM A615 Gr. 60	Heat #JL1000, JK9068, 61108687
B2, B3	Rebar - #6 Longitudinal Bar	ASTM A615 Gr. 60	Heat #61110285, 61110265, JL3511, JL3506, JL3505
B4	Rebar - #4 Horizontal Anchor Recess, Reinforcement Stirrup	ASTM A615 Gr. 60	Heat #JL1000, JK9068, 61108687
B5	Rebar - #6 Top and Bottom Cross Bar	ASTM A615 Gr. 60	Heat #61110285, 61110265, JL3511, JL3506, JL3505
C1	Steel Tube $-4"\times4"\times1_{2}"$ (102×102×12.7) thick × 20" (508) long	ASTM A500 Gr. B and C	Heat #SF1424, SF4193
C2	Bent Steel Plate 1, 2"×1/4"	ASTM A36	Heat #269878
C3	Bent Steel Plate 2, 2"×1/4"	ASTM A36	Heat #269878
D1	Steel Plate 1, 2"×1/2"	ASTM A36	Heat #54148807
D2	Steel Plate 2, 2 ¹ / ₄ "× ¹ / ₂ "	ASTM A36	Heat #54148805
D3	¹ / ₂ " (13) Steel Plate – Stiffener	ASTM A36	Heat #SF2550
D4	¹ / ₂ " (13) Steel Plate – Top Plate	ASTM A36	Heat #SF2550
E1	Non-Shrink Grout	Min. 1-day Compressive Strength 1,000 psi (6.9 MPa)	Advantage Grout ASTM C1107 Product Code: 67435, R#2147369273

KU3325 Midwest Roadside Safety University of Nebraska

20' Temporary Barrier with socket and key connection

Production date	Quantity to ship	Cylinder Breaks 3 Day Results
5-1-17B	3	5199
4-13-17B	1	5130
4-28-17B	3	5024
4-27-17B	3	4834
4-27-17A	3	4697
4-26-17A	3	5134
4-25-17B	3	5516
4-25-17A	1	5223

Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-7

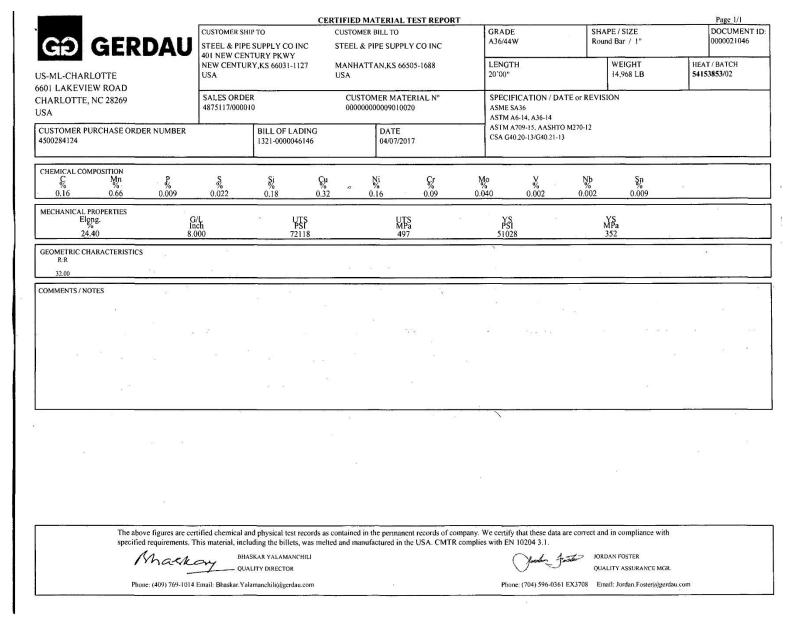


Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-7

P.O. Box 13948 Roanoke, VA 24038-3934

Office: (540) 342-1831 (800) 753-3532 Fax: (540) 342-9437 www.roanokesteel.com

PRODUCT CERTIFICATION

 MFG LOT NBR
 HEAT NUMBER

 JL1000-376202
 JL1000

 BILL OF LADING
 SALES ORDER/LINE

 00514980
 121669 / 001

 CERT ID / REV
 00049973 / 01

SOLD TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOMER P.O. 8495		CUSTOMER PART N/A		RT	QUANTITY 25,956	BUNDI 3			PIECES	GRADE A615-6	0	SHIPMENT DAT 12/12/2016	
PART NUMB	ER: R	B01979	6000CA		DESCRIPTION	N: I	Rebar #	06 (1	9) 60'0	" A615-60)		
	Alternation of the second				A	It Certs							
STM A615/	A615M-16	GR60	AASHTO	M31/M31	M-15 GR60								
					C	hemical							
C 0.42	Mn 1.02	S 0.043	P 0.012	Si 0.26		Ni 0.10	Мо 0.03	0.2	Cu 26 0.	V 003 0.0	Nb 001	CE 0.68	
					Yield Ten	sile Elo	ngation						
ample-1	Yld-1	(KSI) 64.8	¥ld-1	(MPa) 447	Ultimate-1	(KSI) 103.4	Ultima	ate-1	(MPa) 713	Elong8'	' (%) 18		
ample-2	Yld-2	(KSI) 64.3	¥ld-2	(MPa) 443	Ultimate-2	(KSI) 102.2	Ultima	ate-2	(MPa) 705	Elong8'	(%) 16.6		
					Me	chanica	I						
EST				RESU	JLT	Weige the second							
ordered" Grade	Mercury, Radi	units or SI L	Alpha source mits are to be	materials in a regarded as a	any form have not be	en used in th n the ASTM s	e production	of this n	naterial. No	Weld repair has	s been per	mace process(es) to mee rformed. Any tensile valu less a metric specification	
his is to certify	the above to be	a true and	accurate ropo	rt as containe	d in the records of th	nis company.						A Carlo Martine San	
END OF	CERTIFIC	CATION		7	. 2. 1	the f	1	[Enginee	er of Tests:	Lev	vis E. Leftwich J	
c302 (v6.0)						Page 1 of	1				Da	te Printed: 12/12/	

Figure B-4. Rebar No. 4 Material Certificate, Test No. NJPCB-7

Metal Partners International

55 South Main Street

Naperville, IL 60540

SOLD TO

Suite 304

USA

P.O. Box 13948 Roanoke, VA 24038-3934

Office: (540) 342-1831 (800) 753-3532 Fax: (540) 342-9437 www.roanokesteel.com PRODUCT CERTIFICATION

MFG LOT NBR HEAT NUMBER JK9068-171121 JK9068 BILL OF LADING SALES ORDER/LINE 00505081 105043 / 002 CERT ID / REV 00014678 / 01

SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOMER P.O. CUSTOMER PART QUANTITY BUNDLE(S) TOTAL PIECES GRADE SHIPMENT DATE 5410 17,304 192 A615-60 05/05/2016 N/A 2 PART NUMBER RB019796000CA DESCRIPTION Rebar # 06 (19) 60'0" A615-60 Alt Certs ASTM A615/A615M-16 GR60 | AASHTO M31/M31M-15 GR60 Chemical C Mn S P Si Cr Ni Mo Cu V Nb 0.44 1.02 0.028 0.015 0.24 0.16 0.09 0.02 0.36 0.003 0.002 CE 0.71 Yield Tensile Elongation Yld-1 (KSI) Ultimate-1 (KSI) Yld-1 (MPa) Ultimate-1 (MPa) % Elong (%) Sample-1 69.5 479 109.3 754 17.5 Yld-2 (KSI) Yld-2 (MPa) Ultimate-2 (KSI) Ultimate-2 (MPa) % Elong (%) Sample-2 68.8 475 109.5 755 16.3 Mechanical TEST RESULT **Bend Test** Pass Approved ABS QA Mill. Certificate No. 12-MMPQA-676. This Material was melted and manufactured in our plant located in Roanoke, VA, USA, by basic Electric Furnace process(es) to meet the "ordered" Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weld repair has been performed. Any tensile values stated herein either inch-pound units or SI units are to be regarded as separate as defined in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is ordered, this material has been tested and meets the requirements of the inch-pound ranges. This is to certify the above to be a true and accurate report as contained in the records of this company 5.2.5 END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr. qtc302 (v6.0) Page 1 of 1 Date Printed: 05/05/2016

Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-7

				CERTIFIED MA	TERIAL TEST I	REPORT				Page 1/1	
ତ୍ରେ ଜା	ERDAU	CUSTOMER SHI TYE BAR LLC 1050 OHIO AV GLASSPORT,F	Е	CUSTOMER B TYE BAR LL 1050 OHIO A GLASSPORT	LC		GRADE 60 (420) LENGTH		PE / SIZE r / #5 (16MM) WEIGHT	DOCUMENT II 00000000000 HEAT/BATCH	
JS-ML-SAYREVILL		USA		USA	USA				8,636 LB	61108687/02	
NORTH CROSSMAN SAYREVILLE, NJ 08 JSA		SALES ORDEI 4209659/00001		CUSTOM	CUSTOMER MATERIAL Nº			SPECIFICATION / DATE or REVISION ASTM A615/A615M-15 E1			
CUSTOMER PURCHA 160122	SE ORDER NUMBER		BILL OF LADING 1331-0000048641		DATE 09/15/2016						
	DN In P % % 62 0.012	% 0.061	Si Q % 0.19 0.	Cu N % % 31 0.1	li Ç 17 0.1			% 0.015	CEqyA706 0.56		
MECHANICAL PROPERT YS PSI 65742 64419	TIES MI 45 44	3	UTS PSI 97290 96645		UTS MPa 671 666		G/L Inch 8.000 8.000	20	i/L im 0.0 0.0		
MECHANICAL PROPERT Elong. 15.00 15.00	TES Bend OF OF					a.					
GEOMETRIC CHARACTH %Light Def % In 4,50 0.0 4,60 0.0	Hgi Def Gap ch Inch 35 0.095	DefSpace Inch 0.400 0.400			1						
OMMENTS / NOTES											
	The above figures are certil specified requirements. This Macked	is material, includ	ing the billets, was me AR YALAMANCHILI			CMTR complies v			і Т НОМІС		
		QUALI	TY DIRECTOR			0		QUALF	FY ASSURANCE MGR.		

Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-7

ලො	GERI	DAU	CUSTOMER SH TYE BAR LLC 1050 OHIO AV	1	CI T	FIED MATE JSTOMER BILL YE BAR LLC 50 OHIO AVE		RT	GRAD 60 (420			APE / SIZE par / #6 (19MM)	Page 1/1 DOC UMENT 0000000000
US-ML-SAYRI NORTH CROS			GLASSPORT,I USA	PA 15045-1675	GI	LASSPORT,P/ SA			LENGTH 41'00"			WEIGHT 9,606 LB	HEAT / BATCH 61110285/09
SAYREVILLE. JSA			SALES ORDE 4699099/00002			CUSTOMER	MATERIAL Nº			FICATION / DA A615/A615M-15 E		SION	
CUSTOMER PU 170014	JRCHASE ORDE	R NUMBER		BILL OF LA 1331-000005			ATE /13/2017						
CHEMICAL COM C % 0.45	1POSITION Mn % 0.64	P % 0.014	S % 0.041	Si % 0.20	Cu % 0.28	Ni % 0.14	Çr 0.21	M % 0.0		Տր 0.011	% 0.019	CEqvA706 % 0.61	
MECHANICAL P PS 686 685	S 51 669	Y MI 47 47	S. 3 2	U F 10: 10:	TTS 951 2440 2170		UTS MPa 706 704		G/L Incl 8.00 8.00	0	2	G/L mm 200.0 200.0	
MECHANICAL P Elg 13. 13.	ng. 00	Bend Ol Ol	ĸ										
GEOMETRIC CH. %Light % 4.00 4.10	ARACTERISTICS Def Hgt Inch 0.051 0.051	Def Gap Inch 0.074 0.074	DefSpace Inch 0.453 0.453										
OMMENTS / NO	TES		internation and and and an										
							nanent records of con in the USA. CMTR				e correct and i	in compliance with	
		hacke	BHASI	KAR YALAMANCI						1 Khom	JOSEF QUAL	PH T HOMIC .TTY ASSURANCE MGR.	
	Phone:	(409) 769-1014 Er	nail: Bhaskar.Yalan	nanchili@gerdau.	com				Phone	2: 732 259 7660	Email: joe.hom	ic@gerdau.com	

Figure B-7. Rebar No. 6 Material Certificate, Test No. NJPCB-7

					CERT	IFIED MATERIAL	TEST REPO	RT				Page 1/1
GÐ	GER	DAU	CUSTOMER SHI TYE BAR LLC 1050 OHIO AV	E	T I	USTOMER BILL TO YE BAR LLC 050 OHIO AVE			GRADE 60 (420)		PE / SIZE r / #5 (16MM)	DOCUMENT ID 0000000000
US-ML-SAYR NORTH CROS			GLASSPORT,F USA	PA 15045-1675		ELASSPORT,PA 1504 ISA	5-1675		LENGTH 41'00''		WEIGHT 35,576 LB	HEAT/BATCH 61110265/06
SAYREVILLE USA			SALES ORDER 4699099/000010			CUSTOMER MAT	ERIAL Nº		SPECIFICATION / I ASTM A615/A615M-1	ON		
CUSTOMER P 170014	URCHASE ORD	ER NUMBER	1	BILL OF LA 1331-00000		DATE 02/13/20	17					
CHEMICAL CON C % 0.48	MPOSITION Mn % 0.63	Р % 0.010	% 0.030	Si % 0.18	Cu % 0.34	Ni % 0.13	Cr % 0.13	M % 0.0.	o Sn 32 0.012	V % 0.012	CEqvA706 0.60	4
MECHANICAL I P 67 66	'S SI 134	MI 46 46	3	10	TTS SI 2850 1950	UT: MP 709 703)		G/L Inch 8.000 8.000	20	i/L im 0.0 0.0	
MECHANICAL I Elç 13 13	2018. .00	Bend Of Of	<									
GEOMETRIC CH %Light % 4.50 4.70	IARACTERISTICS Def Hgt Inch 0.033 0.033	Def Gap Inch 0.130 0.130	DefSpace Inch 0.400 0.400	-								
COMMENTS / NO	DTES											
			is material, includ	ing the billets,	was melted ar	ained in the permanent ad manufactured in the		complies v				
	19	hacke	Pres	CAR YALAMANC	HILI			0	longa 1 Kom	QUALI	I T HOMIC I'Y ASSURANCE MGR.	
	Phone	e: (409) 769-1014 Er	nail: Bhaskar.Yalan	nanchili@gerdau	.com				Phone: 732 259 7660	Email: joe.homic	@gerdau.com	

Figure B-8. Rebar No. 6 Material Certificate, Test No. NJPCB-7

P.O. Box 13948 Roanoke, VA 24038-3934 Office: (540) 342-1831

Office: (540) 342-1831 (800) 753-3532 Fax: (540) 342-9437 www.roanokesteel.com PRODUCT CERTIFICATION

MFG LOT NBR HEAT NUMBER JL3511-479027 JL3511 BILL OF LADING SALES ORDER/LINE 00520094 129426 / 001 CERT ID / REV 00063374 / 01

SOLD TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOMER P.O. 9579		CUSTOMER PART N/A		QUANTITY 17,315		DLE(S) 3		PIECES 32	GRADE A615-60	SHIPMENT DA 0 03/08/2017		
PART NUMBE	R: R	B019776	5000CA		DESCRIPTIO	N :	Rebar	# 04 (1	3) 60'0'	' A615-60		
					C	hemica	al					
C 0.41	Mn 1.05	S 0.024	P 0.012	Si 0.22	Cr 0.16	Ni 0.10	Mo 0.02	0,2	Cu 21 0.0	V 0.0	ND 01	CE 0.68
					Yield Ter	sile Ele	ongatio	n				
Sample-1	Yld-1	(KSI) 68.9	Yld-1	(MPa) 475	Ultimate-1	(KSI) 107.6	Ultin	nate-1	(MPa) 742	Elong8"	(%) 15.6	
Sample-2	Yld-2	(KSI) 69.5	Yld-2	(MPa) 479	Ultimate-2	(KSI) 108.2	Ultir	nate-2	(MPa) 746	Elong8"	(%) 14	
					Me	chanic	al					
TEST Bend Test				Pass								
"ordered" Grade. stated herein eith ordered, this mate	Mercury, Rad er Inch-pound erial has been	ium or other units or SI u tested and m	Alpha source hits are to be leets the requ	materials in regarded as irements of t	any form have not be	een used in In the ASTN IS.	the producti scope for the	on of this n	naterial. No	Weld repair has	been pe	rnace process(ee) to meet rformed. Any tensile value rless a metric specification
END OF	CERTIFIC	CATION		7	. 2	the fill	1		Enginee	r of Tests:	Lev	wis E. Leftwich Jr.
qtc302 (v6.0)						Page 1 c	of 1		a a Alfan ana		Di	ate Printed: 03/08/2

Figure B-9. Rebar No. 6 Material Certificate, Test No. NJPCB-7

Metal Partners International

55 South Main Street

Naperville, IL 60540

SOLD TO

Suite 304

USA

P.O. Box 13948 Roanoke, VA 24038-3934

PRODUCT CERTIFICATION

fice:	(540) 342-1831
	(800) 753-3532
x:	(540) 342-9437
ww.roa	anokesteel.com

MFG LOT NBR HEAT NUMBER JL3506-479027 JL3506 BILL OF LADING SALES ORDER/LINE 00520481 130004 / 001 CERT ID / REV 00064145 / 01

SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOMER P.O. CUSTOMER PART BUNDLE(S) TOTAL PIECES GRADE SHIPMENT DATE QUANTITY 9726 N/A 15,390 384 A615-60 03/13/2017 2 PART NUMBER RB019776000CA DESCRIPTION : Rebar # 04 (13) 60'0" A615-60 Chemical Si Cr Cu Nb CE C Mn S P Ni Mo V 0.42 1.11 0.025 0.010 0.24 0.11 0.09 0.02 0.21 0.003 0.001 0.69 Yield Tensile Elongation Yld-1 (KSI) Yld-1 (MPa) Ultimate-1 (KSI) Ultimate-1 (MPa) Elong8" (%) 105.2 Sample-1 467 725 15.6 67.7 Yld-2 (KSI) Yld-2 (MPa) Ultimate-2 (KSI) Ultimate-2 (MPa) Elong8" (%) Sample-2 482 109.0 752 15.6 69.9 Mechanical TEST RESULT **Bend Test** Pass Approved ABS QA Mill. Certificate No. 12-MMPQA-676. This Material was melted and manufactured in our plant located in Roanoke, VA, USA, by basic Electric Furnace process(es) to meet the "ordered" Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weld repair has been performed. Any tensile values stated herein either inch-pound units or SI units are to be regarded as separate as defined in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is ordered, this material has been tested and meets the requirements of the inch-pound ranges. rtify the above to be a true and accurate report as contained in the records of this J. E. G. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr. qtc302 (v6.0) Page 1 of 1 Date Printed: 03/13/2017

Figure B-10. Rebar No. 6 Material Certificate, Test No. NJPCB-7

SOLD TO

Suite 304

USA

Metal Partners International

55 South Main Street

Naperville, IL 60540

P.O. Box 13948 Roanoke, VA 24038-3934

Office: (540) 342-1831 (800) 753-3532 Fax: (540) 342-9437 www.roanokesteel.com

PRODUCT CERTIFICATION

 MFG LOT NBR
 HEAT NUMBER

 JL3505-479027
 JL3505

 BILL OF LADING
 SALES ORDER/LINE

 00520481
 130004 / 001

 CERT ID / REV
 00064144 / 01

SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

Y1d-2 (KST) Y1d-2 (MPa) Ultimate-2 (KST) Ultimate-2 (MPa) Elong#" (%) mple-2 69.5 473 110.7 763 14.4 Mechanical ESI ESUT Etend Test Pass	CUSTOMER P.O. 9726			CUSTOME N/			NTITY ,540	BUNDLE(S	i) T	OTAL PIEC	ES	GRADE A615-60		IPMENT DATE
C Mn S P Si CC Ni Mo Cu V Nb CE Vield Tensile Elongation mple-1 70.5 466 110.0 759 12.5 vield Tensile Elongation 759 12.5 vield Tensile Elongation 763 14.4 mple-1 70.5 466 100.0 773 14.4 mple-2 69.5 479 100.7 763 14.4 Mechanical ESI ESI ESI ESI ESI Displant feature in explantionate in explantin explantin explantionate explantionate in explantion	PART NUMBE	R :	RB019	7760000	CA	DES	CRIPTION	N: Reb	15-60					
0.42 1.04 0.03 0.01 0.24 0.03 0.001 0.68 Viold Tensile Elongation mple-1 Yid-1 (MS3) Ultimate-1 (MS3) Ultimate-2 (MS3) Elong8* (8) mple-2 CS3 486 Ultimate-2 (MS3) Ultimate-2 (MS3) Ultimate-3 (MS3) mple-2 CS3 479 Ultimate-2 (MS3) Ultimate-3 (NS3) Ultimate-3 (MS3) Mechanical ESI RESULT Besize Pass								Chemical						
TId-1 (KSI) TId-1 (KSI) Ultimate-1 (KSI) Ultimate-1 (MPa) Elong8* (%) mple-1 70.5 486 110.0 759 12.5 TId-2 (KSI) YId-2 (MPa) Ultimate-2 (KSI) Ultimate-2 (KSI) Elong8* (%) mple-2 69.5 479 Ultimate-2 (KSI) Ultimate-2 (KSI) Elong8* (%) mple-2 69.5 479 Ultimate-2 (KSI) Vitimate-2 (KSI) Elong8* (%) mple-2 69.5 479 Ultimate-2 (KSI) Vitimate-2 (KSI) Elong8* (%) mple-2 69.5 479 Ultimate-2 (KSI) Vitimate-2 (KSI) Elong8* (%) mple-2 69.5 479 Ultimate-7 763 14.4 Mechanical Mechanical Mechanical Pass Pass Pass State of the material, NA USA by basic Electric Furnace procees(se) to mest the order of of the material, NA USA, by basic Electric Furnace procees(se) to mest the order of of the material, NA USA, by basic Electric Furnace procees(se) to mest the order of of the material, AN USA, by basic Electric Furnace procees(se) to mest the order of the material, NA USA by basic Electric Fu														
mple-1 70.5 486 110.0 759 12.5 mple-2 69.5 479 Utimate-2 (KST) Utimate-2 (KST) Utimate-2 (KST) Elong8" (%) mple-2 69.5 479 110.7 763 14.4 Mechanical ESI RESULT tend Test Pass							Yield Te	ensile Elonga	tion					
mple-2 69.5 479 110.7 763 14.4 Mechanical EST RESULT Pass Pass	ample-1	Yld-1		Yld-1		Ultimate-1		Ultimate-1		Elong8				
EST RESULT tend Test Pass approved ABS QA.Mill. Certificate No. 12-MMPQA-076. This Material was melted and manufactured in our plant located in Reanoke, VA, USA, by basic Electric Furnace process(es) to meet the provide ABS QA.Mill. Certificate No. 12-MMPQA-076. This Material was melted and manufactured in our plant located in Reanoke, VA, USA, by basic Electric Furnace process(es) to meet the provide ABS QA.Mill. Certificate No. 12-MMPQA-076. This Material was melted and manufactured in our plant located in Reanoke, VA, USA, by basic Electric Furnace process(es) to meet the provide ABS QA.Mill. Certificate No. 12-MMPQA-076. This Material was melted and manufactured in our plant located in Reanoke, VA, USA, by basic Electric Furnace process(es) to meet the provide Constrained on the second and the second and the second and the ASTM scope for this material. All samples tested are full size. Unless a metric specification is direct. Ubin material has been tested and metric the requirements of the inclusional ranges. his is to certify the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION The Material Second	ample-2	Yld-2		Yld-2		Ultimate-2		Ultimate-2		Elong8				
werd Test Pass							1	Mechanical						
eproved ABS QA MII. Certificate No. 12:MMPQA-676. This Material was melted and manufactured in our plant located in Roanoke, VA, USA, by basic Electric Furnace process(es) to meet the ordered" Grade. Marcury, Radium or other Apina source materials in any form have not been used in the production of this material. No Waid repair has been performed. Any tensite values tated havin attential has been tested and meets the requirements of the inch-pound mages. This is to certify the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION DESCRIPTION DESCRIP	TEST													
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.	Bend Test					Pass								
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as adfended in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is determined the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr.														
ordered [®] Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weid repair has been performed. Any tensile values tated herein either inch-pound units of 31 units are to be regarded as separate as a defined in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is deterred, this material has been tested and meets the requirements of the inch-pound ranges. his is to certify the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Engineer of Tests: Lewis E, Leftwich Jr.														
tated herein either inch-pound units or SI units are to be regarded as separate as defined in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is rdered, this material has been tested and meets the requirements of the inch-pound ranges. his is to certify the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION														
Inderect, this material has been tested and meets the requirements of the inch-pound ranges. his is to certify the above to be a true and accurate report as contained in the records of this company. END OF CERTIFICATION Image: Company to the image: Company to the image of th														
END OF CERTIFICATION								scope for any materie	a. An sun	sies tested are	un size. c	incos a neuro sp	comoudonna	
END OF CERTIFICATION														
	this is to certify t	ne above to t	e a true and	accurate rep	on as containe	eu mitte records of	uns compan	y.						
	END O	F CERT	FICATI	ON		1.0	1	the fill		E	nginee	r of Tests:	Lewis E. L	.eftwich Jr.
	tc302 (v6.0)	e o e kapolitaka											Date Prin	ted: 03/13/2

Figure B-11. Rebar No. 6 Material Certificate, Test No. NJPCB-7

Independen	ice Tube		CI	6226 W. 74th St hicago, IL 60638 708-496-0380 ax: 708-563-1950		Certific	·	endencetube. itctube. iber: DCR 493
Sold By: INDEPENDENCE 6226 W. 74th St. Chicago, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950		ION	S B	urchase Order No ales Order No: DC ill of Lading No: D tvoice No:	CR 87576 - 3		hipped: 10 voiced:	0/28/2016
Sold To: 1214 - LIVINGSTO P.O. BOX 300 STAUNTON, IL 62			1 1	hip To: - LIVINGSTON P 612 ROUTE 4 NO TAUNTON, IL 620	RTH			
CERTIFICAT Customer Part No	E of ANALYSIS	and TE	STS			Certificate Test D	No: DCF Date: 10/2	
TUBING A500B N 4" SQ X 1/2" X 40 * DO NOT SWITC	,					Total I	Pieces 9	Total Weight 7,787
Bundle Tag Mill 921690 40 40	SF1425 YL	ecs .D=82600/TE .D=83800/TE		00/ELG=26.5 00/ELG=24	Y/T Ra 0.9483 0.9426	tio Piec	es \ 9	Weight 7,787
	SF1424 Carbon Eq		50000000000000000000000000000000000000				HE USA	
C Mn 0.0600 0.5700	P S 0.0080 0.0020	Si 0.2140 (Al 0.0220	Cu Cr 0.0900 0.0300	Mo \ 0.0100 0.0		Nb 0 0.010	Cb 0 0.0100
Sn N 0.0090 0.0066	B Ti 0.0002 0.0010	Ca 0.0013						
		recent LEED) informa	ation from the prod	ucina mill)			
LEED Information	A				U ,			
Method	Locatio			cycled Content	Post Consi		Post Ir	
Method EAF	Location Decatur, AL	n	Rec	cycled Content 66.1%	Post Const	54.8%		11.2%
Method EAF Mill #: 40 Heat #:	Location Decatur, AL SF1425 Carbon Eq	n : 0.1631 He	Rec eat Src C	cycled Content 66.1% Drigin: MELTED Al	Post Consi	54.8%	HE USA	11.2%
Method EAF Mill #: 40 Heat #: C Mn 0.0500 0.5800	Location Decatur, AL SF1425 Carbon Eq P S 0.0080 0.0020	n : 0.1631 He Si 0.2160 (Rec	cycled Content 66.1%	Post Consu	54.8% URED IN TH / Ni	HE USA	11.2%
Method EAF Mill #: 40 Heat #:	Locatio Decatur, AL SF1425 Carbon Eq P S 0.0080 0.0020 B Ti	n : 0.1631 He Si	eat Src C	cycled Content 66.1% Drigin: MELTED Al Cu Cr	Post Consu	54.8% URED IN TH / Ni	HE USA	11.2%
Method EAF Mill #: 40 Heat #: C Mn 0.0500 0.5800 Sn N 0.0080 0.0068	Locatio Decatur, AL SF1425 Carbon Eq P S 0.0080 0.0020 B Ti	n : 0.1631 He Si 0.2160 (Ca 0.0012	Rec eat Src C Al 0.0230	Culed Content 66.1% Drigin: MELTED Al Cu Cr 0.0900 0.0300	Post Const ND MANUFACT Mo \ 0.0100 0.00	54.8% URED IN TH / Ni	HE USA	11.2%
Method EAF Mill #: 40 Heat #: C Mn 0.0500 0.5800 Sn N 0.0080 0.0068	Location Decatur, AL SF1425 Carbon Eq P S 0.0080 0.0020 B Ti 0.0002 0.0010	n : 0.1631 He Si 0.2160 0 Ca 0.0012 recent LEEE	eat Src C Al 0.0230	Culed Content 66.1% Drigin: MELTED Al Cu Cr 0.0900 0.0300	Post Const ND MANUFACT Mo \ 0.0100 0.00	54.8%	HE USA Nb 0 0.010	11.2%

Page - 1

Figure B-12. Steel Tube Material Certificate, Test No. NJPCB-7

Independence T	ſube	Cł	226 W. 74 hicago, IL (708-496-0 x: 708-563	30638 380		ł	Certifica		ndencetube itctube per: DCR 49	.com
Sold By: INDEPENDENCE TUBE 6226 W. 74th St. Chicago, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950	CORPORATION	S: Bi	ales Orde	r No: DCl ng No: DC	01033424 R 87579 - R 58409 -			oped: 10/ biced:	/28/2016	
Sold To: 1214 - LIVINGSTON PIF P.O. BOX 300 STAUNTON, IL 62088	PE & TUBE	1	hip To: • LIVING 612 ROU TAUNTO	TE 4 NOF		E				
CERTIFICATE of	ANALYSIS and TE	STS				Cer	tificate N	lo: DCR	493505	
Customer Part No:							Test Dat	te: 10/27	/2016	
REJECT TUBING 4" SQ X 1/2" X 34'							Total Pi€	eces 2	Total Weight 1,471	
	eat Specs F4193 YLD=77600/1	EN=8300	0/ELG=2	5.5		Ratio 349	Pieces 2		/eight 1,471	
Mill #: 40 Heat #: SF419	3 Carbon Eq: 0.1776	leat Src C	Drigin: ME	LTED AN	D MANUF	ACTURE	D IN THE	USA		
C Mn F 0.0600 0.5900 0.00		Al 0.0320	Cu 0.1000	Cr 0.0400	Mo 0.0100	V 0.0030	Ni 0.0300	Nb 0.0100	Cb 0.0100	
Sn N E 0.0060 0.0057 0.00	3 Ti Ca 004 0.0020 0.0012									
LEED Information (based	d on the most recent LEE	D informa	ition from	the produ	icing mill)					
Method	Location	Rec	ycled Co		Post C	onsumer		Post In		
EAF Deca	itur, AL			66.1%		54	.8%		11.2%	
Corporation. Sworn this of WE PROUDLY MANUFA	ACTURE ALL OUR PRO		THE USA		and mainta	ined by l	ndepende	ence Tub	e	
AND INSPECTED IN AC MATERIAL IDENTIFIED	PRODUCT IS MANUFA CORDANCE WITH AST AS A500 GRADE B(C) M AND A500 GRADE C SPE	M STAND	ARDS.),		C	his	A	len	
CURRENT STANDARDS A252-10 A500/A500M-13 A513-13 ASTM A53/A53M-12 AS A847/A847M-14 A1085/A1085M-15						Quality M			SQ CMQ/OE ms Manager	

and a substanting of a second

Page - 1

Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-7

	CERTIFICATE O	F CONFORMANCE	
*PHOENIX STEEL SERVICE IN 4679 JOHNSTON PARKWAY CLEVELAND, OHIO 44128 216-332-0600	c.	DATE:	9/07/16
SOLD TO: SEIBEL MODERN MF 38 PALMER PLACE LANCASTER, NY 1		38 PALMER	DERN MFG. & WELDING PLACE NEW YORK 14086
Cust P/O# SBS-16			
SIZE: .250 X	49.00 X	144.00	
GRADE: HR A709 GR50			
DATE SHPPD: 9/07/16			
Wt.Shipped 43300			
	CHEMICAL ANALY		
Heat Number <mark>269878</mark>			
C : .05 Si: .019	Mn: 1.020	P:.007	S : .001
Cu: .129	Ti: .003 Al: .027	Cb: .001	V : .080 N : .017
B : .001	Sn: .007	Ni: .053	N : .017 Mo: .019
	PHYSICAL PROP	ERTIES	
······································			
Yield: 63700	Tensile: 77700	Elongat	zion: 30.1%
Misc Info TAG#: C401239 Misc Info *MELTED AND M	09-10-11-12-13 ANUFACTURED IN TH	E USA*	

THE ABOVE IS IN ACCORDANCE WITH OUR RECORDS. CONFORMANCE FORM REV. 10/04/12 DJD

Figure B-14. 2-in. \times ¹/₄-in. (51-mm \times 6-mm) Bent Steel Plate, Test No. NJPCB-7

		CI	RTIFIED MATERIAL TEST REPORT	×		Page 1/1
GÐ GERDAU	CUSTOMER SHI TRIAD METAL 3507 GRAND A	S	CUSTOMER BILL TO TRIAD METALS INTERNATIONAL MET	GRADE GGMULTI	SHAPE / SIZE Flat Bar / 1/2 X 2	DOCUMENT 0000000000
S-ML-CHARLOTTE 501 LAKEVIEW ROAD	PITTSBURGH, USA		I VILLAGE RD HORSHAM,PA 19044-3800 USA	LENGTH 20'00"	WEIGHT 16,728 LB	HEAT / BATCH 54148807/02
HARLOTTE, NC 28269 SA	SALES ORDEF 3566020/00002		CUSTOMER MATERIAL Nº	SPECIFICATION / DATE ASTM A529-14, A572-15 ASTM A6-14, A36-14, ASME		
USTOMER PURCHASE ORDER NUMBER 0844W		BILL OF LADING 1321-0000039076	DATE 05/10/2016	ASTM A709-13A, AASHTO CSA G40.20-13/G40.21-13	M270-12	
снемкал сомрозитом С Мп Р 0.17 0.79 0.011	\$ 0.035	\$j Çu 0.21 0.3	Ni Cr 0.18 0.15	Mo V 0.060 0.017	Np Sn 0.001 0.015	
AECHANICAL PROPERTIES 2 Elong. G 25.00 8.0	(L ch 00	UTS PSI 78985	UTS MPa 545	P\$1 56738	YS MPa 391	
SEOMETRIC CHARACTERISTICS R R 25 60	n	*	1910 - 1904 - 1999 - 1999 - 1999 - 1999			
OMMENTS / NOTES his grade meets the requirements for the following grade STM Grades: A36; A529-50; A572-50; A709-36; A709- SA Grades: 44W; 50W ASHTO Grades: M270-36; M270-50 SME Grades: SA36						
		······	2. 	na dalama yang sa		
The shove figures are cert	ilied chemical and	nhysical test records as	contained in the permanent records of comp	any. We cortify that these does not	errat and is constituted with	
the above figures are cert	his material includ	ling the billets, was melte	d and manufactured in the USA. CMTR co	any, we certify that these data are c implies with EN 10204.3.1	priect and in compliance with	

Figure B-15. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-7

		C	ERTIFIED MA	TERIAL TEST RI	PORT						Page 1/1
CEDDALL	CUSTOMER SHIPT TRIAD METALS		CUSTOMER	BILL TO FALS INTERNATIO	NAI	GRADE GGMULT	٦I		E / SIZE r / 1/2 X 2 1/4		DOCUMENT II 0000000000
US-ML-CHARLOTTE	3507 GRAND AV PITTSBURGH,PA USA	Έ	MET 1 VILLAGE		NAL	LENGTH 20'00"			WEIGHT 1,979 LB		EAT / BATCH 148805/02
CHARLOTTE, NC 28269 JSA	SALES ORDER 3806947/000010			IER MATERIAL N		ASTM A53 ASTM A6-	CATION / DATE or 29-14, A572-15 14,A36-14, ASME SA	-36	N		
CUSTOMER PURCHASE ORDER NUMBER 93494W		BILL OF LADING 1321-0000039836		DATE 06/08/2016			09-13A, AASHTO M27 10-13/G40.21-13	70-12			
CHEMICAL COMPOSITION C Mn P 0.18 0.77 0.013	\$ 0.033	\$j Çu 0.21 0.3	1 0.	li Çı 23 0.16	M 0.0	lo 950	0.013 0	Nb %	\$n 0.016		
MECHANICAL PROPERTIES Elong. G/ 25.00 8.0	L 5h 00	UTS PSI 75435		UTS MPa 520		PS1 53469		MP 369	a a		
DEOMETRIC CHARACTERISTICS R:R 22.00											
This grade meets the requirements for the following grades STM Grades: A36: A529-50; A572-50; A709-36; A709-5 SA Grades: 44W; 50W AASHTO Grades: M270-36; M270-50 ASME Grades: SA36											
e 										r.	
The above figures are certi specified requirements. Th	is material, includin	hysical test records as g the billets, was melt R YALAMANCHILI	contained in the ed and manufac	permanent records tured in the USA, Cl	f company. We ATR complies	e certify that with EN 10	t these data are corre 204 3.1.	ct and in c			
Marke	QUALITY	/ DIRECTOR				C	Jorden Jacker		ASSURANCE MGR.		

Figure B-16. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-7

- -

				CERTIFIC	ATE OF	CONF	ORMANCE		
4679 J	OHNSTO AND, C	CEL SERVIC ON PARKWAY OHIO 44128	E INC.				DATE :		
SOLD I	38	BEL MODERI PALMER PL ICASTER, N	ACE		SHI	IP TO	38 PALMER B	ERN MFG. & WELDING PLACE NEW YORK 14086	3
Cust	P/0#	SBR-41							
SIZE:	.500		х	40.00	Х	144.0	00		
GRADE:	HR A3	6 *MELTED	& MANUF	ACTURED	IN THE	USA*			
DATE S	SHPPD:								
									x
				CHEMICAL					
Heat N	umber	SF2550							
		.216		.548				S : .002	
		.222		.002			.033 .007	V : .002	
	çu.	.070		.0051			.0012	N : .0054	
	в:	.0002					.0232	Mo: .0103	
				PHYSICAL					
Y	ield:	38700	Ten	sile: 720	000		Elongati	ion: 33%	
Misc I	Info	TAG#: PS1	49410A-E	-C-D					

THE ABOVE IS IN ACCORDANCE WITH OUR RECORDS. CONFORMANCE FORM REV. 10/04/12 DJD

Figure B-17. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-7

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

DESCRIPTION

The 1107 Advantage Grout is a non-shrink, nonmetallic, non-corrosive, cementitious grout that is designed to provide a controlled, positive expansion to ensure an excellent bearing area. The 1107 Advantage Grout can be mixed from a fluid to a dry pack consistency.

USE

Exterior grouting of structural column base plates, pump and machinery bases, anchoring bolts, dowels, bearing pads and keyway joints. It finds applications in paper mills, oil refineries, food plants, chemical plants, sewage and water treatment plants etc.

FEATURES

- Controlled, net positive expansion
- Non shrink
- Non metallic/non corrosive
- Pourable, pumpable or dry pack consistency
- Interior/exterior applications

PROPERTIES

Corps of Engineers Specification for non-shrink grout: CRD-C 621 Grades A. B. C ASTM C-1107 Grades A, B, C ASTM C-827 - 1107 Advantage Grout yielded a controlled positive expansion

Expansion - ASTM C-1090:

1 day: 0-0.3 3 days: 0-0.3 14 days: 0-0.3 28 days: 0-0.3

Test Results

	@1	Day	@ 3	Days	@7	Days	@ 28	Days
Fluidity	PSI	MPa	PSI	MPa	PSI	MPa	PSI	MPa
Dry-Pack	5000	34.5	7000	48.2	9000	62.0	10000	68,9
Flowable	2500	17.2	5000	34.5	6000	41_4	8000	55.1
Fluid	2000	13.8	4000	27.6	5000	34.5	7500	51.7

Note:

The data shown is typical for controlled laboratory conditions. Reasonable variation from these results can be expected due to interlaboratory precision and bias. When testing the field mixed material, other factors such as variations in mixing, water content, temperature and curing conditions should be considered.

Estimating Guide

Yield (Flowable Consistency): 0.43 cu. ft./50 lbs. (0.0122 cu. M/22.67 kg) bag 0.59 cu. ft./50 lbs. (0.017 cu. M/22.67 kg) bag extended with 25 lbs. (11.34 kg) of washed 3/8 in. (1cm) pea gravel

Packaging

PRODUCT	DIOUTOS	S	IZE
CODE	PACKAGE	lbs	kg
67435	Bag	50	22.67
67437	Supersack	3,000	1,360.78

STORAGE

Store in a cool, dry area free from direct sunlight. Shelf life of unopened bags, when stored in a dry facility, is 12 months. Excessive temperature differential and /or high humidity can shorten the shelf life expectancy.

APPLICATION

Surface Preparation:

Thoroughly clean all contact surfaces. Existing concrete should be strong and sound. Surface should be roughened to insure bond. Metal base plates should be clean and free of oil and other contaminants. Maintain contact areas between 45°F (7°C) and 90°F (32°C) before grouting and during curing period.

Thoroughly wet concrete contact area 24 hours prior to grouting, keep wet and remove all surface water just prior to placement. If 24 hours is not possible, then saturate with water for at least 4 hours. Seal forms to prevent water or grout loss. On the placement side, provide an angle in the form high enough to assist in grouting and to maintain head pressure on the grout during the entire grouting process. Forms should be at least 1 in. (2.5 cm) higher than the bottom of the base plate.

Water Requirements: Desired Mix Water / 50 lbs. (22.67 kg) Bag Dry Pack: 5 pints (2.4 L) Flowable: 8 pints (3.8 L Fluid: 9 pints (4.2 L)

Mixing:

A mechanical mixer with rotating blades like a mortar mixer is best. Small quantities can be mixed with a drill and paddle. When mixing less than a full bag, always first agitate the bag thoroughly so that a representative sample is obtained.

Visit www.daytonsuperior.com for the most up to date technical information Page 1 of 3

File Date: 3/27/2015

Figure B-18. Non-Shrink Grout Specifications, Test No. NJPCB-7

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

Place approximately 3/4 of the anticipated mix water into the mixer and add the grout mix, adding the minimum additional water necessary to achieve desired consistency.

Mix for a total of five minutes ensuring uniform consistency. For placements greater in depth than 3 in. (7.6 cm), up to 25 lbs. (11.34 kg) of washed 3/8 in. (1 cm) pea gravel must be added to each 50 lbs. (22.67 kg) bag of grout. The approximate working time (pot life) is 30 minutes but will vary somewhat with ambient conditions.

For hot weather conditions, greater than 85°F (29°C), mix with cold water approximately 40°F (4°C). For cold weather conditions, less than 50°F (10°C), mix with warm water, approximately 90°F (29°C). For additional hot and cold weather applications, contact Dayton Superior.

Placement:

Grout should be placed preferably from one side using a grout box to avoid entrapping air. Grout should not be over-worked or over-watered causing segregation or bleeding. Vent holes should be provided where necessary.

When possible, grout bolt holes first. Placement and consolidation should be continuous for any one section of the grout. When nearby equipment causes vibration of the grout, such equipment should be shut down for a period of 24 hours. Forms may be removed when grout is completely self-supporting. For best results, grout should extend downward at a 45 degree angle from the lower edge of the steel base plates or similar structures.

CLEAN UP

DEC

16

Use clean water. Hardened material will require mechanical removal methods.

CURING

Exposed grout surfaces must be cured. Dayton Superior recommends using a Dayton Superior curing compound, cure & seal or a wet cure for 3 days. Maintain the temperature of the grout and contact area at 45°F (7°C) to 90°F (32°C) for a minimum of 24 hours.

LIMITATIONS

FOR PROFESSIONAL USE ONLY

Do not re-temper after initial mixing Do not add other cements or additives

Setting time for the 1107 Advantage Grout will slow during cooler weather, less than 50°F (10°C) and speed up during hot weather, greater than 80°F (27°C) Prepackaged material segregates while in the bag, thus when mixing less than a full bag it is recommended to first agitate the bag to assure it is blended prior to sampling.

PRECAUTIONS

READ SDS PRIOR TO USING PRODUCT

- Product contains Crystalline Silica and Portland Cement Avoid breathing dust Silica may cause serious lung problems
- Use with adequate ventilation n Wear protective clothing, gloves and eye protection (goggles, safety glasses and/or face shield)
- Keep out of the reach of children
- Do not take internally
- In case of ingestion, seek medical help immediately
- May cause skin irritation upon contact, especially prolonged or repeated. If skin contact occurs, wash immediately with soap and water and seek medical help as needed.
- If eye contact occurs, flush immediately with clean water and seek medical he/p as needed
- Dispose of waste material in accordanc

MANUFACTURER

Dayton Superior Corporation 1125 Byers Road Miamisburg, OH 45342 Customer Service: 888-977-9600 Technical Services: 877-266-7732 Website: www.daytonsuperior.com

WARRANTY

Dayton Superior Corporation ("Dayton") warrants for 12 months from the date of manufacture or for the duration of the published product shelf life, whichever is less, that at the time of shipment by Dayton, the product is free of manufacturing defects and conforms to Dayton's product properties in force on the date of acceptance by Dayton of the order. Dayton shall only be liable under this warranty if the product has been applied, used, and stored in accordance with Dayton's instructions, especially surface preparation and installation, in force on the date of acceptance by Dayton of the order. The purchaser must examine the product when received and promptly notify Dayton in writing of any non-conformity before the product is used and no later than 30 days after such non-conformity is first discovered. If Dayton, in its sole discretion, determines that the product breached the above warranty, it will, in its sole discretion, replace the non-conforming product, refund the purchase price or issue a credit in the amount of the purchase price. This is the sole and exclusive remedy for breach of this warranty. Only a Dayton officer is authorized to modify this warranty. The information in this data sheet supersedes all other sales information received by the customer during the sales process. THE FOREGOING WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF PREATION OF LAW, COURSE OF DEALING, OTHERWISE ARISING BY OPERATION OF LAW, COURSE OF DEALING, CUSTOM, TRADE OR OTHERWISE.

Visit www.daytonsuperior.com for the most up to date technical information Page 2 of 3

File Date: 3/27/2015

Figure B-19. Non-Shrink Grout Specifications, Test No. NJPCB-7

LINCOLN OFFICE 825 "M" Street, Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 4x8

ASTM Designation: C 39

Date 28-Jun-17

Client Name: Midwest Roadside Safety Facility Project Name: NJPCB-7

Placement Location: None Given

lix Designati	on: N/A							Require	ed Streng	gth: N/A					
						1	Laboratory	Test Data	a						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen
NCB- 1	А	6/27/2017	6/27/2017	6/28/2017	0	1	1	8	4.01	12.63	54,291	4,300		6	C 1231
NCB- 2	В	6/27/2017	6/27/2017	6/28/2017	0	1	1	8	4.01	12.63	56,844	4,500		6	C 1231

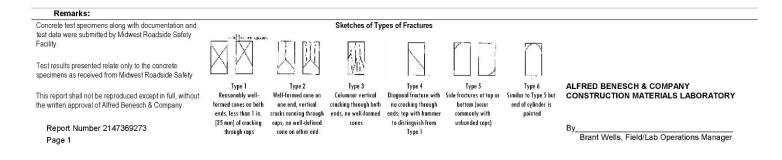


Figure B-20. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-7

Appendix C. Concrete Tarmac Strength

	1				D	0040
Client:	UNL MwRSF			Date:	December 10,	2010
Project:		2				
Placement Location:	WI - East 1, 2,	3		Mix No.:		
Aix Type:	Class:		Cement Facto		1	а
ype of Forms			Water-Cement			13
desister Orentite		12	Siump inches		-	12
Admixture Quantity		12	Unit Wt, Ibs/cu			18
Admixture Type		18	Air Content, %			a
Admixture Quantity Average Field Temperature	_	13	Batch Volume			18
femperature of Concrete F		18	Ticket No.	1 00. 100.		13
dentification Laboratory		East 2	East 3	1		
Date Cast	GAST	19151		Construction of the second		
Date Received in Laboratory	11/30/2010	11/30/2010	11/30/2010		1.1.1.1.1.1	
Date Tested						
Days Cured in Field	- 10 ⁻¹⁰					
Days Cured in Laboratory	1.000.01					Second and second
Age of Test, Days						
ength, in.	7.78	7.81	7.75		Selection in the	
Average Width (1), in.	3.72	3.72	3.72			
Cross-Sectional Area, sq. in.	10.874	10.869	10.874			
Aaximum Load, Ibf	71,030	76,470	73,310			
Compressive Stength, psi	6,530	7,040	6,740			
ength/Diameter Ratio	2.091	2.099	2.083			
Correction						
Corrected Compressive Strength,psi	0	0	0			
Type of Fracture	4	4	4		and the set of the	Second Logar
Required Strength,psi						
Remarks: All concrete break data in this report was pro inless otherwise noted. This report shall not be reproduced except in			I of Alfred Benes	sch & Company ESCH & COMP		Ŷ

Figure C-1. Concrete Tarmac Strength Test

benesch

LINCOLN OFFICE 825 J Street Lincoln, NE 68508 402/479-2200

COMPRESSION TEST OF Cylindrical CONCRETE SPECIMENS ASTM Designation: C39-03

Yd na na na na na na	t Ratio	Cement Facto	əst 4 &5	MwRSF	Client: Project:
Yd na na na na na na	or, Sks/Yd it Ratio	and the second se	est 4 &5		TOJECL.
Yd na na na na na na	or, Sks/Yd it Ratio	and the second se		WI - Epoxy We	Placement Location:
na na na na	t Ratio	and the second se		Class:	Mix Type:
na na na					Type of Forms
na na		Water-Cemen			
na	u Ft	Slump Inches	а	n	Admixture Quantity
1.545		Unit Wt, Ibs/c	а	n	Admixture Type
	6	Air Content, 9	а	n	Admixture Quantity
ds. na	e, Cu. Yds.	Batch Volume	а	n	Average Field Temperature
na		Ticket No.		n	Temperature of Concrete F
			5	4	dentification Laboratory
	ALC: NOT THE REAL	a chairmanna			Date Cast
			12/13/2010	12/13/2010	Date Received in Laboratory
					Date Tested
				- P	Days Cured in Field
				2	Days Cured in Laboratory
			na	na	Age of Test, Days
			8.06	8.05	Length, in.
		Construction and the second	3.90	3.91	Average Width (1), in.
			11.952	11.977	Cross-Sectional Area, sq. in.
			71,630	71,500	Maximum Load, Ibf
			5,990	5,970	Compressive Stength, psi
			2.065	2.061	Length/Diameter Ratio
			0	0	
Autor Marchine College	a second da se		3	3	
				198	
	aneres folies (Correction Corrected Compressive Strength,psi Type of Fracture Required Strength,psi

Figure C-2. Concrete Tarmac Strength Test

Appendix D. Vehicle Center of Gravity Determination

Date		· · · · · · · · · · · · · · · · · · ·	CB-7 VIN:		RB1GP7AS1	02101
Yea	r: <u>2010</u>	Make: Doc	ige Model:		Ram 1500	
Vehicle CO	Determination	on .	Moight	Vortical CC	Vortical M	
	Faultament				Vertical M	
VEHICLE	Equipment	Truck (Curb)	(lb.)	(in.)	(lbin.)	1
+	Hub		5053	28 1/8	142115.63	
+		tion outindar 9 fromo	19	15 1/4 24 1/2	289.75	
+ +		ation cylinder & frame	27	and the second s	171.5	
+	Strobe/Brak	ank (Nitrogen)	5	28 26 1/4	756	
+	Brake Recei		5	52 1/2	262.5	
+	CG Plate inc		42	30 1/2	1281	
		Juding DAS	-44	42 1/4	-1859	
-	Battery		-44		Chall/Storaction	
р р да	Oil			26 1/2	-185.5	
-	Interior Fuel		-96 -172	29 1/2 19 1/2	-2832 -3354	
-	LAN FRIDAY		516 - A	1 15231841 U27481 58		
1 6	Coolant Washer fluid		-3	33 1/2 33	-100.5 -33	
-			99	16 3/4	1658.25	
+ +		st (In Fuel Tank)				
+.		pplemental Battery	12 33	26 1/2 33 1/4	318 1097.25	
					1 1097.20	
Note: (+) is add		vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio	ipment from vehicle ht (Ib.) 4979]	139717.13	
Vehicle Din	ded equipment to v	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatic C.G. Calculations	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613]	139717.13]
	ded equipment to v	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatic C.G. Calculations	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width:	68 3/8	in.]
Vehicle Din	ded equipment to v	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatic C.G. Calculations	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613	68 3/8	139717.13	
Vehicle Din Wheel Bas	ded equipment to v nensions for C e: <u>140 1/4</u>	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatic C.G. Calculations in. Fr R	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width:	68 3/8 68 1/4	in. in.	-
Vehicle Din Wheel Bas Center of G	ded equipment to v nensions for C e: <u>140 1/4</u> Gravity	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatic C.G. Calculations in. Fr R 2270P MASH Targ	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width:	68 3/8 68 1/4 Test Inertia	in. in.	Differenc
Vehicle Din Wheel Bas Center of G Test Inertial	ded equipment to v nensions for C e: <u>140 1/4</u> Gravity Weight (lb.)	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatic C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width:	68 3/8 68 1/4 Test Inertia 5000	in. in.	Differenc
Vehicle Din Wheel Bas Center of C Test Inertial Longitudina	ded equipment to v nensions for C e: <u>140 1/4</u> Gravity Weight (Ib.) I CG (in.)	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 8 2270P MASH Targ 5000 ± 110 63 ± 4	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width:	68 3/8 68 1/4 Test Inertia 5000 62.1027	_in. _in. _in.	Differenc
Vehicle Din Wheel Bas Center of C Test Inertial Longitudina Lateral CG	ded equipment to v nensions for C e: <u>140 1/4</u> Gravity Weight (Ib.) I CG (in.) (in.)	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875	_in. _in. _in.	Differenc 0. -0.8973 N
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG	ded equipment to v nensions for C e: <u>140 1/4</u> Weight (Ib.) I CG (in.) (in.)	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027	_in. _in. _in.	Differenc 0. -0.8973 N 0.0612
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) G is measured from	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea m front axle of test vehicle	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06	_in. _in. _in.	Differenc 0 -0.8973 N
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) G is measured from	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06	_in. _in. _in.	Differenc 0. -0.8973 N
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) (in.) G is measured from CG measured from	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea m front axle of test vehicle	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06 r) side	_in. _in. _in.	Differenc 0 -0.8973 N 0.0612
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral G	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) G is measured from CG measured from GHT (Ib.)	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea m front axle of test vehicle n centerline - positive to vel	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06 r) side	in. in. al	Differenc 0. -0.8973 N 0.0612
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral G CURB WEI	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) (in.) G is measured from CG measured from GHT (Ib.) Left	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea m front axle of test vehicle n centerline - positive to vel Right	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06 r) side	in. in. in. al RTIAL WEIGH	Differenc 0. -0.8973 N 0.0612 IT (Ib.) Right
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Vertical CG Note: Long. C Note: Lateral G CURB WEIG	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) (in.) G is measured from CG measured from GHT (Ib.) Left 1439	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea m front axle of test vehicle n centerline - positive to vel Right 1386	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06 r) side TEST INEF Front		Differenc 0. -0.8973 N 0.0612 IT (Ib.) Right 1414
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral G CURB WEI	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) (in.) G is measured from CG measured from GHT (Ib.) Left	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea m front axle of test vehicle n centerline - positive to vel Right	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06 r) side	in. in. in. al RTIAL WEIGH	Differenc 0. -0.8973 N 0.0612 IT (Ib.) Right
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral G CURB WEIG Front Rear	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) (in.) G is measured from CG measured from GHT (Ib.) Left 1439 1116	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea m front axle of test vehicle n centerline - positive to vel Right 1386 1112	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06 r) side TEST INEF Front Rear	in. in. in. al RTIAL WEIGH Left 1093	Difference 0. -0.8973 N 0.0612 IT (Ib.) Right 1414 1121
Vehicle Din Wheel Bas Center of G Test Inertial Longitudina Lateral CG Vertical CG Vertical CG Note: Long. C Note: Lateral G CURB WEIG	ded equipment to v nensions for C e: 140 1/4 Gravity Weight (Ib.) I CG (in.) (in.) (in.) G is measured from CG measured from GHT (Ib.) Left 1439 1116 2825	vehicle, (-) is removed equi Estimated Total Weig Vertical CG Locatio C.G. Calculations in. Fr 2270P MASH Targ 5000 ± 110 63 ± 4 NA 28 or grea m front axle of test vehicle n centerline - positive to vel Right 1386	ipment from vehicle ht (Ib.) 4979 on (in.) 28.0613 ont Track Width: ear Track Width: gets	68 3/8 68 1/4 Test Inertia 5000 62.1027 0.4781875 28.06 r) side TEST INEF Front		Differenc 0. -0.8973 N 0.0612 IT (Ib.) Right 1414

Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-7

Appendix E. Vehicle Deformation Records

Year: 201 POINT (in. 1 29.5 2 31.4 3 32.2 4 32.0 5 27.2 6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.72 23 7.04 24 6.87 25 -0.0 26 0.06 27 0.00 28 -0.04 Note: Crush column	Y (in.) 77 -34.638 09 -30.025 21 -26.016 48 -22.114 72 -35.032 80 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.604 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 8 -35.482 66 -30.710 7 -24.640 0 -19.022 24 -31.739	Z (in.) 2.449 0.658 -0.329 -0.307 -1.133 -2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.354 -4.354 -4.354 -6.866 -6.820 -6.840 -6.839 -6.866 -6.820 -6.840 -6.839 -6.868 -6.816 -6.822 -6.910 -6.863 -6.863 -6.875 -6.875 -6.875 -6.8909 -2.889		PRE/POST ORPAN - SI Y' (in.) -33.618 -28.315 -24.342 -20.851 -34.058 -29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -29.521 -24.334 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987 -23.902	- CRUSH	ΔX (in.) -1.279 -2.621 -2.081 -1.374 -0.377 -0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.557 0.519 0.421	Ay (in.) 1.020 1.710 1.674 1.263 0.974 1.273 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.872 0.827 0.719 0.724 0.724	ΔZ (in.) 1.001 1.940 2.051 1.470 0.588 1.116 0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250 -0.162	Total Δ (in.) 1.918 3.682 3.368 2.376 1.198 1.908 1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	Crush (in.) 1.624 3.261 2.922 2.012 0.698 1.421 1.210 0.019 0.291 0.338 0.265 -0.200 -0.099 -0.086 -0.209 -0.086 -0.123 -0.297 -0.299 -0.142 -0.204 -0.250
POINT (in. 1 29.5 2 31.4 3 32.2 4 32.0 5 27.2 6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.07 26 0.06 27 0.00 28 -0.04	(in.) (in.) 77 -34.638 09 -30.025 21 -26.016 48 -22.114 72 -35.032 80 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 -8 -35.482 6 -30.710 7 -24.640 7 -24.640 7 -24.640 7 -24.640 0 -19.022 24 -31.739	(in.) 2.449 0.658 -0.329 -0.307 -1.133 -2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.354 -4.349 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.875 -6.909	FLO X' (in.) 28.298 28.788 30.140 30.674 26.895 27.900 27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	ORPAN - SI Y' (in.) -33.618 -28.315 -24.342 -20.851 -34.058 -29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	Z' (in.) 3.449 2.598 1.723 1.164 -0.546 -1.056 -1.303 -2.348 -3.808 -4.089 -4.549 -6.888 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	(in.) -1.279 -2.621 -2.081 -1.374 -0.377 -0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	(in.) 1.020 1.710 1.674 1.263 0.974 1.273 1.095 1.004 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.827 0.719 0.724	(in.) 1.001 1.940 2.051 1.470 0.588 1.116 0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.096 -0.029 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	(in.) 1.918 3.682 3.368 2.376 1.198 1.908 1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	(in.) 1.624 3.261 2.922 2.012 0.698 1.421 1.210 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.244 -0.204 -0.250
POINT (in. 1 29.5 2 31.4 3 32.2 4 32.0 5 27.2 6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.07 26 0.06 27 0.00 28 -0.04	(in.) (in.) 77 -34.638 09 -30.025 21 -26.016 48 -22.114 72 -35.032 80 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 -8 -35.482 6 -30.710 7 -24.640 7 -24.640 7 -24.640 7 -24.640 0 -19.022 24 -31.739	(in.) 2.449 0.658 -0.329 -0.307 -1.133 -2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.354 -4.349 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.875 -6.909	(in.) 28.298 28.788 30.140 30.674 26.895 27.900 27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	(in.) -33.618 -28.315 -24.342 -20.851 -34.058 -29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	(in.) 3.449 2.598 1.723 1.164 -0.546 -1.056 -1.303 -2.348 -3.882 -3.882 -3.808 -4.089 -4.549 -6.962 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.056 -7.113	(in.) -1.279 -2.621 -2.081 -1.374 -0.377 -0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	(in.) 1.020 1.710 1.674 1.263 0.974 1.273 1.095 1.004 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.827 0.719 0.724	(in.) 1.001 1.940 2.051 1.470 0.588 1.116 0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.096 -0.029 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	(in.) 1.918 3.682 3.368 2.376 1.198 1.908 1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	(in.) 1.624 3.261 2.922 2.012 0.698 1.421 1.210 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.244 -0.204 -0.250
1 29.5 2 31.4 3 32.2 4 32.0 5 27.2 6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.07 26 0.08 27 0.00 28 -0.04	77 -34.638 09 -30.025 21 -26.016 48 -22.114 72 -35.032 30 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.6467 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 .8 -35.482 66 -30.710 .7 -24.640 70 -19.022 24 -31.739	2.449 0.658 -0.329 -0.307 -1.133 -2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.354 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.875 -6.909	28.298 28.788 30.140 30.674 26.895 27.900 27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-33.618 -28.315 -24.342 -20.851 -34.058 -29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 1-7.541 -34.763 -29.987	3.449 2.598 1.723 1.164 -0.546 -1.056 -1.303 -2.348 -3.882 -3.808 -4.089 -4.549 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	-1.279 -2.621 -2.081 -1.374 -0.377 -0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.435 0.348 0.530 0.474 0.204 0.557 0.519	1.020 1.710 1.674 1.263 0.974 1.273 1.095 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.724	1.001 1.940 2.051 1.470 0.588 1.116 0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.020 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	1.918 3.682 3.368 2.376 1.198 1.908 1.631 1.065 1.102 1.141 1.144 0.935 1.638 0.984 0.986 1.062 0.969 0.972 0.864 0.932	1.624 3.261 2.922 2.012 0.698 1.421 1.210 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.089 -0.086 -0.123 -0.297 -0.229 -0.140 -0.140 -0.142 -0.250
2 31.4 3 32.2 4 32.0 5 27.2 6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.07 26 0.06 27 0.00 28 -0.04	09 -30.025 21 -26.016 48 -22.114 72 -35.032 80 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 8 -35.482 66 -30.710 7 -24.640 7 -24.640 0 -19.022 24 -31.739	0.658 -0.329 -0.307 -1.133 -2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.354 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	28.788 30.140 30.674 26.895 27.900 27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-28.315 -24.342 -20.851 -34.058 -29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	2.598 1.723 1.164 -0.546 -1.056 -1.303 -2.348 -3.882 -3.808 -4.089 -4.549 -6.962 -6.962 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	-2.621 -2.081 -1.374 -0.377 -0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.271 0.271 0.271 0.388 0.435 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	1.710 1.674 1.263 0.974 1.273 1.095 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.724	1.940 2.051 1.470 0.588 1.116 0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.069 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	3.682 3.368 2.376 1.198 1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	3.261 2.922 2.012 0.698 1.4210 1.210 0.019 0.291 0.338 0.265 -0.200 -0.069 -0.069 -0.086 -0.123 -0.297 -0.229 -0.142 -0.244 -0.250
3 32.2 4 32.0 5 27.2 6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.08 27 0.00 28 -0.04	21 -26.016 48 -22.114 72 -35.032 80 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 .8 -35.482 66 -30.710 .7 -24.640 .7 -24.640 .7 -24.640 .7 -24.640 .7 -24.640 .7 -24.640	-0.329 -0.307 -1.133 -2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.354 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	30.140 30.674 26.895 27.900 27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-24.342 -20.851 -34.058 -29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	1.723 1.164 -0.546 -1.056 -1.303 -2.348 -3.882 -3.808 -4.089 -4.549 -6.962 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	-2.081 -1.374 -0.377 -0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	1.674 1.263 0.974 1.273 1.095 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.871 0.874 0.872 0.872 0.872	2.051 1.470 0.588 1.116 0.959 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.069 -0.086 -0.123 -0.229 -0.140 -0.142 -0.142 -0.204 -0.250	3.368 2.376 1.198 1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	2.922 2.012 0.698 1.421 1.210 0.019 0.291 0.338 0.265 -0.200 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.140 -0.244 -0.250
4 32.0 5 27.2 6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 19 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.07 26 0.08 27 0.00 28 -0.04	48 -22.114 72 -35.032 80 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 42 -22.666 45 -18.368 -8 -35.482 66 -30.710 77 -24.640 70 -19.022 24 -31.739	-0.307 -1.133 -2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.349 -6.866 -6.820 -6.839 -6.878 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	30.674 26.895 27.900 27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-20.851 -34.058 -29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	1.164 -0.546 -1.056 -1.303 -2.348 -3.882 -3.808 -4.089 -4.549 -6.962 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.056 -7.113	-1.374 -0.377 -0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.271 0.553 0.348 0.435 0.348 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	1.263 0.974 1.273 1.095 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.874 0.872 0.872 0.827 0.719 0.724	1.470 0.588 1.116 0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.086 -0.0297 -0.229 -0.123 -0.227 -0.229 -0.140 -0.142 -0.142 -0.204 -0.250	2.376 1.198 1.908 1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932	2.012 0.698 1.421 1.210 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.096 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.244 -0.250
5 27.2 6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.06 27 0.00 28 -0.04	-35.032 80 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 -8 -35.482 -6 -30.710 77 -24.640 0 -19.022 24 -31.739	-1.133 -2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.349 -6.866 -6.820 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	26.895 27.900 27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-34.058 -29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-0.546 -1.056 -1.303 -2.348 -3.882 -3.808 -4.089 -4.549 -6.962 -6.962 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.056 -7.113	-0.377 -0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	0.974 1.273 1.095 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.827 0.719 0.724	0.588 1.116 0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.229 -0.229 -0.140 -0.142 -0.142 -0.204 -0.250	1.198 1.908 1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	0.698 1.421 1.210 0.019 0.291 10.338 0.265 -0.200 -0.086 -0.089 -0.086 -0.123 -0.297 -0.229 -0.140 -0.140 -0.142 -0.204 -0.250
6 28.7 7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.72 23 7.04 24 6.87 25 -0.0 26 0.06 27 0.00 28 -0.04	80 -30.467 55 -25.958 56 -21.101 97 -35.352 38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 -8 -35.482 66 -30.710 0 -19.022 24 -31.739	-2.172 -2.262 -2.366 -4.173 -4.146 -4.354 -4.349 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.875 -6.909	27.900 27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-29.194 -24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -21.7541 -34.763 -29.987	-1.056 -1.303 -2.348 -3.882 -3.808 -4.089 -4.549 -6.962 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	-0.880 -0.737 0.004 0.348 0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.530 0.474 0.204 0.557 0.519	1.273 1.095 1.065 1.004 1.083 1.113 0.872 1.018 0.872 0.878 0.914 0.871 0.814 0.871 0.814 0.872 0.827 0.827 0.719 0.724	1.116 0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.140 -0.142 -0.204 -0.250	1.908 1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932	1.421 1.210 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.086 -0.123 -0.297 -0.229 -0.140 -0.140 -0.142 -0.204 -0.250
7 28.5 8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.06 27 0.00 28 -0.04	-25.958 -25.958 -21.101 97 -35.352 38 -30.604 16 -25.446 92 92.20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.070 -34.661 58 -29.611 42 -22.666 45 -18.368 .8 -35.482 66 -30.710 0 -19.022 24 -31.739	-2.262 -2.366 -4.173 -4.146 -4.354 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.863 -6.875 -6.909	27.819 28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-24.864 -20.036 -34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-1.303 -2.348 -3.882 -3.808 -4.089 -4.549 -6.962 -6.888 -6.926 -6.962 -7.174 -7.045 -6.962 -7.052 -7.056 -7.066 -7.113	-0.737 0.004 0.348 0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	1.095 1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.814 0.871 0.814 0.827 0.827 0.719 0.724	0.959 0.019 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.224 -0.250	1.631 1.065 1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	1.210 0.019 0.291 0.338 0.265 -0.200 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.244 -0.250
8 28.0 9 24.6 10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 23 7.04 24 6.87 25 -0.02 26 0.06 27 0.00 28 -0.04	56 -21.101 97 -35.352 38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -34.661 58 -29.611 42 -22.666 45 -18.368 .8 -35.482 6 -30.710 .7 -24.640 0 -19.022 24 -31.739	-4.173 -4.146 -4.354 -4.349 -6.866 -6.820 -6.840 -6.839 -6.878 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	28.060 25.046 24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-34.348 -29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-3.882 -3.808 -4.089 -4.549 -6.962 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	0.348 0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	1.065 1.004 1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.871 0.814 0.872 0.827 0.719 0.724	0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.142 -0.204 -0.250	1.102 1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	0.019 0.291 0.338 0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250
10 24.6 11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 19 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.05 27 0.00 28 -0.04	38 -30.604 16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 8 -35.482 66 -30.712 77 -24.640 10 -19.022 24 -31.739	-4.146 -4.354 -4.349 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	24.759 24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-29.521 -24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-3.808 -4.089 -4.549 -6.962 -6.962 -6.962 -7.174 -7.045 -6.962 -7.052 -7.056 -7.066 -7.113	0.121 -0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	1.083 1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.827 0.719 0.724	0.338 0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.142 -0.204 -0.250	1.141 1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	0.338 0.265 -0.200 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250
11 24.6 12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 19 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.05 27 0.00 28 -0.04	16 -25.446 92 -20.070 13 -35.233 41 -29.912 45 -24.621 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 8 -35.482 6 -30.710 77 -24.640 0 -19.022 24 -31.739	-4.354 -4.349 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	24.615 24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-24.334 -19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-4.089 -4.549 -6.962 -6.888 -6.926 -6.962 -7.174 -7.045 -6.962 -7.052 -7.056 -7.113	-0.001 0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	1.113 0.872 1.018 0.982 0.878 0.914 0.871 0.871 0.814 0.872 0.827 0.719 0.724	0.265 -0.200 -0.096 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	1.144 0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	0.265 -0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250
12 24.6 13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 19 13.1 20 13.0 21 6.74 23 7.04 24 6.87 25 -0.07 26 0.06 27 0.00 28 -0.04	92 -20.070 13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 8 -35.482 66 -30.710 7 -24.640 0 -19.022 24 -31.739	-4.349 -6.866 -6.820 -6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	24.963 19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-19.198 -34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-4.549 -6.962 -6.888 -6.926 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	0.271 0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	0.872 1.018 0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.719 0.724	-0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	0.935 1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	-0.200 -0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250
13 19.0 14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.06 27 0.00 28 -0.04	13 -35.233 41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 .8 -35.482 66 -30.710 7 -24.640 0 -19.022 24 -31.739	-6.866 -6.820 -6.839 -6.878 -6.878 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.863 -6.875 -6.909	19.567 19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-34.214 -28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-6.962 -6.888 -6.926 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	0.553 0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	1.018 0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.719 0.724	-0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	1.163 1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	-0.096 -0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250
14 18.9 15 18.6 16 18.4 17 13.5 18 13.1 19 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.08 27 0.00 28 -0.04	41 -29.912 45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 8 -35.482 66 -30.710 77 -24.640 00 -19.022 24 -31.739	-6.820 -6.840 -6.839 -6.878 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	19.329 19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-28.930 -23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-6.888 -6.926 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	0.388 0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	0.982 0.878 0.914 0.871 0.814 0.872 0.827 0.719 0.724	-0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	1.058 0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	-0.069 -0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250
15 18.6 16 18.4 17 13.5 18 13.1 19 13.0 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.01 26 0.02 27 0.00 28 -0.04	45 -24.625 70 -19.017 90 -34.661 58 -29.611 42 -22.666 45 -18.368 88 -35.482 66 -30.710 77 -24.640 10 -19.022 24 -31.739	-6.840 -6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.863 -6.875 -6.909	19.080 18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-23.747 -18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-6.926 -6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	0.435 0.348 0.530 0.474 0.404 0.204 0.557 0.519	0.878 0.914 0.871 0.814 0.872 0.827 0.719 0.724	-0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	0.984 0.986 1.062 0.969 0.972 0.864 0.932 0.925	-0.086 -0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250
16 18.4 17 13.5 18 13.1 19 13.0 20 13.0 21 6.7 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.06 27 0.00 28 -0.04	-19.017 -34.661 58 -29.611 42 -22.666 45 -18.368 -8 -35.482 66 -30.710 77 -24.640 10 -19.022 24 -31.739	-6.839 -6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.875 -6.909	18.818 14.120 13.632 13.546 13.249 7.305 7.485 7.469	-18.102 -33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-6.962 -7.174 -7.045 -6.962 -7.052 -7.066 -7.113	0.348 0.530 0.474 0.404 0.204 0.557 0.519	0.914 0.871 0.814 0.872 0.827 0.719 0.724	-0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250	0.986 1.062 0.969 0.972 0.864 0.932 0.925	-0.123 -0.297 -0.229 -0.140 -0.142 -0.204 -0.250
17 13.5 18 13.1 19 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.06 27 0.00 28 -0.04	90 -34.661 58 -29.611 42 -22.666 45 -18.368 88 -35.482 66 -30.710 77 -24.640 10 -19.022 24 -31.739	-6.878 -6.816 -6.822 -6.910 -6.863 -6.863 -6.875 -6.909	14.120 13.632 13.546 13.249 7.305 7.485 7.469	-33.790 -28.797 -21.794 -17.541 -34.763 -29.987	-7.174 -7.045 -6.962 -7.052 -7.066 -7.113	0.530 0.474 0.404 0.204 0.557 0.519	0.871 0.814 0.872 0.827 0.719 0.724	-0.297 -0.229 -0.140 -0.142 -0.204 -0.250	1.062 0.969 0.972 0.864 0.932 0.925	-0.297 -0.229 -0.140 -0.142 -0.204 -0.250
18 13.1 19 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.07 26 0.06 27 0.00 28 -0.04	558 -29.611 42 -22.666 45 -18.368 48 -35.482 46 -30.710 47 -24.640 10 -19.022 24 -31.739	-6.816 -6.822 -6.910 -6.863 -6.863 -6.875 -6.909	13.632 13.546 13.249 7.305 7.485 7.469	-28.797 -21.794 -17.541 -34.763 -29.987	-7.045 -6.962 -7.052 -7.066 -7.113	0.474 0.404 0.204 0.557 0.519	0.814 0.872 0.827 0.719 0.724	-0.229 -0.140 -0.142 -0.204 -0.250	0.969 0.972 0.864 0.932 0.925	-0.229 -0.140 -0.142 -0.204 -0.250
19 13.1 20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.06 27 0.00 28 -0.04	42 -22.666 45 -18.368 8 -35.482 6 -30.710 .7 -24.640 .0 -19.022 24 -31.739	-6.822 -6.910 -6.863 -6.863 -6.875 -6.909	13.546 13.249 7.305 7.485 7.469	-21.794 -17.541 -34.763 -29.987	-6.962 -7.052 -7.066 -7.113	0.404 0.204 0.557 0.519	0.872 0.827 0.719 0.724	-0.140 -0.142 -0.204 -0.250	0.972 0.864 0.932 0.925	-0.140 -0.142 -0.204 -0.250
20 13.0 21 6.74 22 6.96 23 7.04 24 6.87 25 -0.02 26 0.08 27 0.00 28 -0.04	45 -18.368 -8 -35.482 66 -30.710 .7 -24.640 .0 -19.022 24 -31.739	-6.910 -6.863 -6.863 -6.875 -6.909	13.249 7.305 7.485 7.469	-17.541 -34.763 -29.987	-7.052 -7.066 -7.113	0.204 0.557 0.519	0.827 0.719 0.724	-0.142 -0.204 -0.250	0.864 0.932 0.925	-0.142 -0.204 -0.250
22 6.96 23 7.04 24 6.87 25 -0.02 26 0.02 27 0.002 28 -0.04	6 -30.710 7 -24.640 70 -19.022 24 -31.739	-6.863 -6.875 -6.909	7.485 7.469	-29.987	-7.113	0.519	0.724	-0.250	0.925	-0.250
23 7.04 24 6.87 25 -0.02 26 0.08 27 0.00 28 -0.04	7 -24.640 70 -19.022 24 -31.739	-6.875 -6.909	7.469							
24 6.87 25 -0.00 26 0.08 27 0.00 28 -0.04	0 -19.022 24 -31.739	-6.909		-23.902	-7.037	0.421	0.738	-0.162		
25 -0.02 26 0.08 27 0.00 28 -0.04	-31.739		7115						0.865	-0.162
26 0.08 27 0.00 28 -0.04		-2 889		-18.268	-7.046	0.275	0.754	-0.137	0.814	-0.137
27 0.00 28 -0.04			0.621	-31.108	-3.031	0.645	0.630	-0.142	0.913	-0.142
28 -0.04		-2.871	0.593	-27.207	-3.009	0.507	0.560	-0.138	0.767	-0.138
		-2.884	0.426	-23.991 -19.008	-3.019	0.424	0.578	-0.135 -0.159	0.730	-0.135 -0.159
Note: Crush colun	-13.011	-2.500	0.000	-19.000	-0.000	0.000	0.000	-0.155	0.717	-0.108
Note: Crush colun										
DOOR	22	23 24	6 20 4	ASHBE					DC	JOR
	25	26/27 28		X	Y					

Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-7

Date: 2/27/2018 Year: 2010 Year: 2010 1 56.526 2 58.261 3 59.137 4 58.923 5 54.142 6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767 1 1 14	Y (in.) -34.264 -29.707 -25.465 -34.657 -30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -29.314 -29.314 -28.106 -30.285 -24.231 -18.619 -31.407 -27.481 -24.226	Z (in.) 2.717 0.910 -0.048 -0.043 -0.787 -1.845 -1.964 -3.755 -3.716 -3.885 -3.862 -6.212 -6.212 -6.212 -6.163 -6.065 -6.038 -6.104 -5.940 -5.940 -1.793	VEHICLE	dge PRE/POST ORPAN - SI Y' (in.) -33.926 -28.614 -24.617 -21.210 -34.347 -29.449 -25.094 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421 -31.323	Model:	ΔX (in.) -1.318 -2.578 -2.114 -1.151 -0.491 -0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097 0.285			Total Δ (in.) 1.415 3.132 2.726 1.511 0.583 1.249 1.013 0.749 0.583 0.432 0.528 0.838 0.825 0.695 0.663 0.923 0.803 0.668 0.627 0.755 0.605	Crush (in.) 1.374 2.935 2.590 1.405 0.494 1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.578 -0.543 -0.543 -0.543 -0.636 -0.556
POINT (in.) 1 56.526 2 58.261 3 59.137 4 58.923 5 54.142 6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	(in.) -34.264 -29.707 -25.465 -34.657 -30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.660 -30.285 -24.231 -18.619 -31.407 -27.481	(in.) 2.717 0.910 -0.043 -0.043 -0.787 -1.845 -1.898 -1.964 -3.755 -3.716 -3.785 -3.862 -6.299 -6.225 -6.212 -6.163 -6.163 -6.065 -6.038 -6.104 -5.965 -5.940 -1.793	FLO X' (in.) 55.208 55.684 57.024 57.772 53.651 54.650 54.552 54.741 51.621 51.349 51.621 51.349 51.181 51.601 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	ORPAN - SI Y' (in.) -33.926 -28.614 -24.617 -21.210 -34.347 -29.449 -25.094 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	Z' (in.) 3.108 2.313 1.449 0.763 -0.842 -1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.996 -6.965 -6.825 -6.796 -6.623 -6.623 -6.647 -6.623 -6.638 -6.636 -6.492 -6.425	(in.) -1.318 -2.578 -2.114 -1.151 -0.491 -0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	(in.) 0.338 1.093 0.849 0.555 0.310 0.608 0.438 0.428 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	(in.) 0.391 1.403 1.497 0.806 -0.056 0.513 0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.543 -0.673 -0.663 -0.663 -0.663 -0.663 -0.663 -0.663 -0.666 -0.566	(in.) 1.415 3.132 2.726 1.511 0.583 1.249 1.013 0.749 0.583 0.432 0.528 0.838 0.825 0.695 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.755 0.605	(in.) 1.374 2.935 2.590 1.405 0.494 1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.543 -0.673 -0.673 -0.686 -0.556
POINT (in.) 1 56.526 2 58.261 3 59.137 4 58.923 5 54.142 6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	(in.) -34.264 -29.707 -25.465 -34.657 -30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.660 -30.285 -24.231 -18.619 -31.407 -27.481	(in.) 2.717 0.910 -0.043 -0.043 -0.787 -1.845 -1.898 -1.964 -3.755 -3.716 -3.785 -3.862 -6.299 -6.225 -6.212 -6.163 -6.163 -6.065 -6.038 -6.104 -5.965 -5.940 -1.793	(in.) 55.208 55.684 57.024 57.772 53.651 54.650 54.552 54.741 51.621 51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	(in.) -33.926 -28.614 -24.617 -21.210 -34.347 -29.449 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	(in.) 3.108 2.313 1.449 0.763 -0.842 -1.332 -1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.623 -6.623 -6.636 -6.636 -6.492 -6.425	(in.) -1.318 -2.578 -2.114 -1.151 -0.491 -0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	(in.) 0.338 1.093 0.849 0.555 0.310 0.608 0.438 0.428 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	(in.) 0.391 1.403 1.497 0.806 -0.056 0.513 0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.543 -0.673 -0.663 -0.663 -0.663 -0.663 -0.663 -0.663 -0.666 -0.566	(in.) 1.415 3.132 2.726 1.511 0.583 1.249 1.013 0.749 0.583 0.432 0.528 0.838 0.825 0.695 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.755 0.605	(in.) 1.374 2.935 2.590 1.405 0.494 1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.543 -0.673 -0.673 -0.686 -0.556
1 56.526 2 58.261 3 59.137 4 58.923 5 54.142 6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-34.264 -29.707 -25.465 -21.765 -34.657 -30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.660 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	2.717 0.910 -0.048 -0.043 -0.787 -1.845 -1.898 -1.964 -3.755 -3.716 -3.885 -3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.940 -1.793	55.208 55.684 57.024 57.772 53.651 54.650 54.552 54.741 51.621 51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-33.926 -28.614 -24.617 -21.210 -34.347 -25.094 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	3 108 2 313 1.449 0.763 -0.842 -1.332 -1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.765 -6.974 -6.623 -6.647 -6.636 -6.492 -6.425	-1.318 -2.578 -2.114 -1.151 -0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.338 1.093 0.849 0.555 0.310 0.608 0.438 0.428 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	0.391 1.403 1.497 0.806 -0.056 0.513 0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.543 -0.543 -0.673 -0.663 -0.656	1.415 3.132 2.726 1.511 0.583 1.249 1.013 0.749 0.583 0.432 0.528 0.635 0.695 0.687 0.663 0.923 0.803 0.6687 0.6627 0.795 0.755 0.605	1.374 2.935 2.590 1.405 0.494 1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.543 -0.673 -0.673 -0.673
2 58.261 3 59.137 4 58.923 5 54.142 6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-29.707 -25.465 -21.765 -34.657 -30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	0.910 -0.048 -0.043 -0.787 -1.845 -1.845 -1.845 -3.755 -3.716 -3.885 -3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.936 -5.930 -5.940 -1.793	55.684 57.024 57.772 53.651 54.650 54.552 54.741 51.621 51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-28.614 -24.617 -21.210 -34.347 -29.449 -20.258 -34.586 -29.863 -29.863 -29.863 -29.863 -29.863 -29.863 -29.194 -33.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	2.313 1.449 0.763 -0.842 -1.332 -1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.765 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	-2.578 -2.114 -1.151 -0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.224 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	1.093 0.849 0.555 0.310 0.608 0.438 0.428 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	1.403 1.497 0.806 -0.056 0.513 0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.685 -0.578 -0.578 -0.543 -0.543 -0.663 -0.663 -0.666 -0.656	3.132 2.726 1.511 0.583 1.249 1.013 0.749 0.583 0.432 0.528 0.635 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	2.935 2.590 1.405 0.494 1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.685 -0.578 -0.578 -0.543 -0.543 -0.673 -0.686 -0.556
3 59.137 4 58.923 5 54.142 6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-25.465 -21.765 -34.657 -30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-0.048 -0.043 -0.787 -1.845 -1.898 -1.964 -3.755 -3.716 -3.885 -3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.605 -6.038 -6.104 -5.949 -5.940 -5.940 -1.793	57.024 57.772 53.651 54.650 54.552 54.741 51.621 51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-24.617 -21.210 -34.347 -29.449 -25.094 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	1.449 0.763 -0.842 -1.332 -1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.965 -6.825 -6.796 -6.765 -6.623 -6.647 -6.623 -6.638 -6.636 -6.492 -6.425	-2.114 -1.151 -0.491 -0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.849 0.555 0.310 0.608 0.438 0.428 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	1.497 0.806 -0.056 0.513 0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.656	2.726 1.511 0.583 1.249 1.013 0.749 0.583 0.432 0.528 0.638 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.755 0.605	2.590 1.405 0.494 1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.583 -0.543 -0.673 -0.686 -0.556
4 58.923 5 54.142 6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-21.765 -34.657 -30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-0.043 -0.787 -1.845 -1.964 -3.755 -3.716 -3.885 -3.862 -6.225 -6.212 -6.212 -6.163 -6.065 -6.038 -6.104 -5.940 -5.940 -1.793	57.772 53.651 54.650 54.552 54.741 51.621 51.349 51.181 51.601 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-21.210 -34.347 -29.449 -25.094 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	0.763 -0.842 -1.332 -1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.776 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	-1.151 -0.491 -0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.271 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.555 0.310 0.608 0.438 0.428 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	0.806 -0.056 0.513 0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.578 -0.543 -0.543 -0.673 -0.6686 -0.556	1.511 0.583 1.249 1.013 0.749 0.528 0.432 0.528 0.838 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	1.405 0.494 1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.578 -0.543 -0.543 -0.673 -0.6686 -0.556
5 54.142 6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.117 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-34.657 -30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-0.787 -1.845 -1.898 -1.964 -3.755 -3.716 -3.885 -3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.940 -1.793	53.651 54.650 54.552 54.741 51.621 51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-34.347 -29.449 -25.094 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-0.842 -1.332 -1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	-0.491 -0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.310 0.608 0.438 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.056 0.513 0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.663 -0.663 -0.656	0.583 1.249 1.013 0.749 0.583 0.432 0.528 0.838 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	0.494 1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.743 -0.543 -0.673 -0.673 -0.686 -0.556
6 55.613 7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 3.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-30.057 -25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-1.845 -1.898 -1.964 -3.755 -3.716 -3.885 -3.862 -6.299 -6.225 -6.212 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.940 -1.793	54.650 54.552 54.741 51.621 51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-29.449 -25.094 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-1.332 -1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.776 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	-0.963 -0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.608 0.438 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	0.513 0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.673 -0.666 -0.566	1.249 1.013 0.749 0.583 0.432 0.528 0.838 0.825 0.695 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755	1.091 0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.510 -0.543 -0.543 -0.673 -0.668 -0.556
7 55.385 8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-25.532 -20.687 -35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-1.898 -1.964 -3.755 -3.716 -3.885 -3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.940 -1.793	54.552 54.741 51.621 51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-25.094 -20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-1.524 -2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.776 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	-0.833 -0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.438 0.428 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	0.374 -0.602 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.6686 -0.566	1.013 0.749 0.583 0.432 0.528 0.838 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755	0.913 0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.578 -0.578 -0.578 -0.543 -0.673 -0.673 -0.686 -0.556
8 54.868 9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-20.687 -35.010 -30.233 -25.074 -19.776 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-1.964 -3.755 -3.716 -3.885 -3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	54.741 51.621 51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-20.258 -34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-2.566 -4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.776 -6.623 -6.647 -6.638 -6.638 -6.492 -6.425	-0.126 0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.428 0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.602 -0.375 -0.216 -0.273 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.543 -0.673 -0.686 -0.566	0.749 0.583 0.432 0.528 0.838 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	0.615 -0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556
9 51.484 10 51.407 11 51.385 12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-35.010 -30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-3.755 -3.716 -3.885 -3.862 -6.225 -6.212 -6.212 -6.163 -6.065 -6.038 -6.104 -5.965 -5.940 -5.936 -5.940 -1.793	51.621 51.349 51.181 51.601 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-34.586 -29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-4.130 -3.932 -4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.776 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	0.137 -0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.425 0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.578 -0.578 -0.578 -0.543 -0.543 -0.673 -0.686 -0.556	0.583 0.432 0.528 0.838 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	-0.375 -0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.578 -0.578 -0.578 -0.543 -0.543 -0.673 -0.686 -0.556
10 51.407 11 51.385 12 51.442 13 45.672 14 45.682 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-30.233 -25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-3.716 -3.885 -3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	51.349 51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-29.863 -24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-3.932 -4.158 -4.599 -6.965 -6.825 -6.765 -6.765 -6.776 -6.623 -6.647 -6.638 -6.638 -6.636 -6.492 -6.425	-0.058 -0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.370 0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.673 -0.686 -0.566	0.432 0.528 0.838 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.668 0.627 0.795 0.755 0.605	-0.216 -0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.673 -0.686 -0.556
11 51.385 12 51.442 13 45.672 14 45.62 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-25.074 -19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -35.106 -32.285 -24.231 -18.619 -31.407 -27.481	-3.885 -3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	51.181 51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-24.672 -19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-4.158 -4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.623 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	-0.205 0.158 0.388 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.402 0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.273 -0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.566	0.528 0.838 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	-0.273 -0.737 -0.666 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.673 -0.686 -0.556
12 51.442 13 45.672 14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-19.776 -34.756 -29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-3.862 -6.299 -6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	51.601 46.060 45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.948 33.960 33.902 33.597	-19.410 -34.461 -29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-4.599 -6.965 -6.825 -6.796 -6.765 -6.974 -6.623 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	0.158 0.388 0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.366 0.295 0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556	0.838 0.825 0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	-0.737 -0.666 -0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556
14 45.582 15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-29.442 -24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-6.225 -6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	45.802 45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-29.169 -23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-6.825 -6.796 -6.765 -6.974 -6.623 -6.623 -6.647 -6.638 -6.636 -6.636 -6.492 -6.425	0.220 0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.273 0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556	0.695 0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	-0.601 -0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556
15 45.317 16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-24.191 -18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-6.212 -6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	45.531 45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-23.900 -18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-6.796 -6.765 -6.974 -6.776 -6.623 -6.647 -6.638 -6.638 -6.636 -6.492 -6.425	0.214 0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.291 0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556	0.687 0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	-0.585 -0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556
16 45.141 17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-18.574 -34.310 -29.314 -22.281 -18.060 -35.106 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-6.187 -6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	45.266 40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-18.275 -33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-6.765 -6.974 -6.776 -6.623 -6.647 -6.638 -6.636 -6.492 -6.425	0.125 0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.299 0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556	0.663 0.923 0.803 0.668 0.627 0.795 0.755 0.605	-0.578 -0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556
17 40.280 18 39.849 19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-34.310 -29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-6.163 -6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	40.582 40.120 39.977 39.761 33.848 33.960 33.902 33.597	-33.988 -29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-6.974 -6.776 -6.623 -6.647 -6.638 -6.636 -6.492 -6.492 -6.425	0.302 0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.322 0.258 0.299 0.304 0.197 0.131 0.151	-0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556	0.923 0.803 0.668 0.627 0.795 0.755 0.605	-0.810 -0.710 -0.585 -0.543 -0.673 -0.686 -0.556
18 39.849 19 39.858 20 39.686 21 33.674 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-29.314 -22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-6.065 -6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	40.120 39.977 39.761 33.848 33.960 33.902 33.597	-29.056 -21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-6.776 -6.623 -6.647 -6.638 -6.636 -6.492 -6.492 -6.425	0.271 0.119 0.075 0.374 0.286 0.182 0.097	0.258 0.299 0.304 0.197 0.131 0.151	-0.710 -0.585 -0.543 -0.673 -0.686 -0.556	0.803 0.668 0.627 0.795 0.755 0.605	-0.710 -0.585 -0.543 -0.673 -0.686 -0.556
19 39.858 20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-22.281 -18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-6.038 -6.104 -5.965 -5.949 -5.936 -5.940 -1.793	39.977 39.761 33.848 33.960 33.902 33.597	-21.982 -17.756 -34.909 -30.154 -24.079 -18.421	-6.623 -6.647 -6.638 -6.636 -6.492 -6.425	0.119 0.075 0.374 0.286 0.182 0.097	0.299 0.304 0.197 0.131 0.151	-0.585 -0.543 -0.673 -0.686 -0.556	0.668 0.627 0.795 0.755 0.605	-0.585 -0.543 -0.673 -0.686 -0.556
20 39.686 21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-18.060 -35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-6.104 -5.965 -5.949 -5.936 -5.940 -1.793	39.761 33.848 33.960 33.902 33.597	-17.756 -34.909 -30.154 -24.079 -18.421	-6.647 -6.638 -6.636 -6.492 -6.425	0.075 0.374 0.286 0.182 0.097	0.304 0.197 0.131 0.151	-0.543 -0.673 -0.686 -0.556	0.627 0.795 0.755 0.605	-0.543 -0.673 -0.686 -0.556
21 33.474 22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-35.106 -30.285 -24.231 -18.619 -31.407 -27.481	-5.965 -5.949 -5.936 -5.940 -1.793	33.848 33.960 33.902 33.597	-34.909 -30.154 -24.079 -18.421	-6.638 -6.636 -6.492 -6.425	0.374 0.286 0.182 0.097	0.197 0.131 0.151	-0.673 -0.686 -0.556	0.795 0.755 0.605	-0.673 -0.686 -0.556
22 33.674 23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-30.285 -24.231 -18.619 -31.407 -27.481	-5.949 -5.936 -5.940 -1.793	33.960 33.902 33.597	-30.154 -24.079 -18.421	-6.636 -6.492 -6.425	0.286 0.182 0.097	0.131 0.151	-0.686 -0.556	0.755 0.605	-0.686 -0.556
23 33.719 24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-24.231 -18.619 -31.407 -27.481	-5.936 -5.940 -1.793	33.902 33.597	-24.079 -18.421	-6.492 -6.425	0.182 0.097	0.151	-0.556	0.605	-0.556
24 33.500 25 26.894 26 26.955 27 26.828 28 26.767	-18.619 -31.407 -27.481	-1.793			-6.425	0.097	0.198	-0.485		0.405
26 26.955 27 26.828 28 26.767	-27.481		27.178	-31.323	-2.329	0.285		0.400	0.533	-0.485
27 26.828 28 26.767						0.200	0.083	-0.536	0.613	-0.536
28 26.767	-24.226	-1.759	27.212	-27.369	-2.263	0.257	0.112	-0.504	0.577	-0.504
		-1.756	27.091	-24.199	-2.231	0.263	0.027	-0.475	0.543	-0.475
Note: Crush column is	-19.307	-1.752	26.909	-19.240	-2.218	0.142	0.067	-0.466	0.492	-0.466
Note: Crush column is										2
	$ \begin{array}{c} 1 & 2 \\ 5 & 10 \\ 13 & 14 \\ 17 & 18 \\ 22 \\ 25 & 2 \end{array} $	19 2	6 20 4	ASHBO	ARD				DC	JOR

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-7

		x	Y	z	X	Y	Z'	ΔX	ΔΥ	ΔZ	Total ∆	Crush
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	12.411	-25.051	27.691	13.292	-23.867	27.702	0.881	1.184	0.011	1.476	1.476
Ŧ	2	14.357	-16.028	25.402	14.936	-14.849	25.373	0.579	1.180	-0.029	1.314	1.314
DASH	3	11.151 9.984	-6.412 -25.410	24.989 12.896	11.450 11.010	-5.261	24.962	0.299	1.151 1.083	-0.027	1.189 1.492	1.189
Ď	5	11.052	-25.410	12.896	11.764	-24.327 -15.523	12.888 12.226	1.026 0.712	1.118	0.008	1.326	1.492
	6	8.549	-6.589	13.220	8.920	-5.611	13.216	0.371	0.978	-0.004	1.046	1.046
	7	21.988	-38.766	5.024	23.545	-36.878	5.232	1.557	1.888	0.208	2.456	1.888
SIDE PANEL	8	21.900	-38.632	0.837	23.040	-36.648	1.062	1.599	1.984	0.208	2.456	1.984
PAI	9	25.142	-38.727	4.506	26.657	-36.742	4.717	1.535	1.986	0.212	2.506	1.986
	10	-13.495	-40.512	21.402	-11.633	-41.736	21.164	1.862	-1.223	-0.238	2.240	-1.223
IMPACT SIDE DOOR	11	-0.759	-40.266	21.210	1.015	-40.477	21.189	1.774	-0.211	-0.021	1.787	-0.211
S R	12	12.503	-40.136	21.004	14.303	-39.251	21.066	1.800	0.885	0.062	2.007	0.885
5 Q	13	-8.632	-41.873	2.699	-6.523	-41.535	2.513	2.109	0.339	-0.186	2.144	0.339
JP/	14	-0.394	-41.987	2.314	1.723	-41.187	2.217	2.117	0.801	-0.097	2.266	0.801
≤	15	7.151	-41.820	-0.018	9.147	-40.444	-0.006	1.996	1.376	0.013	2.424	1.376
	16	3.994	-28.835	40.601	5.289	-27.810	40.611	1.295	1.024	0.010	1.651	0.010
	17	5.843	-21.619	40.820	6.837	-20.482	40.845	0.995	1.137	0.025	1.511	0.025
	18	6.601	-17.116	40.889	7.337	-15.937	40.952	0.735	1.179	0.063	1.391	0.063
	19	7.170	-10.433	41.010	7.741	-9.227	41.014	0.571	1.206	0.005	1.334	0.005
	20	7.222	-6.659	41.031	7.582	-5.434	41.058	0.360	1.226	0.027	1.278	0.027
	21	-3.518	-29.028	43.553	-2.184	-28.224	43.504	1.334	0.805	-0.049	1.559	-0.049
ROOF	22	-2.604	-21.671	44.037	-1.603	-20.825	43.992	1.001	0.846	-0.045	1.312	-0.045
õ	23 24	-2.061	-16.954	44.197	-1.168 -0.920	-16.123	44.122	0.893	0.831	-0.076 -0.055	1.222	-0.076
	24	-1.624 -1.336	-13.172 -7.360	44.253 44.285	-0.920	-12.274 -6.441	44.198 44.241	0.705 0.418	0.898 0.919	-0.055	1.143	-0.055 -0.044
	26	-7.096	-28.187	44.115	-5.796	-27.575	44.035	1.299	0.612	-0.044	1.438	-0.044
	27	-6.350	-21.357	44.538	-5.286	-20.723	44.460	1.064	0.635	-0.078	1.241	-0.078
	28	-5.752	-16.472	44.703	-4.970	-15.816	44.636	0.782	0.655	-0.066	1.022	-0.066
	29	-5.267	-12.626	44.763	-4.636	-11.942	44.693	0.630	0.684	-0.070	0.933	-0.070
	30	-4.952	-7.164	44.785	-4.533	-6.414	44.719	0.419	0.750	-0.066	0.862	-0.066
~	31	4.154	-34.017	38.358	5.571	-32.917	38.391	1.417	1.101	0.033	1.795	1.101
A PILLAR	32	9.152	-35.100	35.621	10.625	-33.814	35.665	1.473	1.286	0.044	1.956	1.286
יובו	33	15.181	-36.383	31.468	16.795	-34.890	31.541	1.614	1.494	0.073	2.201	1.494
<u> </u>	34	19.063	-37.176	28.404	20.741	-35.540	28.542	1.677	1.636	0.137	2.347	1.636
	35	-22.919	-38.621	21.202	-20.539	-38.450	21.059	2.380	0.171	-0.142	2.390	0.171
с	36	-19.309	-38.559	21.398	-16.944	-38.206	21.280	2.365	0.353	-0.118	2.394	0.353
B PILLAR	37	-23.146	-37.942	27.538	-20.876	-37.800	27.463	2.270	0.143	-0.076	2.276	0.143
F	38	-20.098	-37.972	27.066	-17.810	-37.703	26.948	2.289	0.269	-0.118	2.307	0.269
830-534	39	-23.927	-34.091	39.069	-21.929	-34.104	38.860	1.998	-0.013	-0.209	2.009	-0.013
	40	-21.029	-33.945	39.390	-19.046	-33.793	39.285	1.983	0.152	-0.105	1.992	0.152

Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-7

						RUSH - SET	-				-	
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)	Crush (in.)
	1	40.050	-24.777	28.462	40.842	-24.635	28.051	0.791	0.142	-0.411	0.903	0.903
Т	2	41.903 38.670	-15.809 -6.148	26.156	42.527 39.082	-15.661 -6.017	25.744 25.534	0.624	0.148	-0.412 -0.339	0.762	0.762
DASH	4	36.670	-0.148	25.873 13.786	39.082	-0.017	13.364	0.412	0.132	-0.339	0.935	0.935
	5	38.242	-16.346	13.129	38.900	-16.116	12.641	0.657	0.234	-0.422	0.850	0.850
	6	35.750	-6.334	14.251	36.166	-6.181	13.907	0.417	0.153	-0.344	0.562	0.562
	7	49.104	-38.396	5.472	50.118	-37.482	5.072	1.014	0.914	-0.400	1.422	0.914
SIDE	8	49.310	-38.243	1.325	50.349	-37.213	0.896	1.038	1.029	-0.428	1.524	1.029
PA	9	52.176	-38.347	4.902	53.251	-37.361	4.409	1.075	0.986	-0.494	1.540	0.986
ш	10	14.004	-40.315	22.800	15.142	-42.245	22.340	1.138	-1.930	-0.460	2.287	-1.930
IMPACT SIDE DOOR	11	26.752	-40.037	22.269	27.867	-41.216	21.780	1.115	-1.179	-0.489	1.695	-1.179
ЕĞ	12	40.032	-39.891	21.698	41.084	-40.217	21.207	1.052	-0.325	-0.491	1.206	-0.325
DO	13	18.454	-41.571	3.998	19.570	-41.950	3.481	1.116	-0.379	-0.517	1.287	-0.379
MР	14	26.659	-41.669	3.342	27.720	-41.741	2.801	1.061	-0.072	-0.541	1.193	-0.072
-	15	34.040	-41.475	0.915	35.202	-41.096	0.312	1.162	0.379	-0.603	1.363	0.379
	16	31.959	-28.706	41.604	32.946	-28.843	41.199	0.987	-0.137	-0.405	1.076	-0.405
	17	33.808	-21.526	41.796	34.634	-21.556	41.446	0.826	-0.031	-0.350	0.898	-0.350
	18 19	34.557 35.108	-16.991 -10.278	41.869 42.013	35.601 35.997	-16.648	41.560 41.709	1.044	0.343	-0.309	1.142 0.974	-0.309
	20	35.108	-6.506	42.013	35.997	-6.214	41.709	0.889	0.297	-0.303	0.899	-0.303
	20	24.565	-28.843	44.746	26.045	-28.971	44.341	1.480	-0.128	-0.405	1.540	-0.200
iu:	22	25.433	-21.484	45.248	26.684	-21.549	44.890	1.251	-0.065	-0.358	1.303	-0.358
ROOF	23	25.971	-16.836	45.413	27.162	-16.898	45.050	1.191	-0.062	-0.363	1.247	-0.363
R	24	26.454	-13.079	45.463	27.432	-13.078	45.157	0.978	0.001	-0.306	1.025	-0.306
	25	26.643	-7.275	45.533	27.496	-7.261	45.257	0.853	0.014	-0.275	0.897	-0.275
	26	21.073	-28.169	45.379	22.507	-28.326	44.996	1.434	-0.157	-0.383	1.492	-0.383
	27	21.782	-21.245	45.833	22.992	-21.383	45.494	1.210	-0.138	-0.339	1.264	-0.339
	28	22.312	-16.343	46.013	23.367	-16.620	45.702	1.055	-0.277	-0.311	1.134	-0.311
	29	22.875	-12.529	46.066	23.786	-12.653	45.781	0.912	-0.124	-0.284	0.963	-0.284
	30	23.109	-7.024	46.118	23.837	-7.135	45.871	0.728	-0.111	-0.247	0.777	-0.247
Ц	31	32.076 37.040	-33.838 -34.905	39.304	33.745 38.724	-33.579 -34.467	38.829	1.669	0.259	-0.474	1.754	0.259
A PILLAR	32 33	42.909	-34.905	36.402 32.164	38.724 44.712	-34.467 -35.510	35.942 31.574	1.684 1.803	0.438 0.641	-0.460 -0.590	1.800 2.002	0.438 0.641
Ы	34	46.656	-36.907	29.022	48.492	-36.134	28.493	1.836	0.773	-0.530	2.002	0.773
	35	4.549	-38.446	22.862	6.434	-38.869	22.425	1.885	-0.423	-0.437	1.980	-0.423
	36	8.191	-38.376	22.002	9.997	-38.682	22.531	1.806	-0.306	-0.440	1.884	-0.425
AR	37	4.515	-37.781	29.302	6.419	-38.306	28.812	1.905	-0.525	-0.490	2.036	-0.525
B PILLAR	38	7.546	-37.809	28.701	9.416	-38.227	28.243	1.871	-0.418	-0.458	1.971	-0.418
с.	39	4.052	-34.006	40.765	5.817	-34.694	40.379	1.765	-0.688	-0.385	1.933	-0.688
	40	6.879	-33.847	41.044	8.633	-34.448	40.656	1.754	-0.601	-0.387	1.895	-0.601
ote: Cru	sh column i	s deformatio	n perpendic	ular to the p	plane area	of interest						

Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-7

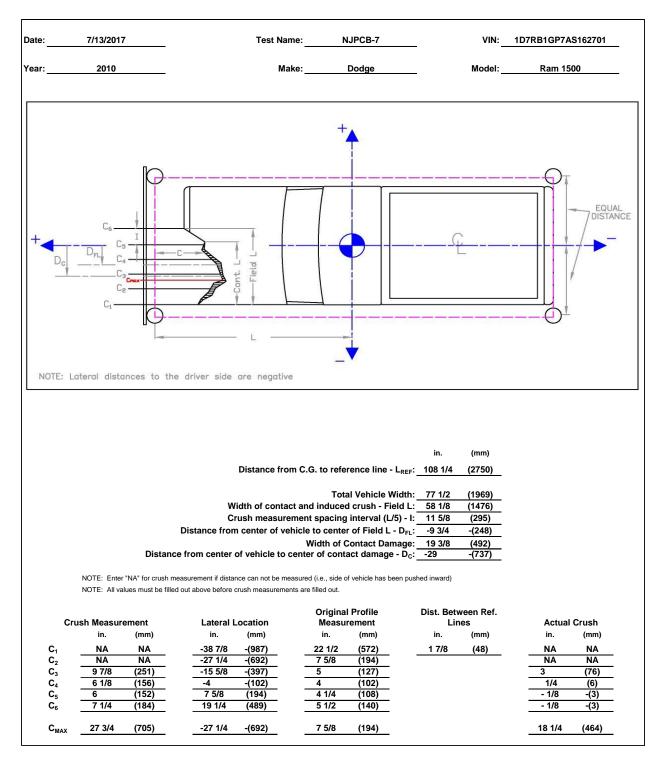


Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-7

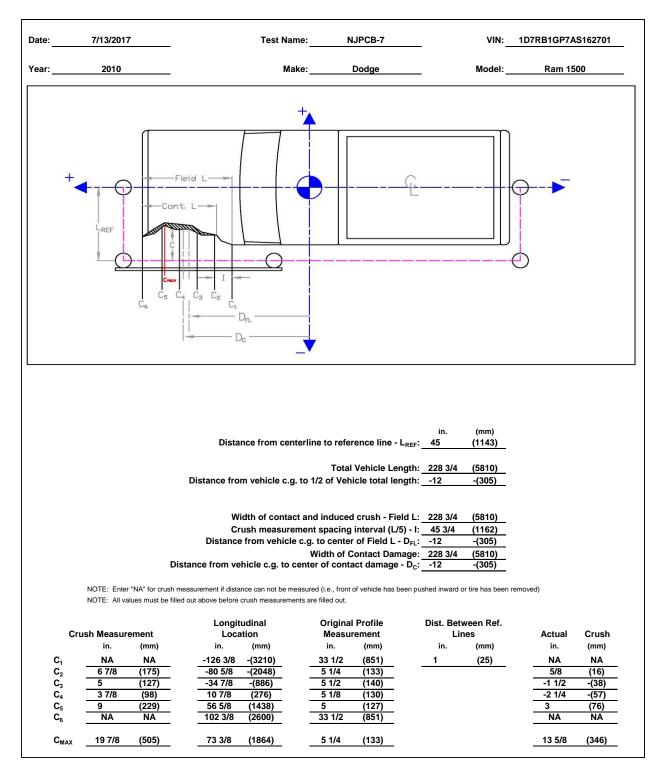


Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-7

Appendix F. Accelerometer and Rate Transducer Data Plots

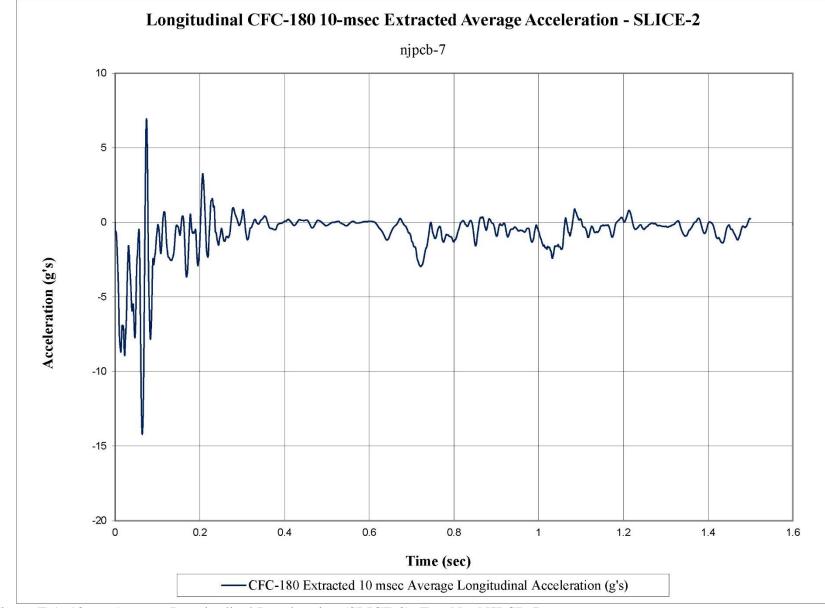


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-7

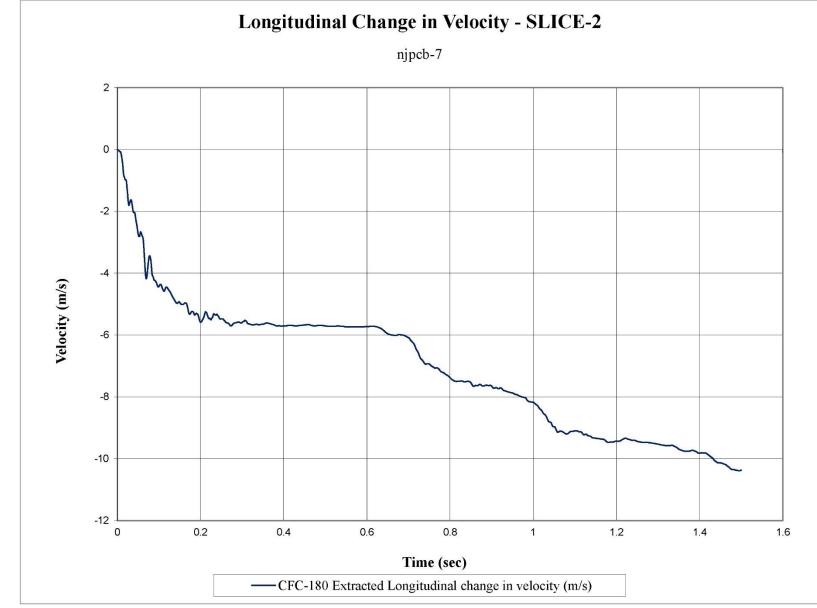


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-7

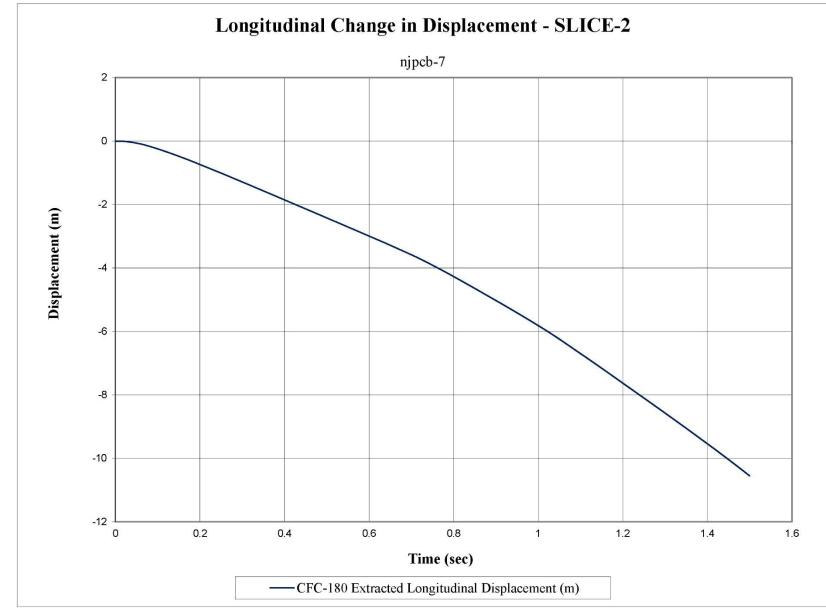


Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-7

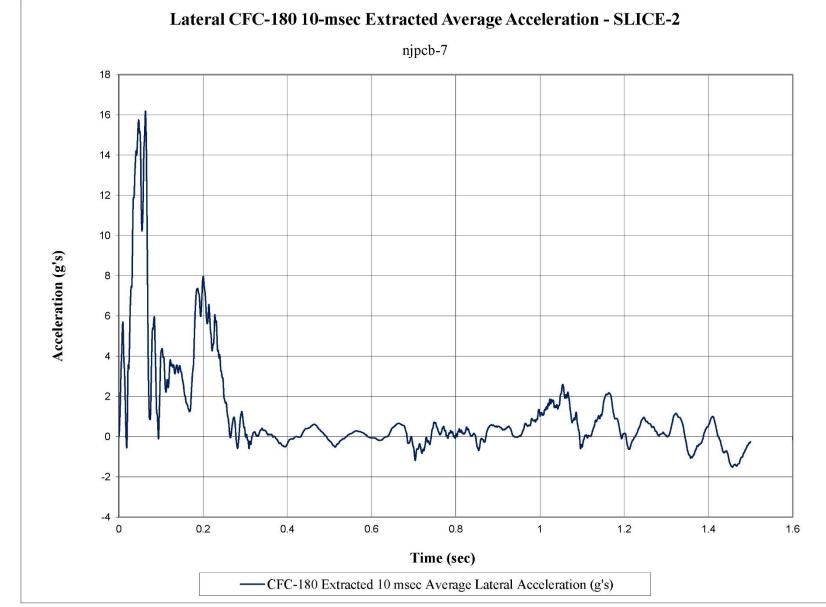


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-7

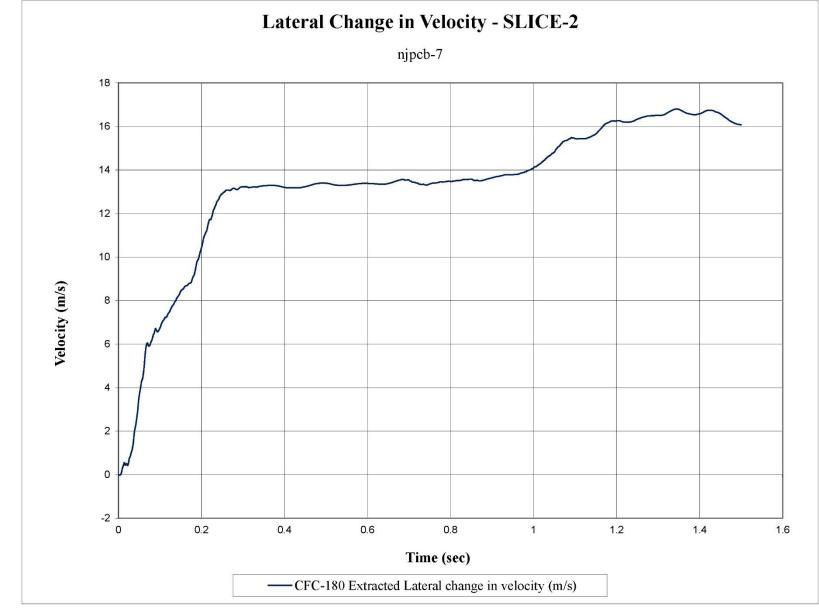


Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-7

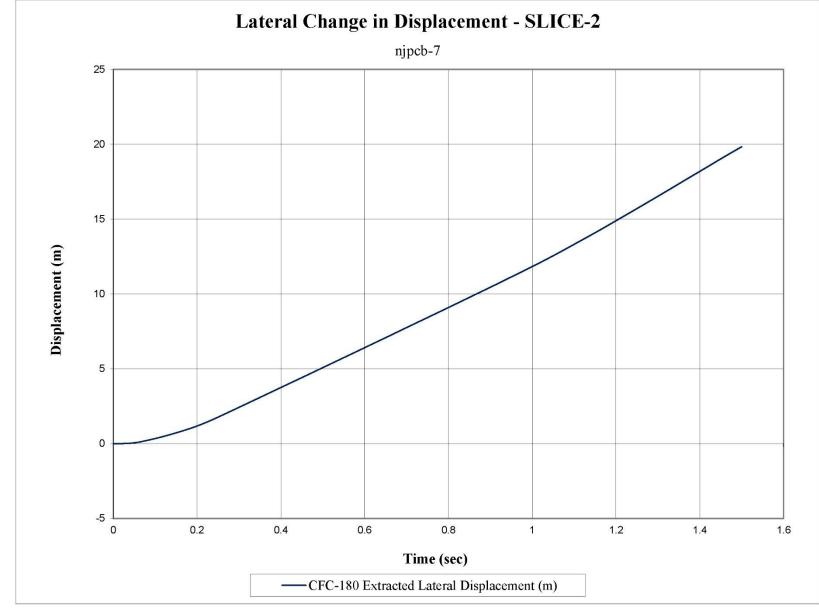


Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-7

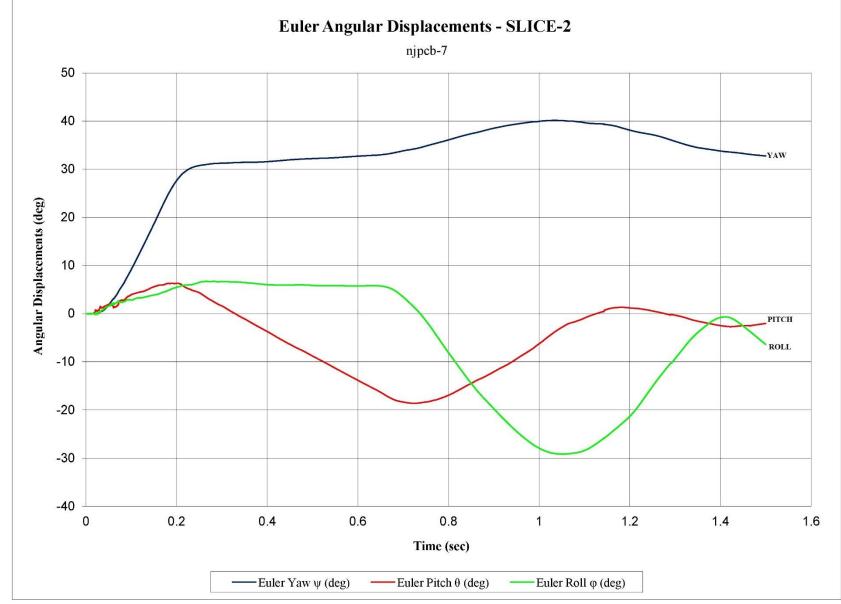


Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-7

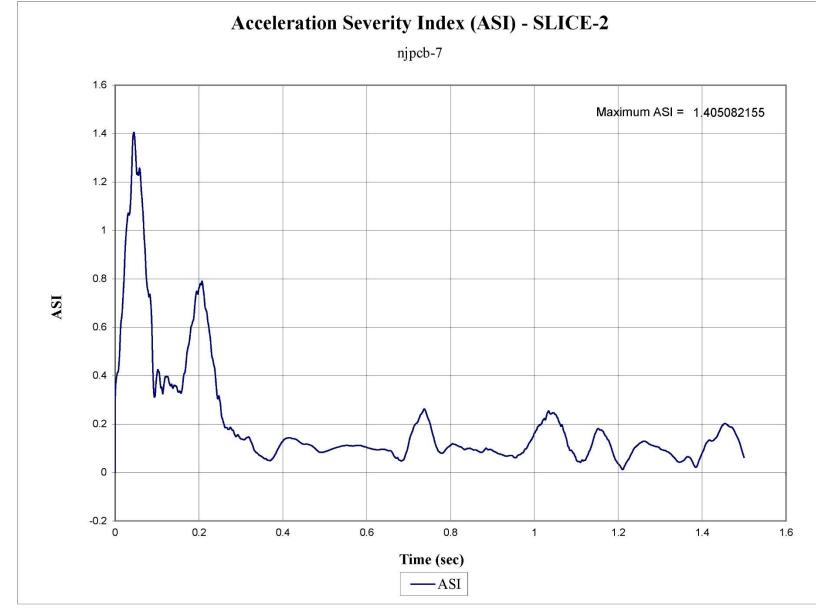


Figure F-8. Acceleration Severity Index (SLICE-2), Test No. NJPCB-7

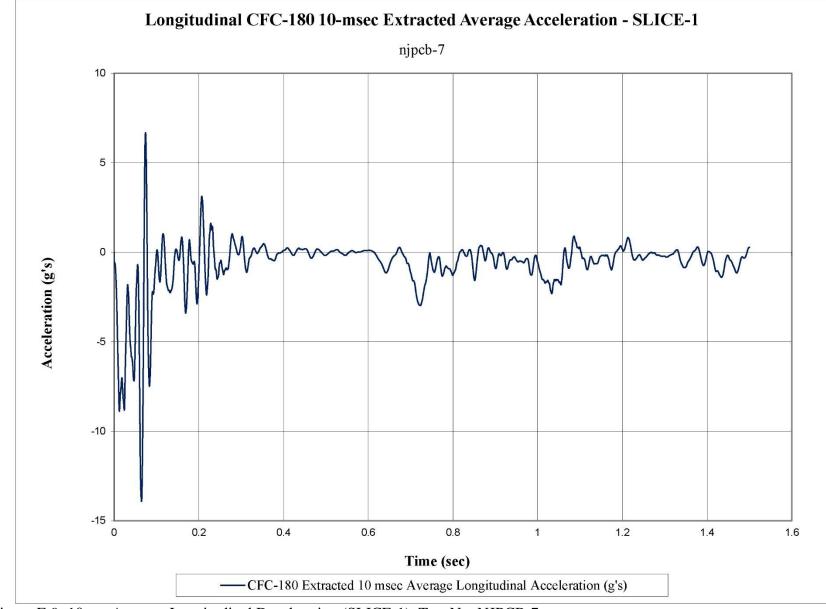


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-7

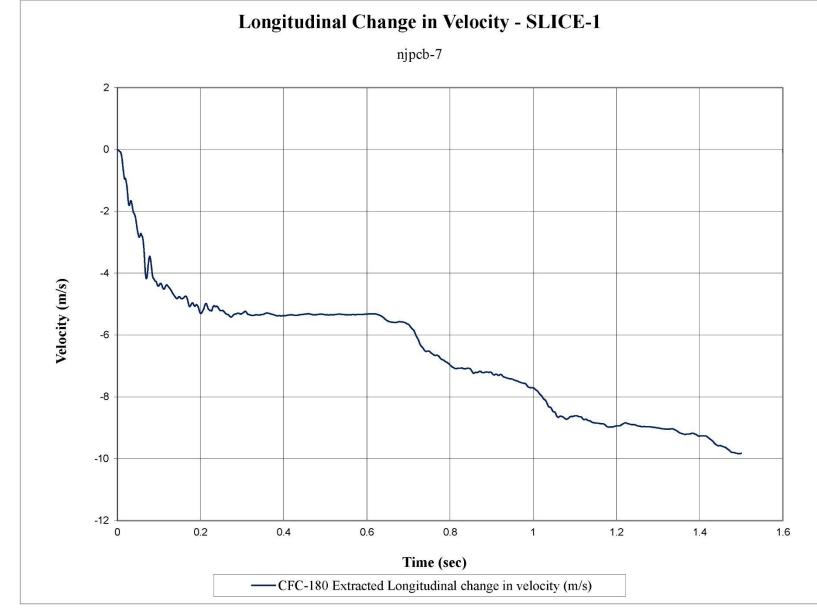


Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-7

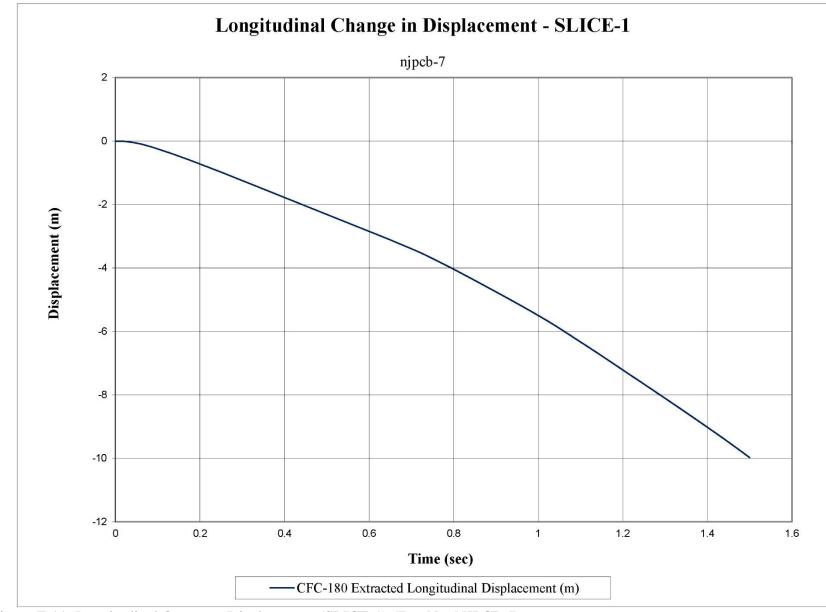


Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-7

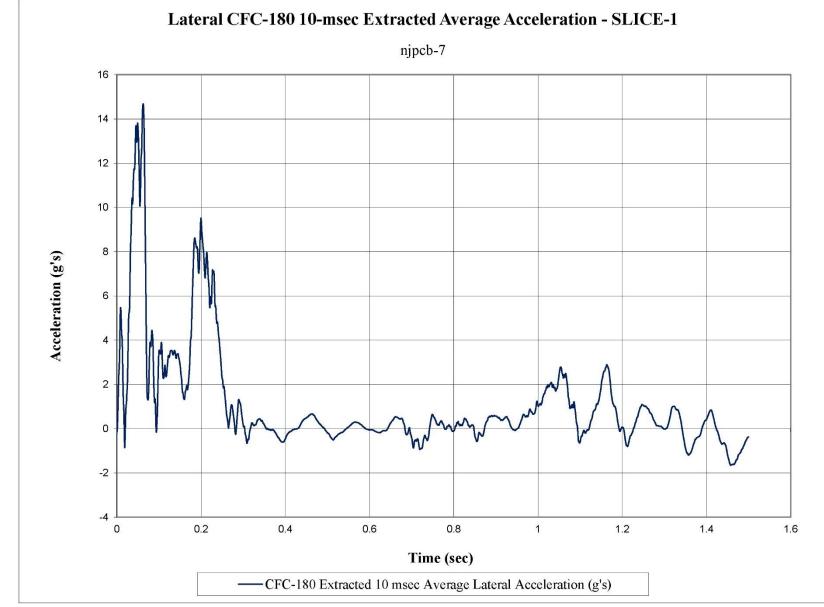


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-7

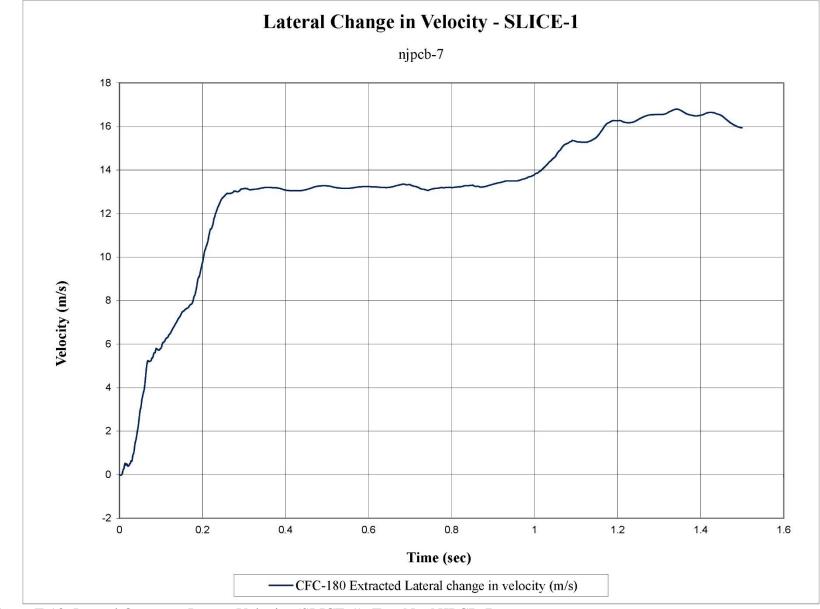


Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-7

Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-7

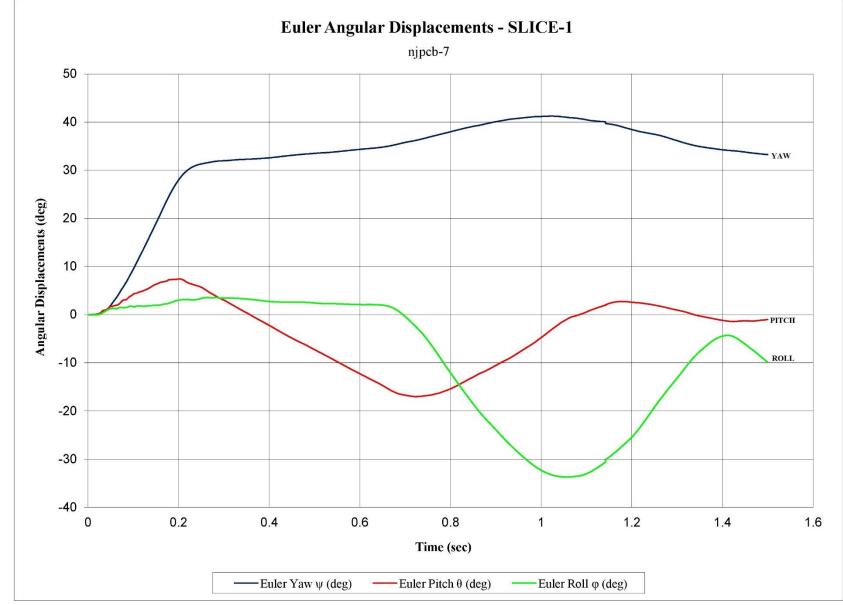


Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-7

122

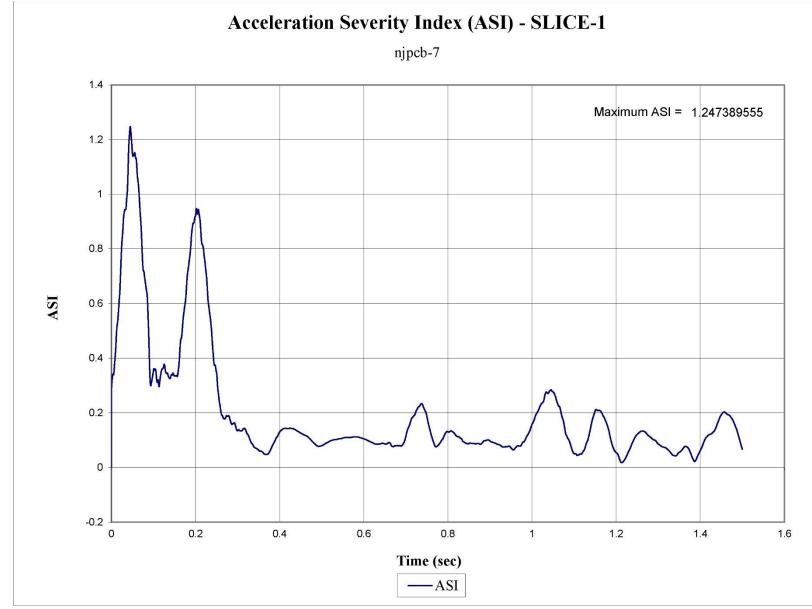


Figure F-16. Acceleration Severity Index (SLICE-1), Test No. NJPCB-7

END OF DOCUMENT