





Research Project Number TPF-5(193) Supplement #88

# PERFORMANCE EVALUATION OF NEW JERSEY'S PORTABLE CONCRETE BARRIER WITH A FREE-STANDING CONFIGURATION –

# **TEST NO. NJPCB-3**

Submitted by

Surajkumar K. Bhakta, M.S.M.E. Former Graduate Research Assistant Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

Ronald K. Faller, Ph.D., P.E. Research Professor MwRSF Director John D. Reid, Ph.D. Professor

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Erin L. Urbank, B.A. Research Communication Specialist

# MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36<sup>th</sup> Street Lincoln, Nebraska 68524

Submitted to

# NEW JERSEY DEPARTMENT OF TRANSPORTATION

1035 Parkway Avenue, Trenton, New Jersey 08625

MwRSF Research Report No. TRP-03-355-18

December 11, 2018

# TECHNICAL REPORT DOCUMENTATION PAGE

| 1. Report No.<br>TRP-03-355-18                                                                                             | 2.                                         |                                                                    | 3. Recipient's Accession No.                                                            |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 4. Title and Subtitle                                                                                                      |                                            |                                                                    | 5. Report Date                                                                          |
| Performance Evaluation of New Jersey's Portable Concrete Barrier with a Free-<br>Standing Configuration – Test No. NIPCB 3 |                                            | December 11, 2018                                                  |                                                                                         |
|                                                                                                                            | 6.                                         |                                                                    |                                                                                         |
| 7. Author(s)                                                                                                               |                                            |                                                                    | 8. Performing Organization Report No.                                                   |
| Bhakta, S.K., Lechtenberg, K.A., Faller, R.K., Reid, J.D., Bielenberg, R.W., and Urbank, E.L.                              |                                            |                                                                    | TRP-03-355-18                                                                           |
| 9. Performing Organization Name and Address<br>Midwest Roadside Safety Facility (MwRSF)                                    |                                            |                                                                    |                                                                                         |
| Nebraska Transportation Center<br>University of Nebraska-Lincoln                                                           |                                            |                                                                    |                                                                                         |
| Main Office:                                                                                                               |                                            | Outdoor Test Site:                                                 | 11. Contract © or Grant (G) No.                                                         |
| Room 130, 2200 Vine Street                                                                                                 | w nittler School                           | Lincoln, Nebraska 68524                                            | TPF-5(193) Supplement #88                                                               |
| Lincoln, Nebraska 68583-0853                                                                                               | a and Address                              |                                                                    | 12 Tune of Deport and Deriod Coursed                                                    |
| New Jersey Department of Transp                                                                                            | portation                                  |                                                                    | Final Report: 2015 -2018                                                                |
| 1035 Parkway Avenue<br>Trenton, New Jersey 08625                                                                           |                                            |                                                                    | 14. Sponsoring Agency Code                                                              |
| 15 Sumplanantana Natar                                                                                                     |                                            |                                                                    |                                                                                         |
| Prepared in cooperation with U.S.                                                                                          | . Department of Tra                        | ansportation, Federal Highway                                      | Administration.                                                                         |
| 16. Abstract                                                                                                               |                                            |                                                                    |                                                                                         |
| This report documents a full-s<br>Department of Transportation's (1                                                        | scale crash test cone<br>NJDOT's) Precast  | ducted in support of a study to i<br>Concrete Curb, Construction E | nvestigate the performance of New Jersey<br>Barrier, which will be referred as portable |
| concrete barrier (PCB) in various                                                                                          | configurations. Th                         | is represents the third system a                                   | is part of this study.                                                                  |
| (Alternative B) with a free-stand                                                                                          | ling configuration,                        | corresponding to joint class                                       | A in the 2013 NJDOT <i>Roadway Design</i>                                               |
| <i>Manual</i> and connection type A i                                                                                      | n the 2015 NJDO                            | Γ Roadway Design Manual. E                                         | Barrier nos. 1 and 10 were anchored to a                                                |
| pins inserted into 1 <sup>1</sup> / <sub>4</sub> -in. (32-mm)                                                              | ) diameter drilled h                       | noles in the concrete tarmac. T                                    | he barrier was evaluated according to the                                               |
| Test Level 3 (TL-3) criteria set for                                                                                       | th in the Manual fo                        | r Assessing Safety Hardware (N                                     | MASH 2009). The research study included                                                 |
| performance of the system was d                                                                                            | letermined to be a                         | cceptable according to the test                                    | t designation no. 3-11 evaluation criteria                                              |
| specified in MASH 2009. The 1<br>successfully met MASH 2009 TL                                                             | 100C small car cr<br>-3 criteria. This rer | ash test was deemed unnecess                                       | sary due to previous testing. The barrier                                               |

| successfully filet MASH 2009 TL                                                                                                          | -5 criteria. This report is the unit of                                                            | i line documents in the line                                                                 | e-lest series.                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 17. Document Analysis/Descripto<br>Highway Safety, Roadside Appur<br>Test, MASH 2009, Longitudinal I<br>PCB, Free-standing, Pinned, Barr | rs<br>tenances, Crash Test, Compliance<br>Barrier, Portable Concrete Barrier,<br>ier Curb, and PCB | 18. Availability Statement<br>No restrictions. Documen<br>Technical Information Ser<br>22161 | t<br>t available from: National<br>rvices, Springfield, Virginia |
| 19. Security Class (this report)<br>Unclassified                                                                                         | 20. Security Class (this page)<br>Unclassified                                                     | 21. No. of Pages<br>118                                                                      | 22. Price                                                        |

#### **DISCLAIMER STATEMENT**

This report was completed with funding from the New Jersey Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

#### UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

# INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Jennifer Schmidt, Research Assistant Professor.

# ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) New Jersey Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

# Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Assistant Director – Physical Testing Division
J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
C.S. Stolle, Ph.D., Research Assistant Professor
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer
M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate
S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
E.W. Krier, B.S., Construction and Testing Technician II
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
M.A. Rasmussen, Construction and Testing Technician I
M.T. Ramel, B.S.C.M., former Construction and Testing Technician I
J.E. Kohtz, B.S.M.E., CAD Technician
Undergraduate and Graduate Research Assistants

# New Jersey Department of Transportation

Dave Bizuga, former Senior Executive Manager, Roadway Design Group 1 Giri Venkiteela, Research Project Manager, NJDOT Bureau of Research Hung Tang, Design Standards Bureau, Roadway Standards Unit Lee Steiner, Project Engineer, Bureau of Traffic Engineering

# TABLE OF CONTENTS

| TECHNICAL REPORT DOCUMENTATION PAGE                                                             | i                                                              |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| DISCLAIMER STATEMENT                                                                            | ii                                                             |
| UNCERTAINTY OF MEASUREMENT STATEMENT                                                            | ii                                                             |
| INDEPENDENT APPROVING AUTHORITY                                                                 | ii                                                             |
| ACKNOWLEDGEMENTS                                                                                | iii                                                            |
| TABLE OF CONTENTS                                                                               | iv                                                             |
| LIST OF FIGURES                                                                                 | vi                                                             |
| LIST OF TABLES                                                                                  | . viii                                                         |
| 1 INTRODUCTION<br>1.1 Background<br>1.2 Objective<br>1.3 Scope                                  | 1<br>1<br>2<br>2                                               |
| 2 TEST REQUIREMENTS AND EVALUATION CRITERIA<br>2.1 Test Requirements<br>2.2 Evaluation Criteria | 3<br>3<br>4                                                    |
| 3 DESIGN DETAILS                                                                                | 6                                                              |
| <ul> <li>4 TEST CONDITIONS.</li> <li>4.1 Test Facility</li></ul>                                | 24<br>24<br>24<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>29 |
| <ul> <li>5 FULL-SCALE CRASH TEST NO. NJPCB-3</li></ul>                                          | 31<br>31<br>33<br>33<br>34<br>36<br>36                         |

| 7 COMPARISON TO | D TEST NO. NYTCB-2                                           | 53     |
|-----------------|--------------------------------------------------------------|--------|
| 8 MASH IMPLEME  | NTATION                                                      | 56     |
| 9 REFERENCES    |                                                              | 59     |
| 10 APPENDICES   |                                                              | 61     |
| Appendix A.     | NJDOT PCB Standard Plans                                     |        |
| Appendix B.     | Material Specifications                                      |        |
| Appendix C.     | Concrete Tarmac Strength                                     | 89     |
| Appendix D.     | Vehicle Center of Gravity Determination                      |        |
| Appendix E.     | Deformation Records                                          |        |
| Appendix F.     | Accelerometer and Rate Transducer Data Plots, Test No. NJPCB | -3 101 |

# LIST OF FIGURES

| Figure 1. Test Installation Layout, Test No. NJPCB-3                                | 7  |
|-------------------------------------------------------------------------------------|----|
| Figure 2. PCB Pin Anchor Details, Test No. NJPCB-3                                  | 8  |
| Figure 3. PCB Pin Anchor Locations, Test No. NJPCB-3                                | 9  |
| Figure 4. PCB Details, Test No. NJPCB-3                                             | 10 |
| Figure 5. PCB Reinforcement Details, Test No. NJPCB-3                               | 11 |
| Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-3                    | 12 |
| Figure 7. PCB Connection Key Assembly Details, Test No. NJPCB-3                     | 13 |
| Figure 8. PCB Connection Key Component Details, Test No. NJPCB-3                    | 14 |
| Figure 9. PCB Connection Socket Details, Test No. NJPCB-3                           | 15 |
| Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-3                | 16 |
| Figure 11. Connection Key Placement Details, Test No. NJPCB-3                       | 17 |
| Figure 12. PCB Reinforcement Details, Test No. NJPCB-3                              | 18 |
| Figure 13. General Notes, Test No. NJPCB-3                                          | 19 |
| Figure 14. Bill of Materials, Test No. NJPCB-3                                      | 20 |
| Figure 15. NJDOT PCB with Free-Standing Configuration Test Installation, Test No.   |    |
| NJPCB-3                                                                             | 21 |
| Figure 16. PCB Connection Key and Connection Socket, Test No. NJPCB-3               | 22 |
| Figure 17. PCB Pin Anchor Recesses (Barrier Nos. 1 and 10), Test No. NJPCB-3        | 23 |
| Figure 18. Test Vehicle, Test No. NJPCB-3                                           | 25 |
| Figure 19. Vehicle Dimensions, Test No. NJPCB-3                                     | 26 |
| Figure 20. Target Geometry, Test No. NJPCB-3                                        | 27 |
| Figure 21. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-3            | 30 |
| Figure 22. Permanent Set Deflection, Dynamic Deflection and Working Width, Test No. |    |
| NJPCB-3                                                                             | 34 |
| Figure 23. Summary of Test Results and Sequential Photographs, Test No. NJPCB-3     | 37 |
| Figure 24. Additional Sequential Photographs, Test No. NJPCB-3                      | 38 |
| Figure 25. Additional Sequential Photographs, Test No. NJPCB-3                      | 39 |
| Figure 26. Documentary Photographs, Test No. NJPCB-3                                | 40 |
| Figure 27. Impact Location, Test No. NJPCB-3                                        | 41 |
| Figure 28. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-3            | 42 |
| Figure 29. System Damage – Front, Back, Upstream, and Downstream views, Test No.    |    |
| NJPCB-3                                                                             | 43 |
| Figure 30. Barrier No. 3 Traffic-side and Back-side Damage, Test No. NJPCB-3        | 44 |
| Figure 31. Barrier Nos. 4 and 5 Damage, Test No. NJPCB-3                            | 45 |
| Figure 32. Barrier No. 5 Damage, Test No. NJPCB-3                                   | 46 |
| Figure 33. Vehicle Damage, Test No. NJPCB-3                                         | 47 |
| Figure 34. Vehicle Damage on Impact Side, Test No. NJPCB-3                          | 48 |
| Figure 35. Occupant Compartment Deformation, Test No. NJPCB-3                       | 49 |
| Figure 36. Undercarriage Deformations, Test No. NJPCB-3                             | 50 |
| Figure 37. Deflection Comparisons – Test Nos. NJPCB-3, NJPCB-4, and NYTCB-2         |    |
| Figure A-1. NJDOT PCB Standard Plans                                                | 63 |
| Figure A-2. NJDOT PCB Standard Plans                                                | 64 |
| Figure A-3. NJDOT PCB Standard Plans                                                | 65 |
| Figure A-4. NJDOT PCB Standard Plans                                                | 66 |
| Figure A-5. NJDOT PCB Standard Plans                                                | 67 |

| Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-3                                    | 70  |
|---------------------------------------------------------------------------------------------------------------|-----|
| Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-3                                                | 71  |
| Figure B-4. Rebar No. 4 Material Certificate, Test No. NJPCB-3                                                | 72  |
| Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-3                                                | 73  |
| Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-3                                                | 74  |
| Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-3                                                | 75  |
| Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-3                                                | 76  |
| Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-3                                                | 77  |
| Figure B-10. Rebar No. 6 Material Certificate, Test No. NJPCB-3                                               | 78  |
| Figure B-11. Rebar No. 6 Material Certificate, Test No. NJPCB-3                                               | 79  |
| Figure B-12. Steel Tube Material Certificate, Test No. NJPCB-3                                                | 80  |
| Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-3                                                | 81  |
| Figure B-14. Steel Tube Material Certificate, Test No. NJPCB-3                                                | 82  |
| Figure B-15. Steel Tube Material Test Certificate, Test No. NJPCB-3                                           | 83  |
| Figure B-16. Steel Tube Material Certificate, Test No. NJPCB-3                                                | 84  |
| Figure B-17. Steel Tube Material Certificate, Test No. NJPCB-3                                                | 85  |
| Figure B-18. 2-in. × <sup>1</sup> / <sub>4</sub> -in. (51-mm × 6-mm) Bent Steel Plate, Test No. NJPCB-3       | 86  |
| Figure B-19. <sup>1</sup> / <sub>2</sub> -in. (13-mm) Thick Steel Plate Material Certificate                  | 87  |
| Figure B-20. <sup>1</sup> / <sub>2</sub> -in (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-3 | 88  |
| Figure C-1. Concrete Tarmac Strength Test, Test No. NJPCB-3                                                   | 90  |
| Figure C-2. Concrete Tarmac Strength Test, Test No. NJPCB-3                                                   | 91  |
| Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-3                                                       | 93  |
| Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-3                                              | 95  |
| Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-3                                              | 96  |
| Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-3                                   | 97  |
| Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-3                                   | 98  |
| Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-3                                           | 99  |
| Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-3                                            | 100 |
| Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-3                               | 102 |
| Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-3                                 | 103 |
| Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-3                                    | 104 |
| Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-3                                    | 105 |
| Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-3                                      | 106 |
| Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-3                                         | 107 |
| Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-3                                         | 108 |
| Figure F-8. Acceleration Severity Index (SLICE-1), Test No. NJPCB-3                                           | 109 |
| Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-3                               | 110 |
| Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-3                                | 111 |
| Figure F-11. Longitudinal Occupant Displacement (SLICE-2). Test No. NJPCB-3                                   | 112 |
| Figure F-12, 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-3                                   | 113 |
| Figure F-13. Lateral Occupant Impact Velocity (SLICE-2). Test No. NJPCB-3                                     | 114 |
| Figure F-14. Lateral Occupant Displacement (SLICE-2). Test No. NJPCB-3.                                       | 115 |
| Figure F-15. Vehicle Angular Displacements (SLICE-2). Test No. NJPCB-3                                        | 116 |
| Figure F-16. Acceleration Severity Index (SLICE-2). Test No. NJPCB-3                                          | 117 |
|                                                                                                               |     |

# LIST OF TABLES

| Table 1. 2013 NJDOT Roadway Design Manual PCB Guidance [1]                | 1  |
|---------------------------------------------------------------------------|----|
| Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]        | 1  |
| Table 3. MASH 2009 TL-3 Crash Test Conditions for Longitudinal Barriers   | 3  |
| Table 4. MASH 2009 Evaluation Criteria for Longitudinal Barriers          | 5  |
| Table 5. Weather Conditions, Test No. NJPCB-3                             | 31 |
| Table 6. Sequential Description of Impact Events, Test No. NJPCB-3        | 31 |
| Table 7. Maximum Occupant Compartment Deformations by Location            | 35 |
| Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-3 | 36 |
| Table 9. Summary of Safety Performance Evaluation                         | 52 |
| Table 10. Comparison of Free-Standing Systems                             | 54 |
| Table B-1. Bill of Materials, Test No. NJPCB-3                            | 69 |

# **1 INTRODUCTION**

# **1.1 Background**

The New Jersey Department of Transportation (NJDOT) currently uses a New Jersey shape, Precast Concrete Curb, Concrete Barrier, which will be referred to as portable concrete barrier (PCB), with a vertical, I-beam connection pin to attach barriers end to end within their work zones and construction areas. The 2013 NJDOT *Roadway Design Manual* [1] provided guidance on allowable barrier deflections for various classes of PCB joint treatments, as shown in Table 1. The current 2015 NJDOT *Roadway Design Manual* [2] provides guidance on allowable deflections for various connection types, as shown in Table 2.

| Table 1. 2013 NJDOT Roadway Design Manual | PCB Guidance [1] |
|-------------------------------------------|------------------|
|-------------------------------------------|------------------|

| Joint Class | Use                                             | Joint Treatment                                                                                                                         |
|-------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| А           | Allowable movement over 16 to 24 inches         | Connection Key only                                                                                                                     |
| В           | Allowable movement over 11 to 16 inches         | Connection Key and grout in every joint                                                                                                 |
| С           | Allowable movement of 11 inches                 | Connection Key and grout in every joint and pin<br>every other unit. In units to be anchored, pin<br>should be required in every recess |
| D           | No allowable movement<br>(i.e., bridge parapet) | Connection Key and grout in every joint and bolt<br>every anchor pocket hole in every unit                                              |

Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]

| Connection<br>Type | Use                                                                                                   | Joint Treatment*                                                                                |
|--------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| А                  | Maximum allowable deflection of 41 inches                                                             | Connection Key and barrier end sections fully pinned                                            |
| В                  | Maximum allowable deflection of 28 inches (Cannot be used with traffic on both sides of the barrier.) | Connection Key, 6" by 6" box beam, and barrier end sections fully pinned                        |
| C                  | Maximum allowable deflection of 11 inches                                                             | Connection Key, construction side of all sections pinned, and barrier end sections fully pinned |

\* Barrier end sections fully pinned – first and last barrier segments of the entire run regardless of connection type have pins in every anchor recess on both sides.

The guidance provided in both the 2013 and 2015 *Roadway Design Manual* was based on test data obtained from previous testing standards, which needs to be updated to be consistent with current crash testing standards and a changing vehicle fleet. Crash testing of other PCB systems under the Test Level 3 (TL-3) criteria of the *Manual for Assessing Safety Hardware* (MASH 2009) [3] has indicated that dynamic barrier deflections can increase significantly when compared to dynamic deflections based on older crash test data. Thus, a need exists to investigate the

performance of the NJDOT PCB system in various configurations in order to provide updated design guidance. The NJDOT PCB standard plans are shown in Appendix A.

# **1.2 Objective**

The objective of this research effort was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) system with a free-standing configuration, corresponding to joint class A in the 2013 NJDOT *Roadway Design Manual* [1] and connection type A in the 2015 NJDOT *Roadway Design Manual* [2]. The system was to be evaluated according to the Test Level 3 (TL-3) criteria set forth in the *Manual for Assessing Safety Hardware* (MASH 2009) [3].

# 1.3 Scope

The research objective was achieved through completion of several tasks. One full-scale crash test was conducted on the PCB system according to MASH 2009 test designation no. 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the PCB system.

# 2 TEST REQUIREMENTS AND EVALUATION CRITERIA

# **2.1 Test Requirements**

Longitudinal barriers, such as PCBs, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [4]. Note that there is no difference between MASH 2009 and MASH 2016 for most longitudinal barriers, such as the PCB system tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016. According to TL-3 of MASH 2009, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 3. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

|                 | Test               |                 | Vehicle               | Impact C                | onditions      |                                     |
|-----------------|--------------------|-----------------|-----------------------|-------------------------|----------------|-------------------------------------|
| Test<br>Article | Designation<br>No. | Test<br>Vehicle | Weight,<br>lb<br>(kg) | Speed,<br>mph<br>(km/h) | Angle,<br>deg. | Evaluation<br>Criteria <sup>1</sup> |
| Longitudinal    | 3-10               | 1100C           | 2,420<br>(1,100)      | 62<br>(100)             | 25             | A,D,F,H,I                           |
| Barrier         | 3-11               | 2270P           | 5,000<br>(2,268)      | 62<br>(100)             | 25             | A,D,F,H,I                           |

 Table 3. MASH 2009 TL-3 Crash Test Conditions for Longitudinal Barriers

<sup>1</sup> Evaluation criteria explained in Table 4.

In test no. 7069-3, a rigid, F-shape, concrete bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-8]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ½-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid barriers as seen in test no. 47 [10]. As such, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2009 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2009 criteria and the lack of experience and knowledge regarding the performance of the new vehicle types with certain types of hardware could result in unanticipated barrier performance. Thus, any

tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2009 criteria.

# **2.2 Evaluation Criteria**

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the PCB system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH 2009. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2009.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2009.

| Table 4. MASH 2009 Evaluation Criteria for Longitudinal Barrier |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

| Structural<br>Adequacy | A.                                                                                                                                         | Test article should contain and redirect the vehicle or bring the vehicle<br>to a controlled stop; the vehicle should not penetrate, underride, or<br>override the installation although controlled lateral deflection of the<br>test article is acceptable.                                                                                                                                           |                      |                       |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--|
| Occupant<br>Risk       | D.                                                                                                                                         | Detached elements, fragments or other debris from the test article<br>should not penetrate or show potential for penetrating the occupant<br>compartment, or present an undue hazard to other traffic, pedestrians,<br>or personnel in a work zone. Deformations of, or intrusions into, the<br>occupant compartment should not exceed limits set forth in Section<br>5.3 and Appendix E of MASH 2009. |                      |                       |  |
|                        | F.                                                                                                                                         | The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.                                                                                                                                                                                                                                                                          |                      |                       |  |
|                        | H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5<br>MASH 2009 for calculation procedure) should satisfy the follow<br>limits: |                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                       |  |
|                        |                                                                                                                                            | Occupant Impact Velocity Limits                                                                                                                                                                                                                                                                                                                                                                        |                      |                       |  |
|                        |                                                                                                                                            | Component                                                                                                                                                                                                                                                                                                                                                                                              | Preferred            | Maximum               |  |
|                        |                                                                                                                                            | Longitudinal and Lateral                                                                                                                                                                                                                                                                                                                                                                               | 30 ft/s<br>(9.1 m/s) | 40 ft/s<br>(12.2 m/s) |  |
|                        | I.                                                                                                                                         | The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH 2009 for calculation procedure) should satisfy the following limits:                                                                                                                                                                                                                                                    |                      |                       |  |
|                        |                                                                                                                                            | Occupant Ridedown Acceleration Limits                                                                                                                                                                                                                                                                                                                                                                  |                      |                       |  |
|                        |                                                                                                                                            | Component                                                                                                                                                                                                                                                                                                                                                                                              | Preferred            | Maximum               |  |
|                        |                                                                                                                                            | Longitudinal and Lateral                                                                                                                                                                                                                                                                                                                                                                               | 15.0 g's             | 20.49 g's             |  |

# **3 DESIGN DETAILS**

The test installation consisted of ten 20-ft (6.1-m) long NJDOT PCBs with a free-standing configuration, as shown in Figures 1 through 14. This system uses NJDOT barriers, Type 4 (Alternative B) with joint class A as specified in the 2013 NJDOT *Roadway Design Manual* and connection type A in the 2015 NJDOT *Roadway Design Manual*. Photographs of the test installation are shown in Figures 15 through 17. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The concrete mix for the barrier sections required a minimum 28-day compressive strength of 3,700 psi (25.5 MPa). A minimum concrete cover of 1½ in. (38 mm) was used along all rebar in the barrier. All of the steel reinforcement in the barrier was ASTM A615 Grade 60 rebar and consisted of four No. 6 longitudinal bars, eight No. 4 bars for the vertical stirrups, four No. 6 lateral bars, and nine No. 4 bars for the anchor hole reinforcement loops. The section reinforcement details are shown in Figures 5 and 6.

The barrier sections used a connection key, as shown in Figures 7 through 11, 15, and 16. The connection key assembly consisted of ½-in. (13-mm) thick ASTM A36 steel plates welded together to form the key shape. A connection socket was configured at each end of the PCB section, as shown in Figures 2, 11, 15, and 16. The connection socket consisted of three ASTM A36 steel plates welded on the sides of an ASTM A500 Grade B or C steel tube, as shown in Figures 9 and 10. The connection key was inserted into the steel tubes of two adjoining PCBs to form the connection, as shown in Figure 11.

Barrier nos. 1 and 10 were anchored to the concrete tarmac through the pin anchor recesses with nine 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins inserted into 1<sup>1</sup>/<sub>4</sub>-in. (32-mm) diameter drilled holes in the concrete tarmac, as shown in Figure 17. The steel pins were embedded to a depth of 5 in. (127 mm), as shown in Figure 1. During installation, the barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints. After slack was removed from all the joints, 1<sup>1</sup>/<sub>4</sub>-in. (32-mm) diameter holes were drilled for pin anchors at pin recess locations. Five samples of concrete tarmac were tested from five different locations of MwRSF's Outdoor Test Site. The concrete tarmac had a compressive strength between 5,970 and 7,040 psi (41.2 and 48.5 MPa), as shown in Appendix C.



Figure 1. Test Installation Layout, Test No. NJPCB-3

7



Figure 2. PCB Pin Anchor Details, Test No. NJPCB-3

 $\infty$ 



Figure 3. PCB Pin Anchor Locations, Test No. NJPCB-3

9



Figure 4. PCB Details, Test No. NJPCB-3

10



Figure 5. PCB Reinforcement Details, Test No. NJPCB-3



Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-3



Figure 7. PCB Connection Key Assembly Details, Test No. NJPCB-3



Figure 8. PCB Connection Key Component Details, Test No. NJPCB-3



Figure 9. PCB Connection Socket Details, Test No. NJPCB-3



Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-3

December 11, 2018 MwRSF Report No. TRP-03-355-18



Figure 11. Connection Key Placement Details, Test No. NJPCB-3



Figure 12. PCB Reinforcement Details, Test No. NJPCB-3

- (1) Minimum concrete clear cover for reinforcement steel shall be  $1 \frac{1}{2}$  [38 mm].
- (2) All end segments shall be pinned.
- (3) After a segment has been placed and the connection key inserted, pull the unit in a direction parallel to its longitudinal axis to remove any slack in the joint.
- (4) The portable concrete barrier shall be cast in steel forms.
- (5) The portable concrete barrier shall be barrier segments of 20 feet [6,096 mm]. However, other lengths may be used to meet field conditions. The number and placement of the b2 and b3 reinforcement steel will vary with the length of the barrier segment as shown on the table of variable reinforcement steel. The b5 reinforcement steel shall be 10" [254 mm] shorter than the nominal length of the barrier segments.
- (6) Reinforcing shown is the minimum required. Additional reinforcing necessary for handling shall be the option and responsibility of the contractor.
- (7) Welding and fabrication of steel structures shall be in accordance with sections 1 thru 6 of the ANSI/AASHTO/AWS D1.5 bridge welding code and section 10 of the ANSI/AWS D1 structural welding code. Surfaces to be welded shall be free of scale, slag, rust, moisture, grease or any other material that will prevent proper welding or produce objectional fumes. Welding shall be shielded metal arc welding using properly dried 5/32" [4 mm] dia. E7018 electrodes.
- (8) The length of the pins shall be such that a minimum embedment length of 5" [127 mm] is obtained when embedded into concrete pavement. When anchor pins are in place, they shall not project above the plane of the concrete surface of the barrier. Holes in bridge decks shall be 1 1/4" [32 mm] diameter maximum and made with a core drill or any other approved rotary drilling device that does not impart an impact force.
- (9) Use connection key in every joint. Pin end segments with pins in every anchor pin recess.

|         | RSE      | NJ Free Standing<br>Portable Concrete<br>Test NJPCB-3 | Barrier                       | SHEET:<br>13 of 14<br>DATE:<br>10/30/2018 |
|---------|----------|-------------------------------------------------------|-------------------------------|-------------------------------------------|
| Midwest | Roadside | General Notes                                         |                               | DRAWN BY:<br>EMR/TJD/JE<br>K/MES          |
| Safety  | Facility | DWG. NAME.<br>NJPCB-3_R15                             | SCALE: None<br>UNITS: In.[mm] | REV. BY:<br>KAL/TJD/RK<br>F/JCH/SB        |

Figure 13. General Notes, Test No. NJPCB-3

| Item<br>No. | QTY. | Description                                                   | Material Spec                   | Galvanization Spec |
|-------------|------|---------------------------------------------------------------|---------------------------------|--------------------|
| a1          | 10   | Concrete Barrier Segment — NJDOT Type 4 Barrier (Alternate B) | Min. f'c = 3,700 psi [25.5 MPa] | -                  |
| a2          | 18   | 1" [25] Dia., 15" [381] Long Anchor Steel Pin                 | ASTM A36                        | ASTM A123*         |
| b1          | 80   | 1/2" [13] Dia., 59" [1,499] Long Bent Rebar                   | ASTM A615 Gr. 60                | -                  |
| b2          | 20   | 3/4" [19] Dia., 6" [152] Long Rebar                           | ASTM A615 Gr. 60                |                    |
| b3          | 20   | 3/4" [19] Dia., 14" [356] Long Rebar                          | ASTM A615 Gr. 60                | 1                  |
| b4          | 90   | 1/2" [13] Dia., 37" [940] Long Bent Rebar                     | ASTM A615 Gr. 60                | _                  |
| b5          | 40   | 3/4" [19] Dia., 228" [5,791] Long Rebar                       | ASTM A615 Gr. 60                | -                  |
| c1          | 20   | 4"x4"x1/2" [102x102x13] x 20" [508] Long Tube                 | ASTM A500 Gr. B or C            | -                  |
| c2          | 40   | 40 1/2"x2"x1/4" [1,029x51x6] Bent Steel Plate                 | ASTM A36                        |                    |
| c3          | 20   | 34 1/2"x2"x1/4" [876x51x6] Bent Steel Plate                   | ASTM A36                        |                    |
| d1          | 18   | 25 1/2"x2"x1/2" [648x51x13] Steel Plate                       | ASTM A36                        | -                  |
| d2          | 9    | 25 1/2"x2 1/4"x1/2" [648x57x13] Steel Plate                   | ASTM A36                        |                    |
| d3          | 18   | 6 3/16"x1 3/8"x1/2" [157x35x13] Steel Plate — Stiffener       | ASTM A36                        |                    |
| d4          | 9    | 17"x8"x1/2" [432x203x13] Bent Steel Plate — Top Plate         | ASTM A36                        | I                  |

\*Component does not need to be galvanized for testing purposes.

| M                 | RSF                  | NJ Free Standing<br>Portable Concrete<br>Test NJPCB-3 | Barrier                       | SHEET:<br>14 of 14<br>DATE:<br>10/30/2018 |
|-------------------|----------------------|-------------------------------------------------------|-------------------------------|-------------------------------------------|
| Midwest<br>Safety | Roadside<br>Facility | Bill of Materials                                     |                               | DRAWN BY:<br>EMR/TJD/JE<br>K/MES          |
|                   |                      | DWG. NAME.<br>NJPCB-3_R15                             | SCALE: None<br>UNITS: In.[mm] | REV. BY:<br>KAL/TJD/RK<br>F/JCH/SB        |





Figure 15. NJDOT PCB with Free-Standing Configuration Test Installation, Test No. NJPCB-3







Figure 16. PCB Connection Key and Connection Socket, Test No. NJPCB-3



Figure 17. PCB Pin Anchor Recesses (Barrier Nos. 1 and 10), Test No. NJPCB-3

# **4 TEST CONDITIONS**

#### 4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

#### 4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The  $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

#### 4.3 Test Vehicle

For test no. NJPCB-3, a 2010 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,093 lb (2,310 kg), 4,999 lb (2,268 kg), and 5,154 lb (2,338 kg), respectively. The test vehicle is shown in Figure 18, and vehicle dimensions are shown in Figure 19.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [12] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 19 and 20. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 20. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero so that the vehicle would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-

speed digital videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.





Figure 18. Test Vehicle, Test No. NJPCB-3



Figure 19. Vehicle Dimensions, Test No. NJPCB-3



Figure 20. Target Geometry, Test No. NJPCB-3
# 4.4 Simulated Occupant

For test no NJPCB-3, A Hybrid II 50<sup>th</sup>-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 155 lb (70 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2009, the dummy was not included in calculating the c.g. location.

# 4.5 Data Acquisition Systems

# **4.5.1 Accelerometers**

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. All of the accelerometers were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [13].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of  $\pm 500$  g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

# 4.5.2 Rate Transducers

Two identical angular rate sensor systems, which were mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders, measured the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

# 4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

# **4.5.4 Digital Photography**

Five AOS high-speed digital video cameras, ten GoPro digital video cameras, and three JVC digital video cameras were utilized to film test no. NJPCB-3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 21. Due to technical difficulties, JVC-3 did not collect data.

The high-speed digital videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed digital videos. A Nikon digital still camera was also used to document pre- and post-test conditions for the test.



Figure 21. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-3

# 5 FULL-SCALE CRASH TEST NO. NJPCB-3

# **5.1 Weather Conditions**

Test no. NJPCB-3 was conducted on April 22, 2016 at approximately 12:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Temperature  $63^{\circ} \mathrm{F}$ Humidity 45% Wind Speed 3 mph Wind Direction 0° from True North Sky Conditions Sunnv Visibility 9 Statute Miles Pavement Surface Drv **Previous 3-Day Precipitation** 1.26 in. Previous 7-Day Precipitation 2.24 in.

Table 5. Weather Conditions, Test No. NJPCB-3

# **5.2 Test Description**

The 4,999-lb (2,268-kg) pickup truck impacted the NJDOT PCB, Type 4 (Alternative B) with a free-standing configuration, corresponding to joint class A in the 2013 NJDOT *Roadway Design Manual* and connection type A in the 2015 NJDOT *Roadway Design Manual*, at a speed of 62.3 mph (100.2 km/h) and at an angle of 25.8 degrees. A summary of the test results and sequential photographs are shown in Figure 23. Additional sequential photographs are shown in Figures 24 and 25. Documentary photographs of the crash test are shown in Figure 26.

Initial vehicle impact was to occur 4 ft  $-3^{3}/_{16}$  in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5, as shown in Figure 27, which was selected using Table 2.6 of MASH 2009. The actual point of impact was 5 in. (127 mm) downstream from the target location. A sequential description of the impact events is contained in Table 6. The vehicle came to rest 194 ft (59.1 m) downstream from the impact point and 44 ft -1 in. (13.4 m) laterally away from the traffic side of the barrier after brakes were applied. The vehicle trajectory and final position are shown in Figures 23 and 28.

| TIME  | EVENT                                                                                                                                                   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| (sec) | E V EIN I                                                                                                                                               |
| 0.000 | Vehicle's left-front tire impacted barrier no. 4 at 3 ft $-10^{3}/_{16}$ in. (1,173 mm) upstream from centerline of joint between barrier nos. 4 and 5. |
| 0.006 | Left corner of front bumper deformed inward after contact with barrier no. 4.                                                                           |
| 0.012 | Vehicle's left headlight and left fender deformed.                                                                                                      |

Table 6. Sequential Description of Impact Events, Test No. NJPCB-3

| 0.020 | Vehicle's hood contacted barrier no. 4 at downstream end and deformed.                                                                                                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.022 | Vehicle's grille contacted barrier no. 4 at downstream end and deformed.                                                                                                                |
| 0.028 | Vehicle's right headlight and left-front door deformed.                                                                                                                                 |
| 0.032 | Downstream end of barrier no. 4 deflected backward while upstream end<br>deflected forward. Upstream end of barrier no. 5 deflected backward while<br>downstream end deflected forward. |
| 0.044 | Vehicle's right-side airbag deployed.                                                                                                                                                   |
| 0.048 | Vehicle yawed away from system.                                                                                                                                                         |
| 0.050 | Vehicle's left-rear door contacted system and deformed, and vehicle rolled away from system.                                                                                            |
| 0.056 | Upstream end of barrier no. 4 cracked.                                                                                                                                                  |
| 0.062 | Vehicle's left-side mirror deformed.                                                                                                                                                    |
| 0.064 | Upstream end of barrier no. 4 spalled.                                                                                                                                                  |
| 0.070 | Vehicle pitched upward, barrier no. 5 cracked from the center, and downstream end of barrier no. 3 deflected forward.                                                                   |
| 0.072 | Upstream end of barrier no. 6 deflected backward.                                                                                                                                       |
| 0.088 | Upstream end of barrier no. 6 deflected forward.                                                                                                                                        |
| 0.114 | Concrete cracked near center target on barrier no. 5.                                                                                                                                   |
| 0.122 | Vehicle's right-front tire became airborne.                                                                                                                                             |
| 0.172 | Upstream end of barrier no. 6 deflected backward.                                                                                                                                       |
| 0.206 | Left headlight detached from vehicle, and upstream end of barrier no. 7 deflected backward.                                                                                             |
| 0.216 | Vehicle was parallel to system at a speed of 50.1 mph (80.7 km/h).                                                                                                                      |
| 0.232 | Downstream end of barrier no. 3 deflected backward.                                                                                                                                     |
| 0.238 | Vehicle's left-rear tire contacted barrier no. 5.                                                                                                                                       |
| 0.268 | Vehicle's left-rear quarter panel contacted barrier no. 5. Vehicle's rear bumper contacted barrier no. 5. Vehicle's left-rear quarter panel deformed.                                   |
| 0.296 | Vehicle's right-rear tire became airborne.                                                                                                                                              |
| 0.312 | Vehicle pitched downward.                                                                                                                                                               |
| 0.342 | Vehicle rolled toward system.                                                                                                                                                           |
| 0.380 | Vehicle lost contact with system at a speed of 49.0 mph (78.9 km/h) and an angle of 5.4 degrees.                                                                                        |
| 0.418 | Upstream end of barrier no. 7 deflected backward.                                                                                                                                       |
| 0.602 | Vehicle's right-front tire regained contact with ground.                                                                                                                                |
| 0.698 | Vehicle's left-front tire regained contact with ground.                                                                                                                                 |
| 0.712 | Vehicle's front bumper contacted ground.                                                                                                                                                |
| 0.724 | Vehicle's left-front tire deflated.                                                                                                                                                     |
| 0.838 | Vehicle's left quarter panel contacted barrier no. 7.                                                                                                                                   |
| 1.232 | Vehicle's left-rear tire deflated.                                                                                                                                                      |

# 5.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 29 through 32. Barrier damage consisted of contact marks on the front face of the PCB segments, spalling of concrete, and concrete cracking. The length of vehicle contact along the barrier was approximately 21 ft – 2 in. (6.4 m), which spanned from 3 ft – 8 in. (1.1 m) upstream from the center of the joint between barrier nos. 4 and 5 through 17 ft – 6 in. (5.3 m) downstream from the center of the joint between barrier nos. 4 and 5. The vehicle contacted the system again starting from the upstream end on the top face of barrier no. 7 which spanned approximately 11 ft – 6 in. (3.5 m).

Tire marks were visible on the front face of barrier nos. 4 and 5. Contact marks were found on the front faces of barrier nos. 7 and 8 as well as on the connection keys between barrier nos. 4 and 5. A 14-in. (356-mm) long gouge on the front face of barrier no. 4 began 57 in. (1,448 mm) upstream from the downstream end. A 41-in. (1,041-mm) long scrape was found on barrier no. 4 beginning 44 in. (1,118 mm) upstream from the downstream end. A 14-in. (356-mm) long gouge was found on barrier no. 4 that began 40 in. (1,016 mm) upstream from the downstream target and 17 in. (432 mm) from the ground.

Concrete spalling was found on barrier nos. 3 through 8. The lower back corner on the downstream end of barrier no. 3 spalled. A 5<sup>1</sup>/<sub>2</sub>-in. × 13<sup>1</sup>/<sub>2</sub>-in. × 2-in. (140-mm × 343-mm × 51mm) piece of concrete was removed from the upper-downstream corner on the front face of barrier no. 4. A 10<sup>1</sup>/<sub>2</sub>-in. × 4<sup>1</sup>/<sub>2</sub>-in. (267-mm × 114-mm) piece of concrete was removed from the lowerdownstream corner on the front face of barrier no. 4. Concrete spalling, measuring 29 in.  $\times$  11 in.  $\times$  4 in. (737 mm  $\times$  279 mm  $\times$  102 mm), was found 41<sup>5</sup>/<sub>8</sub> in. (1,057 mm) upstream from the downstream end on the back face of barrier no. 4. A 32-in.  $\times$  10-in  $\times$  3-in. (813-mm  $\times$  254-mm  $\times$ 76-mm) piece of concrete was removed from the bottom-upstream corner on the front face of barrier no. 5. A  $13\frac{1}{2}$ -in. × 8-in. (343-mm × 203-mm) piece of concrete was removed from the bottom of barrier no. 5, approximately 461/2 in. (1,181 mm) downstream from the upstream end. A 15-in.  $\times$  4-in  $\times$  4<sup>1</sup>/<sub>2</sub>-in. (381-mm  $\times$  102-mm  $\times$  114-mm) piece of concrete disengaged from the back side of barrier no. 5 approximately 17 in. (432 mm) downstream from the center target. An 8-in.  $\times$  12-in.  $\times$  5-in. (203-mm  $\times$  305-mm  $\times$  127-mm) piece of concrete was removed from the lowerdownstream corner of barrier no. 6. Concrete spalling, measuring  $16\frac{1}{2}$  in.  $\times 4\frac{1}{2}$  in. (419 mm  $\times 114$ mm), occurred at the bottom on the front side of barrier no. 7 approximately 48 in. (1,219 mm) downstream from the upstream end. A  $2\frac{1}{2}$ -in.  $\times$  3-in. (64-mm  $\times$  76-mm) piece of concrete was removed from the upper-upstream corner on the back side of barrier no. 8 below the connection key socket.

Minor cracks were found on barrier nos. 3, 7 and 8. A 10<sup>3</sup>/4-in. (273-mm) long vertical crack that began 11<sup>1</sup>/<sub>2</sub> in. (292 mm) from the bottom of barrier no. 4 extended toward the downstream edge. A crack spanning the front, top, and back faces was found 4<sup>1</sup>/<sub>4</sub> in. (108 mm) downstream of the center target on barrier no. 4. A 32-in. (813-mm) long crack was found 47 in. (1,194 mm) upstream from downstream edge of barrier no. 5 on the front face. Vertical cracks were found on the front and back faces of barrier no. 5 at 48 in. (1,219 mm), 101 in. (2,565 mm), and 224 in. (5,690 mm) downstream from the upstream end of the barrier. A 23<sup>1</sup>/<sub>2</sub>-in. (597-mm) long vertical crack was found on the back face of barrier no. 5 that began 7 in. (178 mm) from the bottom and 5 in. (127 mm) upstream from the downstream end. A 19-in. (483-mm) long vertical crack was found 4 in. (102 mm) downstream from the upstream end of barrier no. 6. A 26-in. (660-

mm) long crack was found 7 in. (178 mm) from the top and  $6\frac{1}{2}$  in. (165 mm) downstream from the upstream end on the back face of barrier no. 6. A vertical crack was also found on the front, top, and back faces of barrier no. 6 near the center target.

The maximum permanent set deflection of the barrier system was  $36\frac{5}{8}$  in. (930 mm) at the downstream end of barrier no. 4, as measured in the field. The maximum lateral dynamic barrier deflection, including minor tipping of the barrier along the top surface, was 38.1 in. (968 mm) at the downstream end of barrier no. 4, as determined from high-speed digital video analysis. The working width of the system was found to be 62.1 in. (1,577 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 22. In addition, NJDOT identifies the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For this test, the clear space behind the barrier was 38.1 in. (968 mm).



Figure 22. Permanent Set Deflection, Dynamic Deflection and Working Width, Test No. NJPCB-3

#### **5.4 Vehicle Damage**

Damage to the vehicle was moderate, as shown in Figures 33 through 36. The maximum occupant compartment deformations are listed in Table 7 along with the deformation limits established in MASH 2009 for various areas of the occupant compartment. Note that none of the

MASH 2009 established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. The left side of the bumper was crushed inward and back. The left-front fender was pushed upward near the door panel, torn, and had a dent behind the left-front wheel. The left-rear steel rim was severely deformed with tears and significant crushing. The left-front and left-rear tires were torn and deformed. The grille was fractured around the left-side headlight assembly. A 20-in. × 6-in. (508-mm × 152-mm) scrape was found on the left fender, and the front bumper. A 6-in. (152-mm) kink was found on the bottom-front of the left fender, and the front of the fender deformed inward. A  $2\frac{1}{2}$ -in. (64-mm) gap was found between the vehicle's hood and the left fender. A  $2\frac{1}{2}$ -in. × 10-in. (64-mm × 254-mm) buckle was found on the rear of the left fender approximately 15 in. (381 mm) above the bottom of the fender. A 71-in. (1,803-mm) scrape and contact marks were found along the left side of the vehicle cab. The left-rear door was dented and was ajar approximately  $\frac{1}{4}$  in. (6 mm) at the top. A 5-in. × 6-in. (127-mm × 152-mm) dent was found on the bottom of the C-pillar at the rear of the cab.

| LOCATION                                | MAXIMUM<br>DEFORMATION<br>in. (mm) | MASH 2009 ALLOWABLE<br>DEFORMATION<br>in. (mm)                              |
|-----------------------------------------|------------------------------------|-----------------------------------------------------------------------------|
| Wheel Well & Toe Pan                    | 31/8 (79)                          | ≤ 9 (229)                                                                   |
| Floor Pan & Transmission Tunnel         | <sup>1</sup> ⁄4 (6)                | ≤ 12 (305)                                                                  |
| Side Front Panel (in Front of A-Pillar) | <sup>3</sup> ⁄ <sub>4</sub> (19)   | ≤ 12 (305)                                                                  |
| Side Door (Above Seat)                  | <sup>1</sup> ⁄4 (6)                | ≤9 (229)                                                                    |
| Side Door (Below Seat)                  | <sup>3</sup> / <sub>8</sub> (10)   | ≤ 12 (305)                                                                  |
| Roof                                    | <sup>1</sup> /4 (6)                | ≤4 (102)                                                                    |
| Windshield                              | 0 (0)                              | ≤3 (76)                                                                     |
| Side Window                             | Intact                             | No shattering resulting from contact with structural member of test article |
| Dash                                    | <sup>1</sup> / <sub>4</sub> (6)    | N/A                                                                         |

| Table 7. Maximum  | Occupant ( | Compartment | <b>D</b> eformations | by Location         |
|-------------------|------------|-------------|----------------------|---------------------|
| raoio // maninani | occupant . | compariment | Derormations         | by <b>Loca</b> tion |

N/A - Not applicable

The left-side quarter panel experienced scraping, buckling, and denting. The left-side headlight and foglight disengaged from the vehicle. The left side of the radiator was pushed backward. The left-front and left-rear tires were deflated. The left-rear tire had a tear 3 in. (76 mm) away from the edge of the tire's outer face. The left-rear rim had a 1-in. (25-mm) scrape. A 1-in. (25-mm) gap was found between the left-front fender and the left-front door. The left-front anti-roll bar end links contacted the tie rod and were scraped. The left-front steering knuckle assembly was gouged underneath the lower control arm. The middle of the left-rear upper brake caliper was torn. The left side of the steering rack fractured from the mount. The right side of the windshield had a hairline crack, and the lower-left side encountered minor cracking. The roof and remaining window glass remained undamaged.

# 5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 8. Note that the OIVs and ORAs were within the suggested limits, as provided in MASH 2009. The calculated THIV, PHD, and ASI values are also shown in Table 8. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 23. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

|                    |              | Trans          | MASH 2000            |              |  |  |
|--------------------|--------------|----------------|----------------------|--------------|--|--|
| Evaluati           | on Criteria  | SLICE-1        | SLICE-2<br>(primary) | Limits       |  |  |
| OIV                | Longitudinal | -13.58 (-4.14) | -13.52 (-4.12)       | ± 40 (12.2)  |  |  |
| ft/s (m/s)         | Lateral      | 15.65 (4.77)   | 18.01 (5.49)         | ± 40 (12.2)  |  |  |
| ORA                | Longitudinal | -4.89          | -5.23                | $\pm 20.49$  |  |  |
| g's                | Lateral      | 10.67          | 9.61                 | $\pm 20.49$  |  |  |
| MAX.               | Roll         | -20.7          | -17.2                | ± 75         |  |  |
| ANGULAR<br>DISPL   | Pitch        | -7.3           | -9.0                 | ± 75         |  |  |
| deg.               | Yaw          | 105.5          | 105.0                | not required |  |  |
| THIV<br>ft/s (m/s) |              | 19.58 (5.97)   | 23.16 (7.06)         | not required |  |  |
| PHD<br>g's         |              | 10.68          | 9.61                 | not required |  |  |
|                    | ASI          | 1.09           | 1.23                 | not required |  |  |

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-3

# 5.6 Discussion

Analysis of the test results showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 11.9 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. NJPCB-3 was determined to be acceptable according to the MASH 2009 safety performance criteria for test designation no. 3-11.

|     |                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                | 1                                                                | <b></b> )        | 1                             | -07                                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------|-------------------------------|------------------------------------------------|
|     | 0.000  sec $0.050  sec$ $0.172  sec$                                                                                                                                                                                                                                                                                                                                                                              | ec                                                                                                                                                               | 0.232                                                            | Sec 16"[152]     | 0.41                          | 8 sec                                          |
| 1 2 | 25.5 <u>6</u> 7 8 9 10<br>25.5 <u>12'-11" [3.9 m]</u><br><u>32'-10" [10.0 m]</u> <u>Exit Box LF</u>                                                                                                                                                                                                                                                                                                               | 44'-1" [13.4 m                                                                                                                                                   | ]                                                                |                  | 22[[#13]                      |                                                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                  | 1° [25] Dismeter AST<br>A36 Steel Pins                           | 24T(510)         | sT[27]                        |                                                |
|     | Test Agency       MwRSF         Test Number.       NJPCB-3         Date       04/22/2016         MASH 2009 Test Designation       3-11         Test Article.       Free-standing NJDOT PCB with Joint Class A [1]/Connection Type A [2]         Total Length       200 ft (61.0 m)         Key Component – NJDOT PCB       20 ft (6.1 m)         Width       24 in. (610 mm)         Height       32 in. (813 mm) | <ul> <li>Vehicle Stoppin</li> <li>Vehicle Damag<br/>VDS [14] .<br/>CDC [15]<br/>Maximum</li> <li>Maximum Test<br/>Permanent<br/>Dynamic<br/>Working W</li> </ul> | ng Distance<br>e<br>Interior Deforma<br>Article Deflectio<br>Set | tion<br>ns       |                               | 9.1 m) downstream<br>n) laterally in front<br> |
| •   | Key Component – Anchor Pins<br>Pin Size & Length 1-in. (25-mm) diameter × 15-in. (381-mm) long unthreaded rod<br>Pin Material                                                                                                                                                                                                                                                                                     | Evaluatio                                                                                                                                                        | a<br>n Criteria                                                  | Trans<br>SLICE-1 | ducer<br>SLICE-2<br>(primary) | MASH 2009<br>Limit                             |
|     | Number of Pins per Barrier                                                                                                                                                                                                                                                                                                                                                                                        | OIV                                                                                                                                                              | Longitudinal                                                     | -13.58 (-4.14)   | -13.52 (-4.12)                | ±40 (12.2)                                     |
| •   | Type of Support Surface                                                                                                                                                                                                                                                                                                                                                                                           | ft/s (m/s)                                                                                                                                                       | Lateral                                                          | 15.65 (4.77)     | 18.01 (5.49)                  | $\pm 40(12.2)$                                 |
| •   | Vehicle Make/Model                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  | Longitudinal                                                     | -4.89            | -5.23                         | +20.49                                         |
|     | Test Inertial                                                                                                                                                                                                                                                                                                                                                                                                     | ORA<br>g's                                                                                                                                                       | Lotarol                                                          | 10.67            | 0.61                          | ± 20.49                                        |
|     | Gross Static                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  | Lateral                                                          | 10.07            | 9.01                          | ± 20.49                                        |
| •   | Speed                                                                                                                                                                                                                                                                                                                                                                                                             | MAX.<br>ANGULAR                                                                                                                                                  | Roll                                                             | -20.7            | -17.2                         | ± 75                                           |
|     | Angle                                                                                                                                                                                                                                                                                                                                                                                                             | DISP.                                                                                                                                                            | Pitch                                                            | -7.3             | -9.0                          | ± 75                                           |
|     | Impact Location                                                                                                                                                                                                                                                                                                                                                                                                   | deg.                                                                                                                                                             | Yaw                                                              | 105.5            | 105.0                         | not required                                   |
| •   | Exit Conditions                                                                                                                                                                                                                                                                                                                                                                                                   | THIV – 1                                                                                                                                                         | t/s (m/s)                                                        | 19.58 (5.97)     | 23.16 (7.06)                  | not required                                   |
|     | Speed                                                                                                                                                                                                                                                                                                                                                                                                             | рип                                                                                                                                                              | - σ's                                                            | 10.68            | 9.61                          | not required                                   |
|     | Angle                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  | 5 3                                                              | 1.00             | 1.02                          | inst required                                  |
| •   | Vehicle Stability                                                                                                                                                                                                                                                                                                                                                                                                 | А                                                                                                                                                                | 51                                                               | 1.09             | 1.23                          | not required                                   |
| •   | Test Article Damage                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                  |                  |                               |                                                |

Figure 23. Summary of Test Results and Sequential Photographs, Test No. NJPCB-3

December 11, 2018 MwRSF Report No. TRP-03-355-18



0.000 sec



0.072 sec



0.114 sec



0.206 sec



0.312 sec



0.380 sec



0.000 sec



0.064 sec



0.114 sec



0.206 sec



0.312 sec



0.418 sec

Figure 24. Additional Sequential Photographs, Test No. NJPCB-3





0.028 sec



0.048 sec



0.062 sec



0.216 sec



0.232 sec



0.268 sec



0.296 sec



0.342 sec



0.622 sec



0.796 sec



2.944 sec

Figure 25. Additional Sequential Photographs, Test No. NJPCB-3















Figure 26. Documentary Photographs, Test No. NJPCB-3







Figure 27. Impact Location, Test No. NJPCB-3



Figure 28. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-3



Figure 29. System Damage - Front, Back, Upstream, and Downstream views, Test No. NJPCB-3







Figure 30. Barrier No. 3 Traffic-side and Back-side Damage, Test No. NJPCB-3





Figure 31. Barrier Nos. 4 and 5 Damage, Test No. NJPCB-3



Figure 32. Barrier No. 5 Damage, Test No. NJPCB-3





Figure 33. Vehicle Damage, Test No. NJPCB-3







Figure 34. Vehicle Damage on Impact Side, Test No. NJPCB-3



Figure 35. Occupant Compartment Deformation, Test No. NJPCB-3



Figure 36. Undercarriage Deformations, Test No. NJPCB-3

# **6 SUMMARY AND CONCLUSIONS**

Test no. NJPCB-3 was conducted on the NJDOT PCB system with a free-standing configuration according to MASH 2009 test designation no. 3-11. This system uses NJDOT barriers, Type 4 (Alternative B) with joint class A as specified in the 2013 NJDOT *Roadway Design Manual* and connection type A in the 2015 NJDOT *Roadway Design Manual*. Barrier nos. 1 and 10 were anchored to the rigid concrete tarmac through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins.

During test no. NJPCB-3, the 4,999-lb (2,268 kg) pickup truck impacted the NJDOT PCB system at a speed of 62.3 mph (100.2 km/h) and at an angle of 25.8 degrees, resulting in an impact severity of 122.9 kip-ft (166.6 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 49.0 mph (78.9 km/h) and at an angle of 11.9 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier and the vehicle. Barrier nos. 3, 4, 5, and 6 experienced concrete spalling and cracking, with most of the damage concentrated on the downstream end of barrier no. 4 and upstream end of barrier no. 5. A dynamic deflection of 38.1 in. (968 mm) and working width of 62.1 in. (1,577 mm) were observed during the test, as shown in Figure 22. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. NJPCB-3 was determined to satisfy the safety performance criteria for MASH 2009 test designation no. 3-11. A summary of the test evaluation is shown in Table 9.

| Evaluation<br>Factors           |    | Evaluation Criteria                                                                                                                                                                                                                                          |                                                                                           |                                                                      |      |  |  |  |
|---------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|--|--|--|
| Structural<br>Adequacy          | А. | Test article should contain and redirect the vehicle or bring the vehicle<br>to a controlled stop; the vehicle should not penetrate, underride, or<br>override the installation although controlled lateral deflection of the test<br>article is acceptable. |                                                                                           |                                                                      |      |  |  |  |
|                                 | D. | 1. Detached elements, fra<br>should not penetrate or s<br>compartment, or present a<br>or personnel in a work zon                                                                                                                                            | agments or other debris f<br>show potential for penetr<br>an undue hazard to other<br>ne. | rom the test article<br>rating the occupant<br>traffic, pedestrians, | S    |  |  |  |
|                                 |    | 2. Deformations of, or should not exceed limits MASH 2016.                                                                                                                                                                                                   | intrusions into, the occu<br>set forth in Section 5.2.2                                   | pant compartment<br>and Appendix E of                                | S    |  |  |  |
|                                 | F. | The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.                                                                                                                                |                                                                                           |                                                                      |      |  |  |  |
| Occupant<br>Risk                | H. | H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of<br>MASH 2009 for calculation procedure) should satisfy the following<br>limits:                                                                                                           |                                                                                           |                                                                      |      |  |  |  |
|                                 |    | Occupa                                                                                                                                                                                                                                                       | nt Impact Velocity Limits                                                                 | 3                                                                    | S    |  |  |  |
|                                 |    | Component                                                                                                                                                                                                                                                    | Preferred                                                                                 | Maximum                                                              |      |  |  |  |
|                                 |    | Longitudinal and Lateral                                                                                                                                                                                                                                     | 30 ft/s (9.1 m/s)                                                                         | 40 ft/s (12.2 m/s)                                                   |      |  |  |  |
|                                 | I. | The Occupant Ridedow<br>Section A5.3 of MASH 2<br>the following limits:                                                                                                                                                                                      | n Acceleration (ORA)<br>009 for calculation procee                                        | (see Appendix A,<br>dure) should satisfy                             |      |  |  |  |
|                                 |    | mits                                                                                                                                                                                                                                                         | S                                                                                         |                                                                      |      |  |  |  |
|                                 |    | Component                                                                                                                                                                                                                                                    | Preferred                                                                                 | Maximum                                                              |      |  |  |  |
|                                 |    | Longitudinal and Lateral                                                                                                                                                                                                                                     | 15.0 g's                                                                                  | 20.49 g's                                                            |      |  |  |  |
|                                 |    | MASH 2009 Test                                                                                                                                                                                                                                               | t Designation No.                                                                         |                                                                      | 3-11 |  |  |  |
| Final Evaluation (Pass or Fail) |    |                                                                                                                                                                                                                                                              |                                                                                           |                                                                      |      |  |  |  |

Table 9. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

# 7 COMPARISON TO TEST NO. NYTCB-2

A summary of full-scale crash testing of the two free-standing configurations of the NJ PCB system is shown in Table 10. One system included removing the joint slack (test no. NJPCB-3), as described herein. The other system consisted of removing joint slack and grouted toes (test no. NJPCB-4) [16]. These tests were compared to the full-scale crash testing of a similar New York PCB system without removal of joint slack or grouted toes (test no. NYTCB-2) [17]. Results from these tests included the actual impact conditions and impact severity as well as dynamic barrier deflection, permanent set barrier deflection, working width (as measured from the original front face of the barrier), and the clear space behind the barrier. The clear space behind the barrier is used by NJDOT to define the maximum deflection of the back of the barrier from its original position. In addition, the schematic diagrams shown in Figure 37 indicate how the dynamic deflection, permanent set deflection, and working width for each crash test was defined.

A review of the results from test nos. NJPCB-3, NJPCB-4, and NYTCB-2 revealed little to no benefit in terms of barrier deflection and clear space requirements for free-standing PCBs due to the removal of joint slack and/or the use of grouted barrier toes. This finding can be seen in the fact that dynamic deflections and the clear space behind barrier for all three tests are very similar. The primary cause of the lack of observed benefit for the modified PCB joints was the absence of barrier reinforcement in the toes of both the New York and New Jersey PCB segments. The lack of reinforcement led to disengagement of the barrier toes when they were loaded by adjacent barrier segments, which caused increased rotation and motion of the barrier joints. This toe disengagement overcame the expected benefit that would have been provided by the removal of joint slack and use of grouted toes, which resulted in similar joint rotation and displacement for both the New Jersey and New York PCB crash tests. Secondly, the PCB segments used in these tests have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems which utilize joint spacings up to 4 in. (102 mm). Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segment, among others. Thus, some variability would be expected in barrier performance even for basically identical systems.

Smaller reductions in PCB deflections and clear space behind the barrier were observed with the removal of joint slack and use of grouted toes. This finding was primarily due to the fracture and disengagement of the barrier toes. If larger reductions in PCB deflections and clear space are desired, PCB redesign or modification would be required, including reinforcement of the barrier toes, which may improve effectiveness of joint slack removal and the use of grouted toes.

# Table 10. Comparison of Free-Standing Systems

| Test No.        | Joint<br>Class<br>[1] | Connection<br>Type [2] | System Details                                                                                 | Permanent<br>Set                               | Dynamic<br>Deflection<br>(DD) | Working<br>Width<br>(WW) | Clear<br>Space<br>Behind<br>Barrier | Vehicle<br>Roll<br>(deg) | Vehicle<br>Pitch<br>(deg) | Vehicle<br>Mass<br>lb (kg) | Impact<br>Speed<br>mph<br>(km/h) | Impact<br>Angle<br>(deg) | Impact<br>Severity<br>kip-ft<br>(kJ) |
|-----------------|-----------------------|------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------|--------------------------|-------------------------------------|--------------------------|---------------------------|----------------------------|----------------------------------|--------------------------|--------------------------------------|
| NJPCB-3         | А                     | А                      | Free-standing system,<br>barriers 1 and 10<br>pinned, remove slack,<br>no grouted toes         | 36 <sup>5</sup> / <sub>8</sub> in.<br>(930 mm) | 38.1 in.<br>(968 mm)          | 62.1 in.<br>(1,577 mm)   | 38.1 in.<br>(968 mm)                | -17.2                    | -9.0                      | 4,999<br>(2,268)           | 62.3<br>(100.2)                  | 25.8                     | 122.9<br>(166.6)                     |
| NJPCB-4<br>[16] | В                     | N/A                    | Free-standing system,<br>barriers 1 and 10<br>pinned, remove slack,<br>grouted toes            | 38 in.<br>(962 mm)                             | 40.7 in.<br>(1,034 mm)        | 64.7 in.<br>(1,643 mm)   | 40.7 in.<br>(1,034 mm)              | -16.2                    | -14.2                     | 5,000<br>(2,268)           | 62.8<br>(101.3)                  | 24.5                     | 113.4<br>(153.7)                     |
| NYTCB-2<br>[17] | А                     | А                      | Free-standing system,<br>barriers 1 and 10<br>pinned, slack not<br>removed, no grouted<br>toes | 39½ in.<br>(1,003 mm)                          | 40.3 in.<br>(1,023 mm)        | 64.3 in.<br>(1,633 mm)   | 40.3 in.<br>(1,023 mm)              | -12.4                    | -10.6                     | 5,024<br>(2,279)           | 61.2<br>(98.5)                   | 25.8                     | 119.2<br>(161.6)                     |

N/A = Not Applicable

54



NYTCB-2 – Free-Standing, Joint Slack Not Removed, No Grouted Toes

Figure 37. Deflection Comparisons - Test Nos. NJPCB-3, NJPCB-4, and NYTCB-2

 $39\frac{1}{2}$ " [1003 mm]

# **8 MASH IMPLEMENTATION**

The objective of this research was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) with a free-standing configuration, corresponding to joint class A in the 2013 NJDOT *Roadway Design Manual* and connection type A in the 2015 NJDOT *Roadway Design Manual*. The NJDOT barriers consisted of NJDOT PCBs joined with a connection key. Barrier nos. 1 and 10 were anchored to the concrete roadway surface through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins. The barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints prior to installation of the steel anchor pins.

According to TL-3 evaluation criteria in MASH 2009, two tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 3-10 - an 1100C small car and (2) test designation no. 3-11 - a 2270P pickup truck. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

In test no. 7069-3, a rigid, F-shape bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-9]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, <sup>1</sup>/<sub>2</sub>-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid concrete barriers as seen in test no. 47 [10]. Therefore, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system. It should be noted that any tests within the evaluation matrix deemed not critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

During test no. NJPCB-3, a 4,999-lb (2,268 kg) pickup truck with a simulated occupant seated in the left-front seat impacted the NJDOT PCB system with joint class A, as specified in the 2013 NJDOT *Roadway Design Manual*, and connection type A in the 2015 NJDOT *Roadway Design Manual*, at a speed of 62.3 mph (100.2 km/h) and at an angle of 25.8 degrees, resulting in an impact severity of 122.9 kip-ft (165.2 kJ). At 0.216 sec after impact, the vehicle became parallel to the system with a speed of 50.1 mph (80.7 km/h). At 0.380 sec, the vehicle exited the system at a speed of 49.0 mph (78.9 km/h) and at an angle of 5.4 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were minimal with a maximum of  $4\frac{5}{8}$  in. (117 mm), which did not violate the limits established in MASH 2009. Damage to the barrier was also moderate, consisting of contact marks on the front face of the PCB segments, concrete spalling, and concrete cracking on barrier nos. 3, 4, 5, and 6. The maximum dynamic barrier deflection was 38.1 in. (968 mm), which included minor tipping of the barrier at the top surface. The working width of the PCB system was 62.1 in. (1,577 mm). All occupant risk measures were within the recommended limits, and the occupant compartment

deformations were also deemed acceptable. Therefore, NJDOT barriers, Type 4 (Alternative B) with joint class A, as specified in the 2013 NJDOT *Roadway Design Manual*, and connection type A in the 2015 NJDOT *Roadway Design Manual*, successfully met all the safety performance criteria of MASH 2009 test designation no. 3-11.

The NJDOT barriers, Type 4 (Alternative B) with joint class A, as specified in the 2013 NJDOT *Roadway Design Manual*, and connection type A in the 2015 NJDOT *Roadway Design Manual*, consisting of NJDOT PCB barriers joined with a connection key, joint slack removed, and barrier nos. 1 and 10 pinned on both the traffic side and back side, was successfully crash tested and evaluated according to the AASHTO MASH 2009 TL-3 criteria. This barrier successfully met all the requirements of MASH 2009 test designation no. 3-11. In addition, the researchers consider the system MASH 2009 compliant based on the successful test designation no. 3-11 test and the previous justification for test designation no. 3-10 being deemed not critical. Further, since there is no difference between MASH 2009 and MASH 2016 for the evaluation of longitudinal barriers such as the PCB system tested in this project, except for the additional occupant compartment deformation measurements required by MASH 2016, this system also meets MASH 2016 TL-3 criteria.

A comparison of similar systems for the free-standing configuration included three systems: (1) a NJ PCB system with the joint slack removed (test no. NJPCB-3); (2) a NJ PCB system with the joint slack removed and grouted toes (test no. NJPCB-4) [16]; and (3) a New York PCB system without removal of joint slack or grouted toes (test no. NYTCB-2) [17]. A review of these test results (test nos. NJPCB-3, NJPCB-4, and NYTCB-2) revealed little to no benefit would be observed in reduced barrier deflections and clear space requirements for free-standing PCBs due to joint slack removal and/or use of grouted toes as dynamic deflections and the clear space behind barrier for all three tests are very similar. The finding is primarily due to no barrier reinforcement in the toes of both the New York and New Jersey PCB segments. The lack of steel reinforcement led to concrete fracture near the barrier toes when they were loaded by adjacent barrier segments, which caused increased rotation of the barrier joints. This concrete toe disengagement reduced the expected benefit that would have been provided by the removal of joint slack and use of grouted toes. Secondly, the PCB segments used in these tests have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems, which utilize joint spacings up to 4 inches. Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segments, among other. Thus, some variability would be expected in barrier performance even for basically identical systems.

In the 2013 NJDOT *Roadway Design Manual* the allowable deflection is determined by the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For joint class A, as specified in the 2013 NJDOT *Roadway Design Manual* and utilized in this system, the NJDOT allowable movement guidance is 16 to 24 in. (406 to 610 mm). For connection type A, as specified in the 2015 NJDOT *Roadway Design Manual*, the NJDOT maximum allowable deflection is 41 in. (1,041 mm). For this test, the clear

space behind the barrier was 38.1 in. (968 mm). Limited reductions in PCB deflections and clear space behind the barrier were observed with joint slack removal and use of grouted toes. Again, this finding is primarily due to the fracture and disengagement of the barrier toes. If larger reductions in PCB deflections and clear space are desired, PCB redesign or modification would be required, including reinforcement of the barrier toes, which may improve the effectiveness of joint slack removal and the use of grouted toes.

# **9 REFERENCES**

- 1. New Jersey Department of Transportation, *Roadway Design Manual*, Revised May 10, 2013.
- 2. New Jersey Department of Transportation, *Roadway Design Manual*, Revised 2015.
- 3. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 4. *Manual for Assessing Safety Hardware, Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- 5. Buth, C. E., Hirsch, T. J., and McDevitt, C. F., *Performance Level 2 Bridge Railings*, Transportation Research Record No. 1258, Transportation Research Board, National Research Council, Washington, D.C., 1990.
- 6. *Guide Specifications for Bridge Railings*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 1989
- 7. Bronstad, M. E., Calcote, L. R., and Kimball Jr, C. E., *Concrete Median Barrier Research-Vol.2 Research Report*, Report No. FHWA-RD-77-4, Submitted to the Office of Research and Development, Federal Highway Administration, Performed by Southwest Research Institute, San Antonio, TX, March 1976.
- Buth, C. E., Campise, W. L., Griffin III, L. I., Love, M. L., and Sicking, D. L., *Performance Limits of Longitudinal Barrier Systems-Volume I: Summary Report*, FHWA/RD-86/153, Final Report to the Federal Highway Administration, Office of Safety and Traffic Operations R&D, Performed by Texas Transportation Institute, Texas A&M University, College Station, TX, May 1986.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Permanent New Jersey Safety Shape Barrier – Update to NCHRP 350 Test No. 3-10 (2214NJ-1)*, Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
- 10. Fortuniewicz, J. S., Bryden, J. E., and Phillips, R. G., *Crash Tests of Portable Concrete Median Barrier for Maintenance Zones*, Report No. FHWA/NY/RR-82/102, Final Report to the Office of Research, Development, and Technology, Federal Highway Administration, Performed by the Engineering Research and Development Bureau, New York State Department of Transportation, December 1982.
- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 12. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- 13. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July, 2007.
- 14. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 15. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Bhakta, S.K., Lechtenberg, K.A., Faller, R.K., Reid, J.D., Bielenberg, R.W., and Urbank, E.L., *Performance Evaluation of New Jersey's Portable Concrete Barrier with a Free-Standing Configuration and Grouted Toes – Test No. NJPCB-4*, Report No. TRP-03-371-18, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 2018.
- Stolle, C.J., Polivka, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., Reid, J.D., Rohde, J.R., Allison, E.M., and Terpsma, R.J., *Evaluation of Box Beam Stiffening of Unanchored Temporary Concrete Barriers*, Research Report No. TRP-03-202-08, Project No. C-06-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 14, 2008.

# **10 APPENDICES**

# Appendix A. NJDOT PCB Standard Plans



Figure A-1. NJDOT PCB Standard Plans

63


Figure A-2. NJDOT PCB Standard Plans



Figure A-3. NJDOT PCB Standard Plans



Figure A-4. NJDOT PCB Standard Plans



Figure A-5. NJDOT PCB Standard Plans

67

# Appendix B. Material Specifications

| Item No. | Description                                                                           | Material Specification           | Reference                                                           |
|----------|---------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|
| A1       | Concrete Barrier Segment                                                              | Min. f 'c = 3,700 psi (25.5 MPa) | University of Nebraska 15-563                                       |
| A2       | Anchor Steel Pins                                                                     | ASTM A36                         | H #54141812                                                         |
| B1       | Rebar - #4 Vertical Stirrup                                                           | ASTM A615 Gr. 60                 | Heat #61101274, 61101493, 61101510,<br>61101492, 61101499, 61101772 |
| B2, B3   | Rebar - #6 Longitudinal Bar                                                           | ASTM A615 Gr. 60                 | Heat #6115448, 61105472                                             |
| B4       | Rebar - #4 Horizontal Anchor<br>Recess, Reinforcement Stirrup                         | ASTM A615 Gr. 60                 | Heat #61101274, 61101493, 61101510,<br>61101492, 61101499, 61101772 |
| B5       | Rebar - #6 Top and Bottom Cross<br>Bar                                                | ASTM A615 Gr. 60                 | Heat #6115448, 61105472                                             |
| C1       | Steel Tube – 4"×4"×½"<br>(102×102×12.7) thick × 20" (508)<br>long                     | ASTM A500 Gr. B and C            | Heat #821597, 1422428, M04495_1,<br>T83539, SD5020                  |
| C2       | Bent Steel Plate 1, 2"×1/4" (51×6)                                                    | ASTM A36                         | Heat #1129849                                                       |
| C3       | Bent Steel Plate 2, 2"×1/4" (51×6)                                                    | ASTM A36                         | Heat #1129849                                                       |
| D1       | Steel Plate 1, 2"×1/2" (51×13)                                                        | ASTM A36                         | Heat #L99837                                                        |
| D2       | Steel Plate 2, 2 <sup>1</sup> / <sub>4</sub> "× <sup>1</sup> / <sub>2</sub> " (57×13) | ASTM A36                         | Heat #54144612                                                      |
| D3       | <sup>1</sup> / <sub>2</sub> " (13) Steel Plate – Stiffener                            | ASTM A36                         | Heat #54144612, L99837                                              |
| D4       | <sup>1</sup> / <sub>2</sub> " (13) Steel Plate – Top Plate                            | ASTM A36                         | Heat #54144612, L99837                                              |

Table B-1. Bill of Materials, Test No. NJPCB-3

69

| Age<br>(days)         Cylinder<br>1           10/26/2015         1         4171           10/27/2015         1         3539           10/28/2015         1         4116           10/29/2015         1         3831 | <b>Cylinder</b><br>2<br>3869<br>3883<br>4311 | Average<br>4020<br>3711 | Age<br>(days) | Cylinder | 1:<br>Cylinder | 5-563   |               |               |               |         |     |       |                              |                 |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|---------------|----------|----------------|---------|---------------|---------------|---------------|---------|-----|-------|------------------------------|-----------------|-----------------------|
| Age<br>(days)         Cylinder<br>1           10/26/2015         1         4171           10/27/2015         1         3539           10/28/2015         1         4116           10/29/2015         1         3831 | Cylinder<br>2<br>3869<br>3883<br>4311        | Average<br>4020<br>3711 | Age<br>(days) | Cylinder | Cylinder       |         |               |               |               |         | _   |       | CONTRACTOR OF TAXABLE PARTY. |                 |                       |
| 10/26/2015         1         4171           10/27/2015         1         3539           10/28/2015         1         4116           10/29/2015         1         3831                                               | 3869<br>3883<br>4311                         | 4020                    |               | 1        | 2              | Average | Age<br>(days) | Cylinder<br>1 | Cylinder<br>2 | Average | Air | Slump | Concrete<br>Temp.            | Ambient<br>Temp | EMAIL,<br>Mailed, etc |
| 10/27/20151353910/28/20151411610/29/201513831                                                                                                                                                                       | 3883<br>4311                                 | 3711                    | 7             | 7805     | 7800           | 7803    | 28            |               |               | 0       | 5.5 | 6 3/4 | 60                           | 58              |                       |
| 10/28/20151411610/29/201513831                                                                                                                                                                                      | 4311                                         | 0111                    | 7             | 7343     | 7624           | 7484    | 28            |               |               | 0       | 6.8 | 5 3/4 | 62                           | 60              |                       |
| 10/29/2015 1 3831                                                                                                                                                                                                   | 0511                                         | 4214                    | 7             | 6223     | 6340           | 6282    | 28            |               |               | 0       | 6.0 | 6 1/2 | 64                           | 64              |                       |
|                                                                                                                                                                                                                     | 3544                                         | 3688                    | 7             | 7046     | 6998           | 7022    | 28            |               |               | 0       | 5.8 | 6 1/2 | 67                           | 68              |                       |
| 10/30/2015 3 4571                                                                                                                                                                                                   | 4608                                         | 4590                    | 7             | 6337     | 6235           | 6286    | 28            |               |               | 0       | 6.0 | 6 1/2 | 64                           | 63              |                       |
| 11/2/2015 1 3125                                                                                                                                                                                                    | 3062                                         | 3094                    | 7             | 6887     | 6748           | 6818    | 28            |               |               | 0       | 6.2 | 5 3/4 | 64                           | 62              |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 | _                     |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            | 1             |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       | -   |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 1             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
|                                                                                                                                                                                                                     |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
|                                                                                                                                                                                                                     |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
|                                                                                                                                                                                                                     |                                              | 0                       | 7             |          |                | 0       | 20            |               |               | 0       |     |       |                              |                 |                       |
|                                                                                                                                                                                                                     |                                              | 0                       | 7             |          |                | 0       | 20            |               |               | 0       | -   |       |                              |                 | 4                     |
|                                                                                                                                                                                                                     |                                              | 0                       | 7             |          |                | 0       | 20            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 20            |               |               | 0       | -   |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 28            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 20            |               |               | 0       |     |       |                              |                 |                       |
| 1                                                                                                                                                                                                                   |                                              | 0                       | 7             |          |                | 0       | 20            |               |               | 0       | -   |       |                              |                 |                       |

Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-3

|                             |                             |                 | -                           |                          | CERTIF                                                 | TED MAT                  | ERIAL TEST REPOR           | T                |                                                         |                                           |                  |                   | Page 1/1                       | 1 |
|-----------------------------|-----------------------------|-----------------|-----------------------------|--------------------------|--------------------------------------------------------|--------------------------|----------------------------|------------------|---------------------------------------------------------|-------------------------------------------|------------------|-------------------|--------------------------------|---|
| GÐ                          | GER                         | AU              | CUSTOMER SH<br>STEEL & PIPE | IP TO<br>E SUPPLY CO     | CUS<br>INC STE<br>PARK                                 | STOMER BII<br>EEL & PIPE | LL TO<br>E SUPPLY CO INC   | GR<br>A30        | ADE<br>5/44W                                            |                                           | SHAPE Round Ba   | /SIZE<br>ar /l"   |                                |   |
| US-ML-CHAI                  | RLOTTE                      |                 | JONESBURG,<br>USA           | MO 63351                 | MAUS                                                   | NHATTAN<br>A             | N,KS 66505-1688            | LEI<br>20'       | NGTH<br>DO"                                             |                                           | W<br>14          | EIGHT<br>4,968 LB | HEAT / BATCH<br>54141812/02    |   |
| CHARLOTTE                   | E, NC 28269                 |                 | SALES ORDE<br>1384530/00004 | R<br>40                  |                                                        | CUSTOME                  | R MATERIAL Nº<br>009010020 | SP<br>1-A<br>2-A | ECIFICATION / E<br>STM A6/A6M-11, A<br>709/A709M-11 GR3 | DATE or R<br>36/A36M-0<br>6               | EVISION<br>08    | I                 |                                |   |
| CUSTOMER I<br>4500233654    | PURCHASE ORDER              | NUMBER          |                             | BILL OF L/<br>1321-00000 | ADING<br>27245                                         | E                        | DATE<br>12/18/2014         | 3-C              | SA G40.21-04(R200                                       | 9) 44W                                    |                  |                   | •                              |   |
| CHEMICAL CO<br>C<br>0.17    | DMPOSITION<br>Mn<br>0.69    | P<br>%<br>0.018 | \$<br>0.031                 | Şi<br>0.19               | Çu<br>0.41                                             | Ni<br>0.13               | Çr<br>0.11                 | Mo<br>0.030      | V<br>0.001                                              | N/<br>0.0                                 | þ<br>01          | Şn<br>0.014       | ng - Landard (na serieda)<br>1 |   |
| MECHANICAL<br>El            | PROPERTIES<br>long.<br>3.20 | C<br>Ir<br>8.0  | /L<br>ich<br>000            | T                        | JTS<br>PSI<br>7428                                     |                          | UTS<br>MPa<br>534          | 5                | YS<br>PSI<br>4195                                       | ng sa | YS<br>MPa<br>374 |                   |                                |   |
| GEOMETRIC C<br>R:R<br>32.00 | HARACTERISTICS              |                 |                             |                          |                                                        |                          |                            |                  |                                                         |                                           |                  | - *               |                                |   |
| COMMENTS/NR#16-             | iotes<br>0230 AS            | TM A3           | 6 1"x                       | 15" Ro                   | ound E                                                 | Bar                      |                            |                  | į                                                       |                                           |                  |                   |                                |   |
| New J                       | ersey T                     | CB Ba           | rrer A                      | Ancho                    | r Dowe                                                 | el P:                    | ins                        |                  |                                                         | -                                         |                  |                   |                                |   |
| H#541                       | 41812 R                     | <b>#16-C</b>    | 230 De                      | ecemb                    | er 201                                                 | .5                       |                            |                  | ×.                                                      |                                           |                  | e<br>E            |                                |   |
|                             |                             |                 |                             |                          |                                                        |                          |                            | 3                | •                                                       |                                           |                  |                   |                                |   |
| <b></b>                     |                             |                 |                             |                          | ning and an and an |                          |                            |                  | 2                                                       |                                           |                  |                   |                                |   |
|                             |                             |                 |                             |                          |                                                        |                          |                            |                  |                                                         |                                           |                  |                   |                                |   |
|                             |                             |                 |                             |                          |                                                        |                          |                            |                  |                                                         |                                           |                  |                   |                                |   |

![](_page_79_Picture_1.jpeg)

Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-3

| 141.42 6.                                   |                                                    |                                   |                                             |                                                  | CERTI                    | TED MATE                              | RIAL TEST REPO                 | ORT        |                               |                                |                  |                             | Page 1/1                    |
|---------------------------------------------|----------------------------------------------------|-----------------------------------|---------------------------------------------|--------------------------------------------------|--------------------------|---------------------------------------|--------------------------------|------------|-------------------------------|--------------------------------|------------------|-----------------------------|-----------------------------|
| GÐ                                          | GER                                                | DAU                               | CUSTOMER SHI<br>RB STEEL SUF<br>2000 EDDYST | PTO<br>PLY CO INC<br>DNE INDUSTI                 | CUS<br>RE<br>UAL PARK200 | STOMER BILL<br>STEEL SUP<br>0 EDDYSTO | TO<br>PLY CO INC<br>INDUSTRIAL | PARK       | GRADI<br>60 (420              | E<br>)                         | SHA<br>Reba      | PE / SIZE<br>- / #4 (13MM)  |                             |
| US-ML-SAYRI<br>NORTH CROS                   | EVILLE<br>SMAN ROAD                                |                                   | EDDYSTONE,<br>USA                           | PA 19022                                         | ED)<br>USA               | DYSTONE,P.                            | A 19022-1588                   |            | LENGT<br>40'00"               | н                              |                  | WEIGHT<br>5,050 LB          | HEAT / BATCH<br>61101274/02 |
| SAYREVILLE,<br>USA                          | NJ 08872                                           |                                   | SALES ORDEI<br>1785955/00001                | ξ<br>Ο                                           |                          | CUSTOMER                              | MATERIAL Nº                    |            | SPECI<br>ASTM A               | FICATION / D/<br>4615/A615M-14 | ATE or REVIS     | ON                          |                             |
| CUSTOMER PU<br>BB 22777                     | JRCHASE ORD                                        | ER NUMBER                         |                                             | BILL OF LA<br>1331-000002                        | DING<br>9243             | DA<br>01/                             | TE<br>/23/2015                 |            |                               |                                |                  |                             |                             |
| CHEMICAL CON                                | POSITION<br>Mn<br>0.66                             | P<br>0.012                        | \$<br>0.048                                 | Şi<br>0.23                                       | Çu<br>%<br>0.43          | Ni<br>0.16                            | 57<br>0.05                     | M<br>0.0   | р<br>46                       | Şn<br>0.019                    | .0.017           | CEqyA706                    |                             |
| MECHANICAL P<br>Y<br>668<br>674             | ROPERTIES<br>S<br>SI<br>S50<br>400                 | Mi<br>46<br>46                    | Sa<br>1<br>5                                | U<br>F<br>93<br>95                               | TS<br>SI<br>950<br>100   |                                       | UTS<br>MPa<br>648<br>656       |            | G/L<br>Inch<br>8.000<br>8.000 | )                              | 20<br>20<br>20   | 7/1_<br>ama<br>00.0<br>NI 0 |                             |
| MECHANICAL P<br>Elo<br>13.<br>13.           | ROPERTIES<br>pg.<br>50<br>50                       | Bend<br>Ol<br>Ol                  | Test<br>C                                   |                                                  |                          |                                       |                                |            |                               |                                |                  |                             |                             |
| GEOMETRIC CH<br>%Light<br>%<br>4.10<br>3.20 | ARACTERISTICS<br>Def Hgt<br>Inch<br>0.030<br>8,030 | Def Gap<br>Inch<br>0.099<br>0.099 | DelSpace<br>Inch<br>0.320<br>0.320          |                                                  |                          |                                       |                                |            |                               |                                |                  |                             |                             |
| COMMENTS / NC<br>This grade meets th        | PTES<br>le requirements for t                      | he following grades:              |                                             |                                                  |                          |                                       |                                |            |                               |                                |                  |                             |                             |
|                                             |                                                    |                                   |                                             |                                                  |                          |                                       |                                |            |                               |                                |                  |                             |                             |
|                                             |                                                    |                                   |                                             |                                                  |                          |                                       |                                |            |                               |                                | *                |                             |                             |
|                                             | The abov                                           | e figures are certi               | fied chemical and                           | physical test re                                 | cords as contain         | ed in the perm                        | nanent records of or           | mpany. We  | certify d                     | at these data ar               | e correct and in | compliance with             |                             |
|                                             | specified                                          | haske                             | BHASE<br>DV QUAL                            | ing the billets,<br>CAR YALAMANCI<br>TY DIRECTOR | was melted and<br>IILI   | manufactured                          | in the USA. CMTR               | complies w | with EN 1                     | 0204 3.1.                      | JOSEFF<br>QUALT  | T'HOMIC                     |                             |

Figure B-4. Rebar No. 4 Material Certificate, Test No. NJPCB-3

| 2. A. S. 19 1. 8                                                                                                                                                                                       |                                              | CER                                                           | TIFIED MA              | TERIAL TES                        | T REPORT             |                            |                                   |                 |                                    | Page 1/1                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|------------------------|-----------------------------------|----------------------|----------------------------|-----------------------------------|-----------------|------------------------------------|-----------------------------|
| GÐ GERDAU                                                                                                                                                                                              | CUSTOMER SHI<br>RE STEEL SUP<br>2000 EDDYSTO | Y TO O<br>PLY CO INC I<br>INF INITIISTRIAL PARK               | CUSTOMER I<br>RESTEELS | UPPLY CO IN                       | IC<br>STRIAL PARK    | GRADI<br>60 (420           | E<br>))                           | SHA<br>Reba     | PB/SIZE<br>r /#4 (13MM)            |                             |
| US-MI-SAYREVILLE<br>NORTH CROSSMAN ROAD                                                                                                                                                                | EDDYSTONE,I<br>USA                           | A 19022                                                       | EDDYSTON<br>USA        | TE,PA 19022-1                     | 588                  | LENG<br>40'00"             | [H]                               |                 | WEIGHT<br>5,023 LB                 | HEAT / BATCH<br>61101493/04 |
| SAYREVILLE, NJ 08872<br>USA                                                                                                                                                                            | SALES ORDER<br>1785955/000014                | )                                                             | CUSTON                 | IER MATERL                        | AL Nº                | SPECI                      | FICATION / DAT<br>AGI 5/AGI 5M-14 | E or REVIS      | ION                                | •                           |
| CUSTOMER PURCHASE ORDER NUMBER<br>BB 22777                                                                                                                                                             |                                              | BILL OF LADING<br>1331-0000029243                             |                        | DATE<br>01/23/2015                |                      |                            |                                   |                 |                                    |                             |
| CHEMICAL COMPOSITION<br>C Min P<br>% % %<br>0.42 0.65 0.012                                                                                                                                            | \$<br>0.058                                  | Si Cµ<br>% %                                                  | - ]                    | Ni<br>%<br>15                     | Çr i<br>%<br>0.09 0. | 10<br>056                  | Sn<br>0.020                       | V<br>%<br>0.009 | CEqyA706<br>0.56                   |                             |
| MECHANICAL PROPERTIES<br>VS<br>PSI N<br>71350<br>71250<br>4                                                                                                                                            | 75<br>1Pa<br>92<br>91                        | UTS<br>PS1<br>104900<br>105600                                |                        | UTS<br>MPa<br>723<br>728          |                      | G/1<br>Inc<br>8.00<br>8.00 | Б<br>00<br>00                     |                 | G/L<br>mm<br>200.0<br>200.0        |                             |
| MECHANICAL PROPERTIES<br>Elong. Ber<br>70<br>13.00 C<br>11.50 C                                                                                                                                        | dTest<br>DK.<br>DK                           |                                                               |                        |                                   |                      |                            |                                   |                 |                                    |                             |
| GEOMETRIC CHARACTERISTICS           %Light         Def Hgt         Def Gap           %         Inch         Inch           2.70         0.032         0.098           1.40         0.034         0.099 | DefSpace<br>Inco<br>0.321<br>0.321           |                                                               |                        |                                   |                      |                            | -                                 |                 |                                    |                             |
| COMMENTS / NOTES<br>This grade meets the requirements for the following grad                                                                                                                           | 95                                           |                                                               |                        |                                   |                      |                            |                                   |                 |                                    |                             |
|                                                                                                                                                                                                        |                                              |                                                               |                        |                                   |                      |                            |                                   |                 |                                    |                             |
|                                                                                                                                                                                                        |                                              |                                                               |                        |                                   |                      |                            |                                   |                 |                                    |                             |
|                                                                                                                                                                                                        |                                              |                                                               |                        |                                   |                      |                            |                                   |                 |                                    |                             |
|                                                                                                                                                                                                        |                                              |                                                               |                        |                                   |                      |                            |                                   |                 |                                    |                             |
| The above figures are or specified requirements.                                                                                                                                                       | rtified chemical an                          | d physical test records as co<br>ding the billets, was melted | ntained in th          | c permanent re<br>ctured in the U | cords of company.    | We certify                 | that these data are               | correct and     | in compliance with                 |                             |
| Mack                                                                                                                                                                                                   | Ory QUA                                      | KAR YALAMANCHILI<br>.ITY DIRECTOR                             |                        |                                   |                      | Ja-                        | 1 Planne                          | azot<br>Aug     | EPH T HOMOC<br>LITY ASSURANCE MGR. |                             |
| L                                                                                                                                                                                                      |                                              |                                                               |                        |                                   |                      |                            |                                   |                 | <u>,</u>                           |                             |

Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-3

|                                                                                                                                                                                                        |                                              | CER                                                           | TIFIED MATERIAL TEST REPORT                                                  |                                                             |                                         | Page 1/1                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------|
| GÐ GERDAU                                                                                                                                                                                              | CUSTOMER SHI<br>RE STEEL SUP<br>2000 EDDYSTO | Y TO<br>PLY CO INC<br>DNE INDUSTRIAL PARK                     | CUSTOMER BILL TO<br>RE STEEL SUPPLY CO INC<br>2000 EDDYSTONE INDUSTRIAL PARK | GRADE<br>60 (420)                                           | SHAPE / SIZE<br>Rebar / #4 (13MIM)      |                             |
| US-MI-SAYREVILLE                                                                                                                                                                                       | EDDYSTONE,I<br>USA                           | A 19022                                                       | EDDYSTONE,PA 19022-1588<br>USA                                               | LENGTH<br>40'00*                                            | WEIGHT<br>5,050 LB                      | HEAT / BATCH<br>61101510/03 |
| SAYREVILLE, NJ 08872<br>USA                                                                                                                                                                            | SALES ORDER<br>1785955/00001                 | 1                                                             | CUSTOMER MATERIAL Nº                                                         | SPECIFICATION / DATE<br>ASTM A615/A615M-14                  | E or REVISION                           |                             |
| CUSTOMER PURCHASE ORDER NUMBER<br>BB 22777                                                                                                                                                             |                                              | BILL OF LADING<br>1331-0000029243                             | DATE<br>01/23/2015                                                           |                                                             |                                         |                             |
| CHEMICAL COMPOSITION<br>C Mn P<br>% % %<br>0.42 0.66 0.018                                                                                                                                             | \$<br>0.046                                  | Si Cu<br>0.21 0.30                                            | Ni Sr<br>0.11 0.06                                                           | Mo Su<br>0.035 0.018                                        | V CEqvA706<br>0.015 0.55                |                             |
| MECHANICAL PROPERTIES<br>YSI M<br>73400 5<br>75600 55                                                                                                                                                  | 7S<br>Pa<br>06<br>21                         | UTS<br>PSI<br>107150<br>110500                                | UTS<br>MPa<br>739<br>762                                                     | G/L<br>Inch<br>8.000<br>8.000                               | G/L<br>mm<br>200.0<br>200.0             |                             |
| MECHANICAL PROPERTIES<br>Elong, Ben<br>7a<br>12.00 C<br>13.00 C                                                                                                                                        | dTest<br>NK<br>NK                            |                                                               |                                                                              |                                                             |                                         |                             |
| GEOMETRIC CHARACTERISTICS           Migot         Def Figt         Def Gap           %         Inch         Inch           2.40         0.032         0.080           2.30         0.032         0.080 | DefSpace<br>Inch<br>0.322<br>0.322           |                                                               |                                                                              |                                                             |                                         |                             |
| COMMENTS (NOTES<br>Tais grade oreets the requirements for the following grade                                                                                                                          | s:                                           |                                                               |                                                                              |                                                             |                                         |                             |
|                                                                                                                                                                                                        |                                              |                                                               |                                                                              |                                                             |                                         |                             |
|                                                                                                                                                                                                        |                                              |                                                               | 5                                                                            |                                                             |                                         |                             |
|                                                                                                                                                                                                        |                                              |                                                               |                                                                              |                                                             |                                         |                             |
|                                                                                                                                                                                                        |                                              |                                                               |                                                                              |                                                             |                                         |                             |
| The above figures are co<br>specified requirements.                                                                                                                                                    | titied chemical an<br>This material, inclu   | d physical test records as or<br>ding the billets, was melter | ontained in the permanent records of company                                 | . We certify that these data are<br>lies with EN 10204 3.1. | correct and in compliance with          |                             |
| Mack                                                                                                                                                                                                   | QUA                                          | SKAR YALAMANCHILI<br>LILY DIRECTOR                            |                                                                              | Jona 7 Ami                                                  | OSEPH T HOMIC<br>QUALITY ASSIRANCE MCR. |                             |

Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-3

|                                         |                                                                 |                                 |                                                         |                                                                        | CERTIF                                        | TED MA      | TERIAL TI                      | ST REPOR                   | T                    |                               | _                         |                 |                                                     | Page 1/1                  |
|-----------------------------------------|-----------------------------------------------------------------|---------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|-------------|--------------------------------|----------------------------|----------------------|-------------------------------|---------------------------|-----------------|-----------------------------------------------------|---------------------------|
| GÐ                                      | GERD/                                                           | ٩U                              | CUSTOMER SHI                                            | P TO<br>PPLY CO INC                                                    | CUS<br>RE                                     | STOMER E    | UPPLY CO                       | INC                        | DV                   | GRADE<br>60 (420)             |                           | SHA.<br>Rebar   | PE / SIZE<br>/#4 (13MEM)                            |                           |
| US-ML-SAYRE                             | VILLE                                                           |                                 | EDDYSTONE,<br>USA                                       | PA 19022                                                               | ED:<br>US                                     | DYSTON<br>A | E,PA 19022                     | -1588                      | AKK                  | LENGTH<br>40'00"              |                           |                 | WEIGHT<br>10,020 LB                                 | HEAT/BATCH<br>61101492/02 |
| SAYREVILLE, I<br>USA                    | NJ 08872                                                        |                                 | SALES ORDE<br>1785955/00001                             | R<br>0                                                                 |                                               | CUSTON      | IER MATER                      | HAL Nº                     |                      | SPECIFIC<br>ASTM A61          | ATION / DA<br>5/A615M-14  | TE or REVISI    | ON                                                  |                           |
| CUSTOMER PU<br>BB 22777                 | RCHASE ORDER NUM                                                | MBER                            | 1                                                       | BILL OF LA<br>1331-000002                                              | DING<br>19243                                 |             | DATE<br>01/23/2015             |                            |                      |                               |                           |                 |                                                     |                           |
| CHEMICAL COM<br>C<br>%<br>0.43          | POSITION<br>Mn /<br>0.67 0.6                                    | P<br>%<br>014                   | \$%<br>0.054                                            | Si<br>0.20                                                             | Cu<br>0.43                                    |             | li<br>21                       | Çr<br>%<br>0.10            | M<br>%<br>0.0        | 0<br>64                       | Sn<br>0.018               | ¥<br>%<br>0.017 | CEqyA706<br>0.57                                    |                           |
| MECHANICAL PY<br>PS<br>651<br>684       | ROPERTIES<br>1<br>50<br>50                                      | M<br>44<br>47                   | S<br>Pa<br>19<br>72                                     | [<br>]<br>90<br>99                                                     | PTS<br>PSI<br>5100<br>9600                    |             | UTS<br>MPa<br>663<br>687       |                            |                      | G/L<br>Inch<br>8.000<br>8.000 |                           | 20<br>20<br>20  | G/L<br>nm<br>00.0<br>00.0                           |                           |
| MECHANICAL PE<br>Elor<br>15.1<br>15.2   | ROPERTIES<br>1g.<br>00<br>50                                    | Bend<br>O<br>O                  | TTest<br>K                                              |                                                                        |                                               |             |                                |                            |                      |                               |                           |                 |                                                     |                           |
| GEOMETRIC CHA<br>%Light<br>3.60<br>1.70 | ARACTERISTICS<br>Def Hgt Def<br>Indo 15<br>0,031 0,<br>0,029 0, | : Gap<br>1ch<br>078<br>090      | DefSpace<br>Inch<br>0,322<br>0,322                      |                                                                        |                                               |             |                                |                            |                      |                               |                           |                 |                                                     |                           |
| COMMENTS / NO<br>This grade meets the   | TES<br>e requirements for the follo                             | wing grades                     | 5:                                                      |                                                                        |                                               |             |                                |                            |                      |                               |                           |                 |                                                     |                           |
|                                         |                                                                 |                                 |                                                         |                                                                        |                                               |             |                                |                            |                      |                               |                           |                 |                                                     |                           |
| L                                       |                                                                 |                                 |                                                         |                                                                        |                                               |             |                                |                            |                      |                               |                           |                 |                                                     |                           |
|                                         | The above figur<br>specified requir<br>MAC                      | res are cert<br>ements. T.<br>2 | Lified chemical ar<br>his material, inclu<br>BHA<br>QUA | nd physical test<br>ading the billets<br>SKAR YALAMAN<br>LITY DIRECTOR | records as conta<br>, was melted and<br>CHILL | ined in the | e permanent<br>stured in the l | records of co<br>USA. CMTR | mpany. W<br>complies | e certify tha<br>with EN 10   | these data ar<br>204 3.1. | JOSEI<br>QUAL   | п compliance with<br>н т номіс<br>пту assurance mgr |                           |

Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-3

| ····                                         |                                                     |                                         |                                            |                                     | CERTIFIED M.                             | ATERIAL TI                  | EST REPORT                              |                 |                                             |                 |                                   | Page [/]                  |
|----------------------------------------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------|------------------------------------------|-----------------------------|-----------------------------------------|-----------------|---------------------------------------------|-----------------|-----------------------------------|---------------------------|
| GÐ                                           | GER                                                 | DAU                                     | CUSTOMER SHI                               | PTO<br>PLY CO INC<br>INF INDUSTRIAL | CUSTOMER<br>RESTEEL                      | BILL TO<br>SUPPLY CO        | INC                                     | GI<br>60        | RADE<br>(420)                               | SHA<br>Reba     | PE/SIZE<br>r /#4(33MM)            |                           |
| US-ML-SAYRI                                  | EVILLE                                              |                                         | EDDYSTONE,I<br>USA                         | PA 19022                            | EDDYSTO<br>USA                           | NE,PA 19022                 | -1588                                   | LH<br>40        | ENGTH<br>'00'                               |                 | WEIGHT<br>5,050 LB                | HEAT/BATCH<br>61101499/04 |
| SAYREVILLE,<br>USA                           | , NJ 08872                                          |                                         | SALES ORDER<br>1785955/00001               | L<br>D                              | CUSTO                                    | MER MATER                   | UAL N°                                  | SI              | PECIFICATION / D/<br>STM A6L S/A625M-14     | TE or REVIS     | ION                               |                           |
| CUSTOMER PU<br>BB 22777                      | URCHASE ORDE                                        | ER NUMBER                               |                                            | BILL OF LADING<br>1331-0000029243   | G<br>L                                   | DATE<br>01/23/2015          |                                         |                 |                                             |                 |                                   |                           |
| CHEMICAL CON                                 | MPOSETION<br>Mu<br>%<br>(P.68                       | P<br>%<br>0.026                         | \$%<br>0.064                               | Si<br>0.21                          | Cµ<br>0.33 (                             | Ni<br>9.21                  | Çr<br>0.19 0                            | Mo<br>.066      | ្ត្រភ្<br>0.016                             | 0.012           | CEqyA706<br>0.58                  |                           |
| MECHANICAL F<br>P<br>709<br>68               | PROPERTIES<br>(S)<br>SI<br>900<br>950               | N<br>4<br>4                             | S<br>Pa<br>89<br>75                        | UTS<br>PSI<br>105500<br>103200      |                                          | UTS<br>MPa<br>727<br>712    |                                         |                 | G/L.<br>Iach<br>8.000<br>8.000              | 2               | G/L<br>mm<br>00.0<br>00.0         |                           |
| MECHANICAL J<br>Elg<br>11                    | PROPERTIES<br>DAG<br>.00<br>.00                     | Bend<br>C<br>O                          | fTest<br>K<br>K                            | 5                                   |                                          |                             |                                         |                 |                                             |                 |                                   |                           |
| GEOMETRIC CH<br>MLight<br>34<br>L.90<br>L.90 | HARACTERISTICS<br>Def Hgt<br>Inch<br>0,032<br>0,032 | Def Gap<br>Inch<br>0.088<br>0.086       | DefSpace<br>Inch<br>0.321<br>0.321         |                                     |                                          |                             |                                         |                 |                                             |                 |                                   | -                         |
| COMMENTS / NO                                | OTES                                                |                                         |                                            |                                     |                                          |                             |                                         |                 | <b>et</b>                                   |                 |                                   |                           |
| 1 i as grade nosets t                        | he requirements for t                               | he following grade                      | s:                                         |                                     |                                          |                             |                                         |                 |                                             |                 |                                   |                           |
|                                              |                                                     |                                         |                                            |                                     |                                          |                             |                                         |                 |                                             |                 |                                   |                           |
|                                              |                                                     |                                         |                                            |                                     |                                          |                             |                                         |                 |                                             |                 |                                   |                           |
|                                              |                                                     |                                         |                                            |                                     |                                          |                             |                                         |                 |                                             |                 |                                   |                           |
|                                              |                                                     |                                         |                                            |                                     |                                          |                             | • •••••                                 |                 |                                             |                 |                                   |                           |
|                                              |                                                     |                                         |                                            |                                     |                                          |                             |                                         |                 |                                             |                 |                                   |                           |
|                                              | The above specified                                 | ve figures are cer<br>l requirements. T | tified chemical and<br>bis material, inclu | ding the billets, was               | ds as contained in the melted and manufa | he permanent actured in the | records of company.<br>USA. CMTR compli | We co<br>es wit | ertify that these data a<br>h EN 10204 3.1. | ire correct and | in compliance with                |                           |
|                                              | 1                                                   | hack                                    | BHAS                                       | KAR YALAMANCHILI<br>ITY DIRECTOR    |                                          |                             |                                         | 4               | A Thom                                      | JOSE<br>QUAI    | PH T HOMIC<br>LITY ASSURANCE MGR. |                           |
|                                              |                                                     |                                         |                                            |                                     |                                          |                             |                                         |                 |                                             |                 |                                   |                           |

Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-3

| 1.1.1.1.1.1.1.1                        |                                                    |                                   |                                              |                                  | CERTI                   | FIED MATERIAL                                    | TEST REPORT             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           | _                      |                          | Page 1/1                  |
|----------------------------------------|----------------------------------------------------|-----------------------------------|----------------------------------------------|----------------------------------|-------------------------|--------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|------------------------|--------------------------|---------------------------|
| GÐ                                     | GERI                                               | DAU                               | CUSTOMER SHU<br>RE STEEL SUP<br>2000 EDDYSTO | ? TO<br>PLY CO INC<br>NE INDUSTR | CU<br>RE<br>IAL PARK200 | STOMER BILL TO<br>STEEL SUPPLY<br>10 EDDYSTONE I | CO INC<br>NDUSTRIAL PAR | ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GRADE<br>60 (420)             |                           | SHAPI<br>Rebar         | E / SIZE<br>/ #4 (13MIM) |                           |
| US-ML-SAYRE                            | VILLE<br>SMAN BOAD                                 |                                   | EDDYSTONE,I<br>USA                           | A 19022                          | ED                      | DYSTONE, PA 19<br>A                              | 022-[588                | in the second se | LENGTH<br>40%0"               |                           |                        | WEIGHT<br>4,008 LB       | HEAT/BATCH<br>61101772/04 |
| SAYREVILLE,<br>USA                     | NJ 08872                                           |                                   | SALES ORDER<br>1785955/00001/                | )                                |                         | CUSTOMER MA                                      | TERIAL Nº               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPECIFICATI<br>ASTM A615/A6   | ON / DATE or RJ<br>15M-14 | EVISIO                 | IN                       |                           |
| CUSTOMER PU<br>BB 22777                | RCHASE ORDER                                       | NUMBER.                           |                                              | BILL OF LAI<br>1331-0000029      | DING<br>0243            | DATE<br>01/23/2                                  | :015                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                        |                          |                           |
| CHEMICAL COM<br>C<br>().44             | POSITION<br>Mn<br>%<br>0.67                        | P<br>0.019                        | \$<br>0.059                                  | Si<br>%<br>0.20                  | ǵ<br>0.38               | Ni<br>0.16                                       | Çr<br>9,06              | M<br>%<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 \$<br>47 0.0                | n V<br>6 %                | 16                     | CEqyA706<br>0.57         |                           |
| MECHANICAL P<br>PS<br>664<br>658       | ROPERTIES<br>SI<br>00<br>50                        | M<br>4:<br>4:                     | S<br>78<br>54                                | U<br>P<br>969<br>97              | TS<br>SI<br>HOO<br>HOO  | U<br>M<br>6<br>6                                 | TS<br>Pa<br>68<br>74    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G/L<br>Inch<br>8.000<br>8.000 |                           | G/<br>mi<br>200<br>200 | /L.<br>191<br>9.0<br>9.0 |                           |
| MECHANICAL P<br>Elo<br>16.<br>17.      | ROPERTIES<br>ng.<br>00<br>00<br>00                 | Bend<br>C<br>O                    | TTest<br>K<br>K                              |                                  |                         |                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                        |                          |                           |
| GEOMETRIC CH<br>MLight<br>1.10<br>0.80 | ARACTERISTICS<br>Def Hgt<br>Into<br>0.025<br>0.029 | Def Gap<br>Inch<br>0.099<br>0.715 | DefSpace<br>Inch<br>0.320<br>0.320           |                                  |                         |                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                        |                          |                           |
| COMMENTS / NO<br>This grade meets th   | ITES<br>10 raquirements for th                     | e following grade                 | 5.                                           |                                  |                         |                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                        |                          |                           |
|                                        |                                                    |                                   |                                              |                                  |                         |                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                        |                          |                           |
|                                        |                                                    |                                   |                                              |                                  |                         |                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                        |                          |                           |
|                                        |                                                    |                                   |                                              |                                  |                         |                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                        |                          |                           |
|                                        |                                                    |                                   |                                              |                                  |                         |                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                        |                          |                           |
| [                                      | The above                                          | - figures are cer                 | tilied chemical an                           | d physical test r                | cords as conta          | ained in the permar                              | want records of comp    | W. VITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e certify that the            | se data are correc        | t and in               | compliance with          |                           |
|                                        | specified                                          | hark                              | bis material, inclu<br>BHA:                  | ding the billets,                | was melted an<br>HILI   | id manufactured in                               | the USA. CMTR co        | mplies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with EN 10204                 | 3.1.                      | JOSEPH                 | T HOMIC                  |                           |
|                                        |                                                    |                                   | QUA                                          | LITY DIRECTOR                    |                         |                                                  |                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | grouph / 1                    |                           | QUAL                   | TY ASSURANCE MGR,        |                           |

Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-3

| and the second second second                                      |                                                                |                                                    | C                                                     | EDTIFIED MA                        | TERIAL TEST                          | REPORT                             |                               |                              |                 |                                     | Page 1/1                    |
|-------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|------------------------------------|--------------------------------------|------------------------------------|-------------------------------|------------------------------|-----------------|-------------------------------------|-----------------------------|
| ca GE                                                             |                                                                | CUSTOMER SHI                                       | P TO<br>PPLY CO INC                                   | CUSTOMER I<br>RE STEEL S           | BILL TO                              | C                                  | GRADE<br>60 (420)             |                              | SHA<br>Rebar    | PE / SIZE<br>7 / #6 (19MM)          | -                           |
| JS-ML-SAYREVILLE                                                  |                                                                | 2000 EDDYST<br>PARK<br>EDDYSTONE,                  | DNE INDUSTRIAL<br>PA 19022                            | 2000 EDDYS<br>EDDYSTON<br>USA      | STONE INDUS<br>IE,PA 19022-15        | 181AL PARK<br>88                   | LENGTH<br>40'00"              |                              |                 | WEIGHT<br>30,282 LB                 | HEAT / BATCH<br>61105448/03 |
| NORTH CROSSMAN I<br>SAYREVILLE, NJ 088<br>JSA                     | ROAD<br>72                                                     | SALES ORDE<br>2886827/00002                        | R<br>0                                                | CUSTON                             | IER MATERIA                          | IL N°                              | SPECIFIC<br>ASTM A6           | CATION / DAT<br>15/A615M-15  | E or REVIS      | ION                                 |                             |
| CUSTOMER PURCHAS<br>BB-23635                                      | SE ORDER NUMB                                                  | ER                                                 | BILL OF LADING<br>1331-0000038904                     |                                    | DATE<br>10/08/2015                   |                                    |                               |                              |                 |                                     |                             |
| CHEMICAL COMPOSITIO<br>C M<br>% %<br>0.48 0.7                     | DN<br>In P<br>6 %<br>75 0.010                                  | \$%<br>) 0.064                                     | Si C<br>%<br>0.23 0                                   | u 1<br>6<br>33 0                   | Ni<br>%<br>.18                       | Çr<br>0.09 0                       | Mo<br>%<br>0.036              | Sn<br>%<br>0.028             | V<br>%<br>0.018 | CEqvA706<br>0.65                    |                             |
| MECHANICAL PROPERT<br>YS<br>PSI<br>70159<br>. 70590               | TES                                                            | YS<br>MPa<br>484<br>487                            | UTS<br>PSI<br>107318<br>108364                        |                                    | UTS<br>MPa<br>740<br>747             |                                    | G/L<br>Inch<br>8.000<br>8.000 |                              | 222             | G/L<br>mm<br>200.0<br>200.0         |                             |
| MECHANICAL PROPERT<br>Elong.<br>14.00<br>13.00                    | TIES                                                           | BendTest<br>OK<br>OK                               |                                                       |                                    |                                      |                                    |                               |                              |                 |                                     |                             |
| GEOMETRIC CHARACTI<br>%Light Def<br>% In<br>5.80 0.0.<br>5.80 0.0 | ERISTICS<br>Flgt Def Ga<br>Inch Inch<br>040 0.090<br>040 0.090 | ap DefSpace<br>Inch<br>) 0.477<br>) 0.477          |                                                       |                                    |                                      |                                    |                               |                              |                 |                                     |                             |
| COMMENTS / NOTES                                                  |                                                                |                                                    |                                                       |                                    |                                      |                                    |                               |                              | :               |                                     |                             |
|                                                                   |                                                                |                                                    |                                                       |                                    |                                      |                                    |                               |                              |                 |                                     |                             |
|                                                                   |                                                                |                                                    |                                                       |                                    |                                      |                                    |                               |                              |                 |                                     |                             |
|                                                                   |                                                                |                                                    |                                                       |                                    |                                      |                                    |                               |                              |                 |                                     |                             |
|                                                                   |                                                                |                                                    |                                                       |                                    |                                      |                                    |                               |                              |                 |                                     |                             |
|                                                                   | The above figures specified requirem                           | are certified chemical a nents. This material, inc | nd physical test records<br>luding the billets, was m | as contained in<br>elted and manuf | the permanent re<br>actured in the U | ecords of company<br>SA. CMTR comp | . We certify lies with EN     | that these data a 10204 3.1. | re correct an   | d in compliance with                |                             |
|                                                                   | Ma                                                             | ekan BH                                            | ASKAR YALAMANCHILI<br>ALITY DIRECTOR                  |                                    |                                      |                                    | Jana                          | 7 100                        | C JOSI<br>QU/   | EPH T HOMIC<br>ALITY ASSURANCE MGR. |                             |

Figure B-10. Rebar No. 6 Material Certificate, Test No. NJPCB-3

|                                                                                                                 |               |                  |                     |                 |               |                                   | CEDIAL T                     | ECT DEPORT        |               |             |                |               |                        | Page 1/1     |
|-----------------------------------------------------------------------------------------------------------------|---------------|------------------|---------------------|-----------------|---------------|-----------------------------------|------------------------------|-------------------|---------------|-------------|----------------|---------------|------------------------|--------------|
|                                                                                                                 |               |                  | automotice cut      | TO              | CER           | CUSTOMER B                        | ILL TO                       | EST REFORT        | T             | GRADE       |                | SHA           | PE / SIZE              |              |
|                                                                                                                 |               |                  | CUSTOMER SHIP       | 10              |               | DE STEEL SI                       |                              | INC               |               | 60 (420)    |                | Rebar         | r /#6 (19MM)           |              |
|                                                                                                                 | GEKL          | JAU              | RE STEEL SUP        | DNE INDUST      | RIAL          | 2000 EDDYS                        | TONE INC                     | OUSTRIAL PARK     | H             |             |                |               | WEIGHT                 | HEAT / BATCH |
| and the state of the |               |                  | PARK                |                 |               | EDDYSTON                          | E,PA 19022                   | 2-1588            |               | LENGTH      |                |               | 4,987 LB               | 61105472/03  |
| US-ML-SAYRE'                                                                                                    | VILLE         |                  | EDDYSTONE,F         | PA 19022        |               | USA                               |                              |                   |               | 40 00       |                |               |                        |              |
| NORTH CROSS                                                                                                     | MAN ROAD      |                  | USA                 |                 |               | CUSTOM                            | FR MATE                      | RIAL Nº           | -             | SPECIFIC    | ATION / DAT    | E or REVIS    | ION                    |              |
| SAYREVILLE.                                                                                                     | NJ 08872      |                  | 2886827/0002        | 0               |               | COSTON                            | ERTINITE                     |                   |               | ASTM A61    | 5/A615M-15     |               |                        |              |
| USA                                                                                                             |               |                  |                     |                 |               |                                   |                              |                   | _             |             |                |               |                        |              |
| CUSTOMER PUI                                                                                                    | RCHASE ORDER  | RNUMBER          |                     | BILL OF LA      | ADING         |                                   | DATE                         | <i>c</i>          |               |             |                |               |                        |              |
| BB-23635                                                                                                        |               |                  |                     | 1331-000003     | 38904         |                                   | 10/08/201:                   | 2                 |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   | L                            |                   |               |             |                |               |                        |              |
| CHEMICAL COM                                                                                                    | POSITION      |                  | -                   | 0.1             | <b>C</b> .    |                                   | d;                           | Cr                | M             | 0           | Sn             | Y             | CEqvA706               |              |
| C <sub>6</sub>                                                                                                  | Mn<br>%       | P<br>%           | S‰                  | S1<br>%         | %             | i.                                | 10                           | %                 | %             | 26          | %              | 0 022         | 0.63                   |              |
| 0.46                                                                                                            | 0.72          | 0.019            | 0.048               | 0.21            | 0.38          | 0.                                | 15                           | 0.14              | 0.0.          | 30          | 0.017          | 0.022         |                        |              |
| MECHANICAL PI                                                                                                   | ROPERTIES     |                  |                     |                 | UTEC          |                                   | LITC                         | 2                 |               | GЛ          |                |               | G/L                    |              |
| Y:<br>PS                                                                                                        | S             | N                | (S<br>IPa           | ι               | PSI           |                                   | MPa                          | a                 |               | Inch        |                |               | mm<br>200.0            |              |
| 732                                                                                                             | 96            | 5                | 05                  | 10              | 06977         |                                   | 738                          | 5                 |               | 8.000       |                |               | 200.0                  |              |
| 133                                                                                                             | 80            | 5                | 00                  |                 | 01100         |                                   |                              |                   |               |             |                |               |                        |              |
| MECHANICAL P                                                                                                    | ROPERTIES     | Ben              | dTest               |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
| 12                                                                                                              | 00            |                  | )K                  |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
| 15.                                                                                                             | .00           | Ċ                | OK                  |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
| CEOMETRIC CH                                                                                                    | APACTERISTICS |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
| %Light                                                                                                          | Def Hgt       | Def Gap          | DefSpace            |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
| 4.20                                                                                                            | 0.058         | 0.072            | 0.481               |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
| 4.50                                                                                                            | 0.058         | 0.072            | 0.481               |                 |               |                                   |                              |                   | _             |             |                |               |                        |              |
| COMMENTS / NO                                                                                                   | DTES          |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              |                   |               |             |                |               |                        |              |
|                                                                                                                 |               |                  |                     |                 |               |                                   |                              | 1 6               |               | We contifue | hat these date | are correct a | nd in compliance wit   | h            |
|                                                                                                                 | The abo       | ve figures are c | ertified chemical a | and physical te | est records a | is contained in<br>Ited and manuf | the permane<br>factured in t | the USA. CMTR con | any.<br>mplie | es with EN  | 10204 3.1.     | are concert a | and in compliance with |              |
|                                                                                                                 | specifie      | a requirements.  | i ins material, inc | ruung uie bin   | ets, was file | nee and manu                      | actored in a                 |                   |               | 1           | - 11           | OL OL         | SEPH T HOMIC           |              |
|                                                                                                                 | /             | Mark             | Ory BH              | ASKAR YALAMA    | ANCHILI       |                                   |                              |                   |               | Jana        | 7 Khom         | QL            | JALITY ASSURANCE MC    | IR.          |
|                                                                                                                 |               | -                | QU                  | ALITY DIRECTO   | ĸ             |                                   |                              |                   | 6             |             |                |               |                        |              |

Figure B-11. Rebar No. 6 Material Certificate, Test No. NJPCB-3

| tomer Name                                                                                                                                                                                                                                                                                                                                                                                                                     | Customer PO#                                                                                                                                                                                                                                         | Shipper No                                                       | Heat Number                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|
| el Modern Mfg.                                                                                                                                                                                                                                                                                                                                                                                                                 | Leon                                                                                                                                                                                                                                                 | 273024                                                           | 1004507                                                                         |
| Atlas Tube Canada ULC<br>200 Clark St.<br>Harrow, Ontario, Canada<br>NOR 1G0<br>Tal: 519-738-3541<br>Fax: 519-738-3537                                                                                                                                                                                                                                                                                                         | MATERIAL TEST REPORT                                                                                                                                                                                                                                 | Tube B                                                           | ef.B/L: 80664351<br>ate: 05.08.2015<br>ustomer: 1497                            |
| Triad Metals International                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                      | St                                                               | nipped to                                                                       |
| 1 Village Road<br>HORSHAM PA 19044-3:<br>USA                                                                                                                                                                                                                                                                                                                                                                                   | 812                                                                                                                                                                                                                                                  |                                                                  | iad Metals International<br>607 Grand Avenue<br>TTSBURGH PA 15225<br>SA         |
| Material: 3.0x3.0x125x24'0"0(7x7).<br>Sales order: 989576                                                                                                                                                                                                                                                                                                                                                                      | Material No: 300301252400<br>Purchase Order: 75461                                                                                                                                                                                                   |                                                                  | Made In: Canada<br>Molted in: Canada                                            |
| Heat No C Mn P                                                                                                                                                                                                                                                                                                                                                                                                                 | S Si Al Cu Cb                                                                                                                                                                                                                                        | Mo Ni Cr                                                         | V TI B N                                                                        |
| B21195         0.190         0.810         0.009           Bundle No         PCs         Yield         Ten           M101451859         49         063780         Psi         077           Material Note:         Sales Or.Note:         0.009         0.009         0.009                                                                                                                                                    | 0.007 0.019 0.044 0.060 0.006 0.0<br>sile Eln.2in<br>'160 Psi 26.6 %                                                                                                                                                                                 | 006 0.026 0.045<br>Certification<br>ASTM A500-13 GRA             | 0.002 0.002 0.000 0.00<br>CE: 0.34<br>DE B&C                                    |
| Material:         4.0x4.0x500x40'0'0(4x2).           Sales order:         995107           Heat No         C         Mn         P           775533         0.200         0.810         0.012           Bundle No         PCs         Yield         Tens           M101454130         1         066980 Psi         0756           Material Note:         Sales Or.Nota:         1         0.00000000000000000000000000000000000 | Material No:         400405004000           Purchase Order:         76312           S         Si         Al         Cu         Cb           0.010         0.015         0.031         0.032         0.006         0.0           sile         Eln.2in | Mo Ni Cr<br>102 0.011 0.032<br>Certification<br>ASTM A500-13 GRA | Made in: Canada<br>Melted in: Canada<br>V Ti B N<br>0.002 0.002 0.000 0.003<br> |
| Material: 4.0x4.0x500x40'0"0(4x2).<br>Sales order: 995107                                                                                                                                                                                                                                                                                                                                                                      | Material No: 400405004000 Purchase Order: 76312                                                                                                                                                                                                      |                                                                  | Made in: Canada<br>Melted in: Canada                                            |
| Heat No C Mn P                                                                                                                                                                                                                                                                                                                                                                                                                 | S Sì Al Cu Ch M                                                                                                                                                                                                                                      | 1o Ni Cr                                                         | V Ti B N                                                                        |
| 821597 0.210 0.780 0.011<br>Bundle No PCs Yield Tens<br>M101454130 7 069700 Psi 0783<br>Material Note:<br>Sales Or.Note:                                                                                                                                                                                                                                                                                                       | 0.009 0.013 0.040 0.026 0.006 0.00<br>Ile Ein.2in<br>190 Psi 27.2 %                                                                                                                                                                                  | 04 0.013 0.031<br>Certification<br>ASTM A500-13 GRAI             | 0.002 0.002 0.000 0.004<br>CE: 0.35<br>DE B&C                                   |
| Marrin Ballin                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |                                                                  |                                                                                 |

Figure B-12. Steel Tube Material Certificate, Test No. NJPCB-3

| tomer Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Customer PO#                                                                        |                                            | Shipper No                                           | Heat Nu                                       | umber                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------|
| el Modern Mfg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leon                                                                                |                                            | 273924                                               | 921507                                        |                                         |
| Atlas Tube Canada ULC<br>200 Clark St.<br>Harrow, Ontario. Canada<br>NOR 1G0<br>Tel: 519-738-3541<br>Fax: 519-738-3537<br>Sold to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     | TEST REPO                                  | Tube                                                 | Ref.B/L:<br>Date:<br>Customer:                | 80664351<br>05.08.2015<br>1497          |
| Triad Metals Internationa<br>1 Village Road<br>HORSHAM PA 19044-<br>USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al<br>3812                                                                          |                                            |                                                      | Triad Metal<br>3507 Grand<br>PITTSBURG<br>USA | s International<br>Avenue<br>H PA 15225 |
| Material: 4.0x4.0x500x40'0"O(4x2).<br>Sales order: 995107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Material M                                                                          | lo: 400405004000<br>Order: 76312           |                                                      | Made in<br>Melted I                           | : Canada<br>n: Canada                   |
| Heat No C Mn P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S Si Al                                                                             | Си Съ                                      | Mo Ni                                                | Cr V                                          | Ti B N                                  |
| 821597 0.210 0.780 0.01<br>Bundle No PCs Yield<br>M101454131 8 069700 Psi<br>Material Note:<br>Sales Or.Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0.009 0.013 0.040<br>Tensilo Eln.2in<br>078390 Psi 27.2 %                         | 0.026 0.006 0.1                            | 004 0.013 C<br>Certification<br>ASTM A500-1:         | 0.031 0.002<br>3 GRADE B&C                    | 0.002 0.000 0.004<br>CE: 0.35           |
| Material: 6.0x2.0x188x24'0*0(3x9).<br>Sales order: 995107<br>Heat No C Mn P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Material N<br>Purchase<br>S Si Al                                                   | o: 600201882400<br>Drder: 76312<br>Cu Cb I | Mo Ni                                                | Made in:<br>Melted in<br>Cr V                 | : Canada<br>n: Canada<br>Ti B N         |
| 821679 0.180 0.790 0.01<br>Bundle No PCs Yield<br>M101453723 27 058410 Psi 0<br>Material Note:<br>Sales Or.Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0.008 0.015 0.040<br>Fensile Ein.2in<br>069080 Psi 33.3 %                         | 0.047 0.002 0.0                            | 005 0.023 0<br>Certification<br>ASTM A500-13         | 0.038 0.002<br>3 GRADE B&C                    | 0.002 0.000 0.004<br>CE: 0.33           |
| Material: 6.0x6.0x188x40'0'0(3x3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Material N                                                                          | b: 600601884000                            |                                                      | Made in:<br>Meited in                         | Canada<br>n: Canada                     |
| Heat No         C         Mn         P           821531         0.190         0.810         0.010           Bundle No         PCs         Yield         T           M101456164         9         063160         Psi         0           Material Note:         Sales Or.Note;         Sales         Or.Note;         Sales         Sales <td>Purchase C<br/>S Si Al<br/>3 0.006 0.017 0.059<br/>Gensile Eln.2in<br/>78380 Psi 30.5 %</td> <td>rrder: 77498<br/>Cu Cb M<br/>0.051 0.005 0.0</td> <td>No Ni<br/>04 0.015 0<br/>Certification<br/>ASTM A500-13</td> <td>Cr V<br/>.036 0.002<br/>3 GRADE B&amp;C</td> <td>TI B N<br/>0.002 0.000 0.004<br/>CE: 0.34</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Purchase C<br>S Si Al<br>3 0.006 0.017 0.059<br>Gensile Eln.2in<br>78380 Psi 30.5 % | rrder: 77498<br>Cu Cb M<br>0.051 0.005 0.0 | No Ni<br>04 0.015 0<br>Certification<br>ASTM A500-13 | Cr V<br>.036 0.002<br>3 GRADE B&C             | TI B N<br>0.002 0.000 0.004<br>CE: 0.34 |
| Authorized by Quality Assurance:<br>The results reported on this report rep<br>specification and contract requirements<br>specification and contract requirements<br>using the second | resent the actual attributes a                                                      | of the material furnist                    | ned and indicate                                     | full compliance                               | with all applicable                     |
| OF NORTH AMERICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page : 2                                                                            | Of 4                                       | S Metals                                             | Service Cente                                 | r Institute                             |

Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-3

|        | <u>r Name</u>                                    |                                                     |                                                              |          | istomei    | <u>r PO#</u> |            |           |           | Shippe         | er No                                  | Heat                      | Numb                        | er                          |                        |         |
|--------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|----------|------------|--------------|------------|-----------|-----------|----------------|----------------------------------------|---------------------------|-----------------------------|-----------------------------|------------------------|---------|
| I Moo  | dern Mfg.                                        |                                                     |                                                              | Le       | on         |              |            |           |           | 27392          | 4                                      | 1422                      | 428                         |                             |                        |         |
|        |                                                  |                                                     |                                                              |          |            |              |            |           |           |                |                                        |                           |                             |                             |                        |         |
|        | Atlas<br>1855<br>Chicag<br>60633<br>Tel:<br>Fax: | ABC Co<br>East 12<br>10, Illino<br>773-6-<br>773-6- | rrp (Atlas T<br>2nd Street<br>ils, USA<br>46-4500<br>46-6128 | lube Chi | cago)<br>C |              |            | STEEL     | GROU      | 5 Tu           | Jbe                                    | Cus                       | .B/L:<br>e:<br>stomer:      | 80666<br>04.15<br>1497      | 0765<br>.2015          |         |
|        |                                                  |                                                     |                                                              |          | P          | ЛАТЕ         | RIAL       | TES       | T REF     | PORT           |                                        |                           |                             |                             |                        |         |
|        | Sold<br>Triad                                    | to                                                  | le Intern                                                    | otional  |            |              |            |           |           |                |                                        | Ship                      | oped to                     |                             |                        |         |
|        | 1 Vil<br>HOR<br>USA                              | lage F<br>SHAM                                      | PA 19                                                        | 044-38   | 112        |              |            |           |           |                |                                        | Tria<br>350<br>PiT<br>US/ | d Meta<br>07 Gran<br>TSBURC | ls Inter<br>d Aven<br>GH PA | nationa<br>iue<br>1522 | al<br>5 |
| 1      | Material: 4.0                                    | x4.0x50                                             | )0x40'0"0(                                                   | 4x2].    | a          | N            | Aaterial N | lo: 4004  | 0500400   | 00             | ······································ |                           | Made in                     | n: USA                      |                        |         |
| ;      | Sales order:                                     | 98962                                               | 3                                                            |          |            | P            | urchase    | Order: 7  | 5462      |                |                                        |                           | Melted                      | in: Russ                    | aian Fed               |         |
| 5      | Hoat No                                          | c                                                   | Mn                                                           | Р        | S          | Si           | AI         | Cu        | Cb        | Мо             | Ni                                     | Cr                        | v                           | Ti                          | в                      | N       |
|        | 1422428                                          | 0.200                                               | 0.930                                                        | 0.007    | 0.010      | 0.013        | 0.043      | 0.040     | 0.000     | 0.000          | 0.020                                  | 0.030                     | 0.000                       | 0.000                       | 0.000                  | 0.00    |
| i<br>i | Bundle No<br>M800549020                          | PCa<br>3                                            | Yield<br>070619                                              | Psi 08   | 11004 Psi  | Eln.         | 2in        |           | A         | Cer<br>STM A50 | tification<br>00-13 GR                 | ADE B&                    | с                           | C                           | E: 0.37                | '       |
| IN S   | Material Note<br>Sales Or.Note                   | :                                                   |                                                              |          |            |              |            |           |           |                |                                        |                           |                             |                             |                        |         |
| N      | Material: 4.0x                                   | 4.0x50                                              | 0x40'0"0{4                                                   | 4×2).    |            | M            | aterial N  | o: 4004   | 0500400   | 00             |                                        |                           | Mado ir                     | : USA                       |                        |         |
| 5      | Sales order:                                     | 98962                                               | 2                                                            |          |            |              |            |           |           |                |                                        |                           | Melted                      | in: Russ                    | ian Fed.               |         |
| ŀ      | leat No                                          | C                                                   | ) (Man                                                       | D        | 0          | P            | urchase (  | Order: 7  | 5462      |                |                                        |                           |                             |                             |                        |         |
| 1      | 422428                                           | 0.200                                               | 0.930                                                        | 0.007    | 0.010      | 0.012        | AI         | Cu        | Сь        | Ma             | Ni                                     | 10                        | V                           | TI                          | 8                      | N       |
| B      | undle No                                         | PCs                                                 | Yield                                                        | Te       | nsile      | Fin          | 2in        | 0.040     | 0.000     | 0.000          | 0.020                                  | 0.030                     | 0.000                       | 0.000                       | 0.000                  | 0.00    |
| N      | 1800549017                                       | 8                                                   | 070619 F                                                     | Psi 08   | 1004 Psí   | 36 %         |            |           | AS        | STM A50        | 0-13 GR                                | ADE B&                    |                             | L                           | E: 0.37                |         |
| N<br>S | laterial Note:<br>ales Or.Note                   |                                                     |                                                              |          |            |              |            |           |           |                |                                        |                           |                             |                             |                        |         |
| N      | laterial: 20.0                                   | x4.0x3                                              | 13x48'0"0(                                                   | (1x4).   |            | м            | aterial No | : 2000    | 4031348   | 00             |                                        |                           | Made in<br>Maltad           | USA                         |                        |         |
| S      | ales order:                                      | 994677                                              | 1                                                            |          |            | Pu           | irchaso C  | order: 75 | 6051-repl | acement        |                                        |                           | monted                      |                             |                        |         |
| H      | eat No                                           | C                                                   | Mn                                                           | Р        | S          | SI           | AI         | Cu        | СЬ        | Mo             | Ni                                     | Cr                        | v                           | ті                          | B                      | N       |
| A      | /3575                                            | 0.200                                               | 0.490                                                        | 0.009    | 0.002      | 0.030        | 0.034      | 0.120     | 0.000     | 0.020          | 0.060                                  | 0.050                     | 0.001                       | 0.002                       | 0.000                  | 0.00    |
| Bu     | undle No                                         | PCs                                                 | Yield                                                        | Ter      | sile       | Eln.         | 2in        |           |           | Cer            | lification                             |                           |                             | Ci                          | E: 0.31                |         |
| M      | laterial Note:<br>ales Or.Note:                  | 4                                                   | 057121 P                                                     | 'si 074  | 4148 Psi   | 30 %         |            |           | AS        | TM A50         | 0-13 GR                                | ADE B&                    | 0                           |                             |                        |         |

Figure B-14. Steel Tube Material Certificate, Test No. NJPCB-3

| Customer Na            | ime                                                   |                                                     |                                                        | Cu                | stomer         | PO#            |              |                |            | Shippe      | er No    | Heat                              | Numb                       | er                          |                      |          |
|------------------------|-------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|-------------------|----------------|----------------|--------------|----------------|------------|-------------|----------|-----------------------------------|----------------------------|-----------------------------|----------------------|----------|
| Seibel Moder           | n Mfg.                                                |                                                     |                                                        | Lee               | on             |                |              |                |            | 27392       | 4        | M044                              | 195_1                      |                             |                      |          |
|                        |                                                       |                                                     |                                                        |                   |                | -              |              |                |            |             |          |                                   |                            |                             |                      |          |
|                        | Atlas A<br>1855 E<br>Chicago<br>60633<br>Tel:<br>Fax: | BC Cor<br>ast 122<br>, Illinois<br>773-64<br>773-64 | p (Atlas T<br>and Street<br>a, USA<br>6-4500<br>6-6128 | ube Chio          | ago)<br>C      |                | Л            | STEEL          | GROU       |             | ube      | Date<br>Cus                       | .B/L:<br>e:<br>tomer:      | 80669<br>05.18<br>1497      | 5303<br>.2015        |          |
|                        |                                                       |                                                     |                                                        |                   | N              | IATE           | RIAL         | TEST           | r Ref      | PORT        |          |                                   |                            |                             |                      |          |
|                        | <u>Sold</u><br>Triad<br>1 Villa<br>HORS<br>USA        | to<br>Metali<br>age Ro<br>HAM                       | s Interna<br>bad<br>PA 19                              | ational<br>044-38 | 12             |                |              |                |            |             |          | Shir<br>Tria<br>350<br>PIT<br>US/ | d Meta<br>7 Gran<br>7SBURC | ls Inter<br>d Aven<br>3H PA | nation<br>ue<br>1522 | al<br>.5 |
| Mate                   | rial: 4.0x                                            | 4.0x50                                              | 0x48'0"0(                                              | 3x2).             |                | M              | aterial N    | o: 4004        | 0500480    | DO          |          |                                   | Made in<br>Melted          | n: USA<br>in: USA           |                      |          |
| Heat                   | No                                                    | C                                                   | Mn                                                     | P                 | S              | SI             | Al           | Order: 7<br>Cu | 5462<br>Cb | Mo          | Ni       | Cr                                | v                          | TI                          | В                    | N        |
| MO44<br>Bund           | 195_1<br>e Na                                         | 0.190<br>PCs                                        | 0.750<br>Yield                                         | 0.014<br>Te       | 0.010<br>nsile | 0.019<br>Eln.: | 0,050<br>2in | 0.050          | 0.004      | 0.004<br>Ca | 0.010    | 0.040                             | 0.001                      | 0.001<br>C                  | 0.000<br>E: 0.3      | 0.005    |
| M800<br>Mater<br>Sales | ial Note:<br>Or.Note:                                 | 2                                                   | 072918                                                 | Psi 08            | 2550 Psi       | 35 %           |              |                | A          | STM A5      | 00-13 GR | ADE B&                            | c                          |                             |                      |          |

| Autho<br>The r<br>specif | orized by Quality Assurance<br>esults reported on this rep<br>fication and contract requir | er<br>art represent the actual i<br>emants. | attributes of th | e material | furnished and indica | ta full compliance with all applicab |
|--------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|------------------|------------|----------------------|--------------------------------------|
|                          | Steel" Fabes D<br>Institute                                                                | 1.1 mathod.                                 | Page : 4 Of      | 4          | 😵 Meta               | ls Service Center Institute          |
|                          | OF NORTH AMERICA                                                                           |                                             |                  |            | •                    |                                      |

Figure B-15. Steel Tube Material Test Certificate, Test No. NJPCB-3

| bel Modern Mfg.                                                                                                                                              | Leon                                              |                    |                   |                             |                                                                         |                                     |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|-------------------|-----------------------------|-------------------------------------------------------------------------|-------------------------------------|-------------|
|                                                                                                                                                              |                                                   |                    | 27                | 3924                        | T83539                                                                  |                                     |             |
| Atlas ABC Corp (Atlas Tt<br>1355 East 122nd Street<br>Chicago, Illinois, USA<br>60633<br>Tel: 773-646-4500<br>Fax: 773-646-6128                              |                                                   |                    | IS TU             | be                          | Ref.B/L:<br>Date:<br>Customer:                                          | 80619794<br>08.22.2014<br>1497      | 1           |
| <u>Sold_to</u><br>Triad Metals Interna<br>1 Viliage Road<br>HORSHAM PA 190<br>USA                                                                            | MATERI<br>tional<br>044-3812                      | AL TEST F          | REPORT            |                             | <u>Shipped to</u><br>Triad Metals<br>3500 Nevillo<br>NEVILLE ISL<br>JSA | : Internation<br>e Road<br>AND PA 1 | nal<br>1522 |
| Material: 4.0x4.0x375x48'0"0(4x                                                                                                                              | 2). M                                             | aterial No: 40040  | 03754800          |                             | Made in:<br>Melted in:                                                  | USA<br>USA                          |             |
|                                                                                                                                                              |                                                   | irchase Order: 67  | 358               |                             |                                                                         |                                     |             |
| Heat No C Mn                                                                                                                                                 | P S SI                                            | Al Cu              | Ch Mo             | Ni Cr                       | V                                                                       | Ti 8                                | N           |
| Rundle Ma PCr Vield                                                                                                                                          | J.015 0.011 0.021                                 | 0.050 0.040        | 0.005 0.006       | 0.010 0.04                  | 0 0.001 0                                                               | .001 0.000                          | 0.004       |
| M800504131 8 071476 Psi                                                                                                                                      | i 081675 Psi 32 %                                 | 210                | ASTM AS           | 10.13 GRADE P               | 180                                                                     | CE: 0.34                            | Ľ           |
| Material Noto:<br>Sales Or.Note:                                                                                                                             |                                                   |                    |                   |                             |                                                                         |                                     |             |
| Material: 4.0x4.0x500x40'0"0(4x2                                                                                                                             | 2). Ma                                            | aterial No: 40040  | 5004000           |                             | Made in:<br>Molted in:                                                  | USA<br>USA                          |             |
| Sales order: 934921                                                                                                                                          | Pu                                                | rchase Order: 67   | 358               |                             |                                                                         |                                     |             |
| Heat No C Mn                                                                                                                                                 | P S SI                                            | Al Cu              | Cb Mo             | Ni Cr                       | V                                                                       | TI B                                | N           |
| T83539 0.200 0.820 0                                                                                                                                         | 0.012 0.007 0.015                                 | 0.054 0.020        | 0.007 0.004       | 0.010 0.04                  | 0 0.001 0                                                               | .001 0.000                          | 0.005       |
| Bundle No PCs Yield<br>M800500342 8 072654 Psi                                                                                                               | Tansila Eln.2<br>085933 Psi 29 %                  | lin                | ASTM A50          | tification<br>00-13 GRADE B | l&C                                                                     | CE: 0.35                            |             |
| Material Note:<br>Sales Or.Note:                                                                                                                             |                                                   |                    |                   |                             |                                                                         |                                     |             |
| Material: 12.0x12.0x250x40'0"0(2                                                                                                                             | 2x2). Ma                                          | terial No: 12012   | 02504000          |                             | Made in:<br>Melted in:                                                  | USA                                 |             |
| Sales order: 933979                                                                                                                                          | Pur                                               | chase Order: 67    | 228               |                             |                                                                         |                                     |             |
| Heat No C Mn                                                                                                                                                 | P S Si                                            | Al Cu              | Cb Mo             | Ni Cr                       | v                                                                       | Ti B                                | N           |
| T84047 0.180 0.800 0.                                                                                                                                        | .008 0.007 0.015                                  | 0.045 0.020        | 0.003 0.003       | 0.010 0.04                  | 0 0.001 0                                                               | .001 0.000                          | 0.007       |
| Bundle No PCs Yield                                                                                                                                          | Tensile Ein.2                                     | in                 | Cor               | dification                  |                                                                         | CE: 0.33                            | ł,          |
| M900697115 4 055286 Psi<br>Material Note:<br>Sales Or.Note:                                                                                                  | 073956 Psi 28 %                                   |                    | ASTM ASC          | 0-13 GRADE B                | &C                                                                      |                                     |             |
|                                                                                                                                                              |                                                   |                    |                   |                             |                                                                         |                                     |             |
|                                                                                                                                                              |                                                   |                    |                   |                             |                                                                         |                                     |             |
| Mauria Tatalfin                                                                                                                                              |                                                   |                    |                   |                             |                                                                         |                                     |             |
| Marvin Phillips                                                                                                                                              |                                                   | stributes of the m | aterial furnished | and indicate f              | ull compliance                                                          | with all applic                     | able        |
| Authorized by Quality Assurance:<br>The results reported on this report                                                                                      | rt represent the actual a                         |                    |                   |                             |                                                                         |                                     |             |
| Authorized by Quality Assurance:<br>The results reported on this repor<br>specification and contract require<br>CE calculated using the AWS D1<br>Steel Tube | rt represent the actual a<br>ments.<br>.1 method. | Page : 1 Of 4      | c                 | S Metals S                  | ervice Cente                                                            | r Institute                         |             |

Figure B-16. Steel Tube Material Certificate, Test No. NJPCB-3

| tomer Name                                                                                                                                                                                                       | Customer PO#                                                     |                                                                                     | Shipper No                            | Heat Num                            | ber                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------------------|
| el Modern Mfg.                                                                                                                                                                                                   | Leon                                                             |                                                                                     | 273924                                | SD5020                              |                                                  |
| Independence Tube                                                                                                                                                                                                |                                                                  | 6226 W. 74th St<br>Chicago, IL 60638<br>708-496-0380<br>Fax: 708-563-1950           |                                       | inde<br>Certificate Nu              | ependencetube.co<br>itctube.co<br>mber: DCR 2509 |
| Sold By:<br>INDEPENDENCE TUBE CORP<br>6226 W. 74th St.<br>Chicago, IL 60638<br>Tel: 708-496-0380<br>Fax: 708-563-1950                                                                                            | ORATION                                                          | Purchase Order No:<br>Sales Order No: DC<br>Bill of Lading No: DC<br>Invoice No:    | 70783<br>R 64130 - 5<br>CR 43787 - 94 | Shipped:<br>Invoiced:               | 1/16/2015                                        |
| Sold To:<br>2103 - TRIAD METALS<br>1 VILLAGE ROAD<br>HORSHAM, PA 19044-3812                                                                                                                                      |                                                                  | Ship To:<br>39 - TRIAD METALS<br>MILE MARKER 7.3<br>OHIO RIVER<br>NEVILLE ISLAND, P | S BARGE<br>A 15225                    |                                     |                                                  |
| CERTIFICATE of ANAL<br>Customer Part No:                                                                                                                                                                         | YSIS and TESTS                                                   |                                                                                     | с                                     | ertificate No: DC<br>Test Date: 1/1 | R 250913<br>4/2015                               |
| TUBING A500 GRADE B(C)<br>4" SQ X 1/2" X 48'                                                                                                                                                                     |                                                                  |                                                                                     |                                       | Total Pieces<br>36                  | Total Weight<br>37,376                           |
| Bundle Tag         Mill         Heat           844458         40         SD5020           844459         40         SD5020           844460         40         SD5020           844461         40         SD5020 | Pieces<br>9<br>9<br>9<br>9<br>9                                  | Weight<br>9,344<br>9,344<br>9,344<br>9,344<br>9,344                                 |                                       |                                     |                                                  |
| Mill #: 40 Heat #: SD5020 Yield<br>0.1352<br>C Mn P<br>0.0500 0.3900 0.0000 0.0                                                                                                                                  | 72,300 psi Tensile: 78<br>S, Si Al                               | 3,800 psi Elongation:                                                               | 28.50 % Y/T Ra                        | Ni Nb                               | xon Eq:                                          |
| Certification:                                                                                                                                                                                                   | 0.0200                                                           | 0.0900 0.0400                                                                       | 0.0200   0.0010                       | 0.0300 0.000                        | 30                                               |
| I certify that the above results are<br>Corporation. Sworn this day, 1/14                                                                                                                                        | a true and correct copy<br>2015                                  | of records prepared a                                                               | nd maintained by                      | Independence To                     | ube                                              |
| WE PROUDLY MANUFACTURE<br>INDEPENDENCE TUBE PRODU<br>AND INSPECTED IN ACCORDAN                                                                                                                                   | ALL OF OUR HSS IN TI<br>CT IS MANUFACTURED<br>ICE WITH ASTM STAN | HE USA.<br>D, TESTED,<br>DARDS.                                                     | Joan la                               | 1 Mon                               | ting                                             |
| CURRENT STANDARDS:<br>                                                                                                                                                                                           | 13                                                               | 1                                                                                   | 1                                     | Jose Martinez, 0                    | QMS Manager                                      |
| MATERIAL IDENTIFIED AS A500<br>ASTM A500 GRADE B AND A500                                                                                                                                                        | 12<br>GRADE B(C) MEETS E<br>GRADE C SPECIFICA                    | BOTH<br>TIONS.                                                                      |                                       |                                     |                                                  |

# Figure B-17. Steel Tube Material Certificate, Test No. NJPCB-3

and a substantial sector of the sector of th

### MID-AMERICA STEEL CORPORATION TEST REPORT

### No. F33822

| TO:   | SEIBEL | MODERN | MFG | & | WELDING | DATE:   | 02/19/13 |
|-------|--------|--------|-----|---|---------|---------|----------|
|       |        |        |     |   |         | P.O. #: | SBJ-40   |
| ATTN: |        |        |     |   |         |         |          |

| TAG#   | SIZE                               | SPEC |
|--------|------------------------------------|------|
|        |                                    |      |
| K78419 | 1/4 x 48.000 x 144.000             | A-36 |
| K78420 | 1/4 x 48.000 x 144.000             | A-36 |
| K78421 | $1/4 \times 48.000 \times 144.000$ | A-36 |
| K78422 | $1/4 \times 48.000 \times 144.000$ | A-36 |

### CHEMICAL ANALYSIS

| TAG#   | HEAT#   | C     | Mn    | P     | S     |
|--------|---------|-------|-------|-------|-------|
| K78419 | 1129849 | 0.063 | 0.760 | 0.012 | 0.004 |
| K78420 | 1129849 | 0.063 | 0.760 | 0.012 | 0.004 |
| K78421 | 1129849 | 0.063 | 0.760 | 0.012 | 0.004 |
| K78422 | 1129849 | 0.063 | 0.760 | 0.012 | 0.004 |

#### PHYSICAL ANALYSIS

| TAG#   | HEAT#   | TENSILE | YIELD  | ELONGATION |
|--------|---------|---------|--------|------------|
| K78419 | 1129849 | 75,102  | 58,422 | 26%        |
| K78420 | 1129849 | 75,102  | 58,422 | 26%        |
| K78421 | 1129849 | 75,102  | 58,422 | 26%        |
| K78422 | 1129849 | 75,102  | 58,422 | 26%        |

All material made and melted in the U.S.

.

Thank you,

JOHN RATICA MID-AMERICA STEEL CORPORATION

Figure B-18. 2-in. × ¼-in. (51-mm × 6-mm) Bent Steel Plate, Test No. NJPCB-3

| sted in<br>th: ASI | Accordanc<br>M A6 | ce                                     | Sales Order<br>Product<br>Heat NO.<br>Cust.Mat. | 148953-4<br>Flat bars<br>L99837 | Date<br>Cust<br>Grad<br>Land | 09/09/2<br>4000888<br>e A365295<br>th 20' 00" | 015 PO:<br>2 Ref<br>0 Pic<br>Wei | 81536<br>. 80833851<br>ces 288<br>.ght 19607.04 |                |
|--------------------|-------------------|----------------------------------------|-------------------------------------------------|---------------------------------|------------------------------|-----------------------------------------------|----------------------------------|-------------------------------------------------|----------------|
| CHEMIC             | AL.               | MECHANICAL                             | Size                                            | 2" X1/2" X<br>TEST 1            | 3.404                        | TES                                           | 5T 2                             | TE                                              | ST 3           |
| ANALYS             | IS                | PROPERTIES                             | IMPERIAL                                        | METRI                           | c I I                        | MPERIAL                                       | METRIC                           | IMPERIAL                                        | METRIC         |
| 0                  | .13 YI            | ELD STRENGTH                           | 52710 PS                                        | SI 363                          | MPa 5                        | 3770 PSI                                      | 371 MPa                          |                                                 |                |
| in 0               | .88 TE            | NSILE STRENGTH                         | 72220 PS                                        | SI 498                          | MPa                          | 4560 PSI                                      | 514 MPa                          |                                                 |                |
| 0                  | .007 EL           | ONGATION                               | 25                                              | *                               | 25 %                         | 25 %                                          | 25 %                             |                                                 |                |
| 0                  | .018 GA           | UGE LENGTH                             | 8 1                                             | IN 20.                          | 3 mm                         | 8 IN                                          | 203 mm                           |                                                 |                |
|                    | .19  BE           | ND TEST DIAMETER                       | Ì                                               |                                 | 1                            | Ĩ                                             |                                  | 1                                               |                |
| Jil 0              | 17 50             | NU IESI KESULIS<br>ECIMEN APEA         | 1                                               |                                 |                              |                                               |                                  |                                                 |                |
| Cr 0               | .14 RE            | DUCTION OF AREA                        |                                                 |                                 | 1                            |                                               |                                  |                                                 |                |
| 10 0               | .065 IM           | PACT STRENGTH                          |                                                 |                                 | 1                            |                                               |                                  |                                                 |                |
| сь о               | .020              |                                        | l                                               |                                 | k                            |                                               |                                  |                                                 | J              |
| 0                  | True              | DA CT ATTONNATUL                       |                                                 | VERT TO                         | T + 100 10 1 1               |                                               | TRAC CONTRACT                    |                                                 |                |
| 3                  | I IM              | PACT STRENGTH                          | IMPERIAL                                        | METRIC                          | INTERN                       | AL CLEANLIN                                   | HESS GRAIN S                     | 5125                                            |                |
|                    | OLD TE            | ST TEMD                                |                                                 |                                 | FREQUENC                     | v                                             | TERSTN                           | RECTICE                                         |                |
|                    | OR                | IENTATION                              |                                                 |                                 | RATING                       | ·                                             | REDUCT                           | ON RATIO                                        |                |
| ri                 | -                 | La Naza ablas IV.                      | 6-112-11-1-1-1                                  | - de - 226 (                    |                              | 01 010 00                                     | CONCOR CONA                      | N 370936 003                                    | NONE CORE 201  |
|                    | A51               | 15 near makes the<br>7250-07, A70950-1 | 0, AASHTO M27                                   | ades: A36-0<br>0 Grade 36,      | AASHTO M                     | -05,G40.21<br>270 Grade 5                     | 50, AASHTO M2                    | 70M Grade 345                                   | ASME SASE-201  |
| :i                 | 1                 |                                        |                                                 |                                 |                              |                                               |                                  |                                                 |                |
| E                  |                   |                                        |                                                 |                                 |                              |                                               |                                  |                                                 |                |
|                    |                   |                                        |                                                 |                                 |                              |                                               |                                  |                                                 |                |
|                    |                   |                                        |                                                 |                                 |                              |                                               |                                  |                                                 |                |
|                    |                   |                                        |                                                 |                                 |                              |                                               |                                  |                                                 |                |
| ereby c            | certify that      | at the material t                      | est results p                                   | resented he                     | ere are f                    | rom the rep                                   | ported heat a                    | nd are correc                                   | t. All tests w |
| formed             | in accorda        | ance to the speci                      | fication repo                                   | rted above                      | All ste                      | el is elect                                   | cric arc furn                    | ace melted (b                                   | illets),       |
| liactur            | ed, proces        | ssed, tested in t                      | he U.S.A with                                   | satisfacto                      | ory resul                    | ts. No weld                                   | i repair was                     | performed on                                    | this heat.     |
| +                  |                   |                                        |                                                 |                                 |                              |                                               | VII ON                           | -1:1.                                           |                |
| 14                 | upon remu         | ogt.                                   |                                                 |                                 | 01                           | mad                                           | Rain X)                          | Assurced 1                                      |                |

Figure B-19. <sup>1</sup>/<sub>2</sub>-in. (13-mm) Thick Steel Plate Material Certificate

|                                                                                                                                                                                                                    |                                                               |                                       |                          | CERTI           | FIED MATERI                          | AL TEST REPORT    |                       |                                                                                                                |                                 |                                 | Page 1                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|--------------------------|-----------------|--------------------------------------|-------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-----------------------------|
| GO GE                                                                                                                                                                                                              | ZDAU                                                          | CUSTOMER S<br>TRIAD MET<br>3507 GRANI | ALS<br>AVE               | CL<br>TF<br>MI  | STOMER BILL TO<br>NAD METALS I<br>ET | D<br>NTERNATIONAL | GRAI<br>GGM           | DE<br>IULTI                                                                                                    | S<br>FI                         | HAPE / SIZE<br>at / 1/2 X 2 1/4 |                             |
| S-ML-CHARLOTTE                                                                                                                                                                                                     |                                                               | PITTSBURG                             | H,PA 15225               | 1 V<br>HC<br>US | /ILLAGE RD<br>DRSHAM,PA 19           | 044-3800          | LENC<br>20'00'        | этн<br>*                                                                                                       |                                 | WEIGHT<br>4,979 LB              | HEAT / BATCH<br>54144612/03 |
| HARLOTTE, NC 28269<br>SA                                                                                                                                                                                           |                                                               | SALES ORD<br>2819476/000              | ER<br>010                |                 | CUSTOMER M                           | ATERIAL N"        | SPEC<br>A6-13<br>ASTM | CIFICATION / DA<br>(A,A36-12, ASME S<br>1 A529-05(2009), A                                                     | TE or REV<br>(A)6-13<br>572-13A | /ISION                          |                             |
| CUSTOMER PURCHASE OF                                                                                                                                                                                               | RDER NUMBER                                                   |                                       | BILL OF L/<br>1321-00000 | ADING<br>134345 | DAT<br>09/24                         | E<br>1/2015       | ASTM<br>CSA C         | 4 A709-13A, AASH<br>G40.20-13/G40,21-1                                                                         | TO M270-12<br>3                 |                                 |                             |
| CHEMICAL COMPOSITION<br>C Mn<br>26 %<br>0.17 0.71                                                                                                                                                                  | P<br>%<br>0.011                                               | 5<br>%<br>0.033                       | \$j<br>0.20              | Çu<br>%<br>0.47 | Ni<br>9,14                           | Ст<br>%<br>0.17   | Mo<br>0.030           | v<br>%<br>0.015                                                                                                | Nb<br>%<br>0.002                | Şņ<br>0.013                     |                             |
| MECHANICAL PROPERTIES<br>Elong.<br>29,40                                                                                                                                                                           | G<br>In<br>8.0                                                | /L<br>ch<br>600                       | 7:                       | 4174            |                                      | UTS<br>MPa<br>511 | ېر<br>14              | SI<br>\$1                                                                                                      |                                 | MPa<br>355                      |                             |
|                                                                                                                                                                                                                    |                                                               |                                       |                          |                 |                                      |                   |                       | the second s |                                 |                                 |                             |
| GEOMETRIC CHARACTERISTI<br>R.R.<br>22.60<br>COMMENTS : NOTES<br>This grade neets the requirements<br>I STM Grades: A36, A529-30; A52<br>53 Grades: A449; 50W<br>VASHTO Grades: M270-36; M220<br>ISME Grades: SA36  | CS<br>for the following grade<br>2-50; A709-16; A709-         | 50                                    |                          |                 |                                      | -                 |                       | ****                                                                                                           |                                 |                                 |                             |
| GEOMETRIC CHARACTERISTI<br>R.R.<br>22.00<br>OMMENTS : NOTES<br>his grade moots the requirements<br>ISTM Grades: A36, A529-50; A527<br>S.Grades: A449; 50W<br>ASI/TO Grades: M270-36; M270<br>SME Grades: SA36      | CS<br>for the following grade<br>72-50; A709-36; A709-<br>50  | 50                                    |                          |                 |                                      |                   |                       |                                                                                                                |                                 |                                 |                             |
| GEOMETRIC CHARACTERISTI<br>R.R.<br>22.00<br>COMMENTS : NOTES<br>This grade models the requirements<br>ASTM Grades: A36, A529-50; A57<br>CSA Grades: 44W; 50W<br>AASHTO Grades: M270-36; M270<br>ASME Grades: SA36  | CS<br>for the following grade<br>(2-50; A709-36; A709-<br>-50 | 50                                    |                          |                 |                                      |                   |                       |                                                                                                                |                                 |                                 |                             |
| GEOMETRIC CHARACTERISTI<br>R.R<br>22.00<br>"OMMENTS : NOTES<br>(his grade models the requirements)<br>STM Grades: A36, A529-50; A57<br>3.3. Grades; 44W; 50W<br>(ASI/TO Grades: M270-36; M270<br>SSME Grades: SA36 | cs<br>for the following grade<br>2-50; A709-36; A709-<br>-50  | 50<br>50                              | d physical test as       |                 |                                      |                   |                       |                                                                                                                |                                 |                                 |                             |

Figure B-20. <sup>1</sup>/<sub>2</sub>-in (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-3

# Appendix C. Concrete Tarmac Strength

LINCOLN OFFICE

| lient:                                                                                                                             | UNL             |                                   |                                               | Date:                                                     | December 10,                                   | 2010        |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|-----------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-------------|
| Project:                                                                                                                           | MwRSF           |                                   |                                               |                                                           |                                                |             |
| Placement Location:                                                                                                                | WI - East 1, 2  | 3                                 |                                               |                                                           |                                                |             |
| Aix Type:                                                                                                                          | Class:          |                                   |                                               | Mix No.:                                                  |                                                |             |
| ype of Forms                                                                                                                       |                 |                                   | Cement Facto                                  | or, Sks/Yd                                                | r                                              | a           |
|                                                                                                                                    |                 |                                   | Water-Cemen                                   | nt Ratio                                                  | r                                              | na          |
| Admixture Quantity                                                                                                                 | r               | na                                | Slump Inches                                  |                                                           | r                                              | na          |
| Admixture Type                                                                                                                     | I               | na                                | Unit Wt, Ibs/c                                | u. Ft.                                                    | r                                              | na          |
| Admixture Quantity                                                                                                                 | r               | na                                | Air Content, 9                                | 6                                                         | r                                              | na          |
| Average Field Temperature                                                                                                          | r               | na                                | Batch Volume                                  | e, Cu. Yds.                                               | r                                              | na          |
| emperature of Concrete F                                                                                                           | 1               | na                                | Ticket No.                                    | -                                                         | Г                                              | na          |
| dentification Laboratory                                                                                                           | East 1          | East 2                            | East 3                                        |                                                           |                                                |             |
| Date Cast                                                                                                                          |                 | 1110010010                        | 4410000040                                    |                                                           |                                                | 1           |
| Date Received in Laboratory                                                                                                        | 11/30/2010      | 11/30/2010                        | 11/30/2010                                    |                                                           | (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d |             |
| Date Tested                                                                                                                        |                 |                                   |                                               |                                                           |                                                |             |
| Days Cured in Field                                                                                                                |                 |                                   |                                               |                                                           |                                                |             |
| Days Cured in Laboratory                                                                                                           |                 |                                   |                                               |                                                           | _                                              |             |
| ige of Test, Days                                                                                                                  | 7.70            | 7.04                              | 7.75                                          |                                                           |                                                |             |
| ength, in.                                                                                                                         | 7.78            | 7.81                              | 1.10                                          |                                                           |                                                |             |
| Average Width (1), in.                                                                                                             | 3.72            | 3.72                              | 3.72                                          |                                                           |                                                |             |
| Cross-Sectional Area, sq. in.                                                                                                      | 10.874          | 10.869                            | 10.8/4                                        |                                                           |                                                |             |
| Aaximum Load, Ibf                                                                                                                  | /1,030          | 76,470                            | 73,310                                        |                                                           |                                                |             |
| Compressive Stength, psi                                                                                                           | 6,530           | 7,040                             | 6,740                                         |                                                           |                                                |             |
| ength/Diameter Ratio                                                                                                               | 2.091           | 2.099                             | 2.083                                         |                                                           |                                                |             |
| Correction                                                                                                                         |                 | 0                                 | 0                                             |                                                           |                                                |             |
| Corrected Compressive Strength,psi                                                                                                 | 0               | 0                                 | 0                                             |                                                           |                                                |             |
| ype of Fracture                                                                                                                    | 4               | 4                                 | 4                                             |                                                           | an data barra sere                             | Second Cont |
| lequired Strength,psi                                                                                                              |                 | 1                                 |                                               |                                                           |                                                |             |
| emarks:<br>Il concrete break data in this report was pro<br>nless otherwise noted.<br>his report shall not be reproduced except ir | oduced by Benes | ch personnel u<br>vritten approva | I of Alfred Bene<br>ALFRED BENI<br>CONSTRUCTI | ndard Method<br>sch & Compar<br>ESCH & COM<br>ION MATERIA | s and Practices<br>ny<br>PANY<br>LS LABORATOR  | Υ           |

Figure C-1. Concrete Tarmac Strength Test, Test No. NJPCB-3

LINCOLN OFFICE

825 J Street Lincoln, NE 68508 402/479-2200

### COMPRESSION TEST OF Cylindrical CONCRETE SPECIMENS ASTM Designation: C39-03

| Client:                                                                               | UNL                   |                 |                       | Date:         | December 13, 2010   |
|---------------------------------------------------------------------------------------|-----------------------|-----------------|-----------------------|---------------|---------------------|
| Project:                                                                              | MwRSF                 |                 |                       |               |                     |
| Placement Location:                                                                   | WI - Epoxy W          | est 4 &5        |                       |               |                     |
| Mix Type:                                                                             | Class:                |                 |                       | Mix No.:      |                     |
| Type of Forms                                                                         |                       |                 | Cement Facto          | or, Sks/Yd    | na                  |
|                                                                                       |                       |                 | Water-Cemen           | t Ratio       | na                  |
| Admixture Quantity                                                                    | n                     | a               | Slump Inches          |               | na                  |
| Admixture Type                                                                        | n                     | a               | Unit Wt, Ibs/c        | u. Ft.        | na                  |
| Admixture Quantity                                                                    | п                     | na              | Air Content, %        | 6             | na                  |
| Average Field Temperature                                                             | n                     | na              | Batch Volume          | e, Cu. Yds.   | na                  |
| Temperature of Concrete F                                                             | n                     | a               | Ticket No.            |               | na                  |
| Identification Laboratory                                                             | 4                     | 5               | and the second second |               |                     |
| Date Cast                                                                             |                       |                 | and the second        | Lange Street  |                     |
| Date Received in Laboratory                                                           | 12/13/2010            | 12/13/2010      |                       |               |                     |
| Date Tested                                                                           |                       |                 |                       |               |                     |
| Days Cured in Field                                                                   | 24.4                  |                 |                       |               |                     |
| Days Cured in Laboratory                                                              | 17                    |                 |                       |               |                     |
| Age of Test, Days                                                                     | na                    | na              | and the second        | adorne de la  |                     |
| Length, in.                                                                           | 8.05                  | 8.06            |                       |               |                     |
| Average Width (1), in.                                                                | 3.91                  | 3.90            |                       |               |                     |
| Cross-Sectional Area, sq. in.                                                         | 11.977                | 11.952          | - www.alio.edu.com    |               |                     |
| Maximum Load, lbf                                                                     | 71,500                | 71,630          |                       |               |                     |
| Compressive Stength, psi                                                              | 5,970                 | 5,990           |                       |               |                     |
| Length/Diameter Ratio                                                                 | 2.061                 | 2.065           |                       |               |                     |
| Correction                                                                            |                       |                 |                       |               |                     |
| Corrected Compressive Strength,psi                                                    | 0                     | 0               |                       |               |                     |
| Type of Fracture                                                                      | . 3                   | 3               |                       |               |                     |
| Required Strength,psi                                                                 | -900                  |                 |                       |               |                     |
|                                                                                       |                       |                 |                       |               |                     |
| Remarks:<br>All concrete break data in this report was pro<br>unless otherwise noted. | oduced by Benes       | ch personnel u  | using ASTM Star       | ndard Methods | and Practices       |
| This report shall not be reproduced except in                                         | n full, without the v | vritten approva | al of Alfred Bene     | sch & Company | (                   |
|                                                                                       |                       |                 | ALFRED BEN            | ESCH & COMP   | ANY<br>S LABORATORY |
|                                                                                       |                       |                 | By: Gla               | (Parameter C  | f Della             |
|                                                                                       |                       |                 | 1                     | Raymond E. L  | Jeika, Manager      |

Figure C-2. Concrete Tarmac Strength Test, Test No. NJPCB-3

benesch engineers - scientists - planners

# Appendix D. Vehicle Center of Gravity Determination

| Test                                                                                                                       | : NJPCB-3                                                                                                                                                                |                                                                                                                                                                                                                      | venicie:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Douge                                                                      | Ram                                                                                                               |                                                                                             |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                      | Vehicle C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G Determina                                                                | tion                                                                                                              |                                                                                             |                                                                                      |
|                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weight                                                                     | Vertical                                                                                                          | Vertical M                                                                                  |                                                                                      |
| VEHICLE                                                                                                                    | Equipment                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (lb.)                                                                      | CG (in.)                                                                                                          | (lb-in.)                                                                                    |                                                                                      |
| +                                                                                                                          | Unbalasted 7                                                                                                                                                             | ruck (Curb)                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5093                                                                       | 28.20623                                                                                                          | 143654.34                                                                                   |                                                                                      |
| +                                                                                                                          | Hub                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19                                                                         | 15.0625                                                                                                           | 286.1875                                                                                    |                                                                                      |
| +                                                                                                                          | Brake activat                                                                                                                                                            | ion cylinder                                                                                                                                                                                                         | & frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                          | 28.25                                                                                                             | 197.75                                                                                      |                                                                                      |
| +                                                                                                                          | Pneumatic ta                                                                                                                                                             | nk (Nitroger                                                                                                                                                                                                         | ו)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                                                                         | 25.25                                                                                                             | 681.75                                                                                      |                                                                                      |
| +                                                                                                                          | Strobe/Brake                                                                                                                                                             | Battery                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                          | 26.5                                                                                                              | 132.5                                                                                       |                                                                                      |
| +                                                                                                                          | Brake Reciev                                                                                                                                                             | ver/Wires                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                          | 52                                                                                                                | 260                                                                                         |                                                                                      |
| +                                                                                                                          | CG Plate inc                                                                                                                                                             | luding DAS                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                                                                         | 30 3/8                                                                                                            | 1275.75                                                                                     |                                                                                      |
| -                                                                                                                          | Battery                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -38                                                                        | 40                                                                                                                | -1520                                                                                       |                                                                                      |
| -                                                                                                                          | Oil                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7                                                                         | 29                                                                                                                | -203                                                                                        |                                                                                      |
| -                                                                                                                          | Interior                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -84                                                                        | 27                                                                                                                | -2268                                                                                       |                                                                                      |
| -                                                                                                                          | Fuel                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -164                                                                       | 19                                                                                                                | -3116                                                                                       |                                                                                      |
| -                                                                                                                          | Coolant                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -12                                                                        | 34                                                                                                                | -408                                                                                        |                                                                                      |
| -                                                                                                                          | Washer fluid                                                                                                                                                             |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                          | 35                                                                                                                | 0                                                                                           |                                                                                      |
| +                                                                                                                          | Water Ballas                                                                                                                                                             | t                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114                                                                        | 19                                                                                                                | 2166                                                                                        |                                                                                      |
| +                                                                                                                          | Onboard Bat                                                                                                                                                              | tery                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                         | 24.25                                                                                                             | 339.5                                                                                       |                                                                                      |
|                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                                                                                   | 0                                                                                           |                                                                                      |
| Note: (+) is ad                                                                                                            | ded equipment to                                                                                                                                                         | vehicle, (-) is re<br>stimated Tota<br>Vertical CG                                                                                                                                                                   | emoved equipme<br>al Weight (Ib.<br>Location (in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | I                                                                                                                 | 141478.77                                                                                   |                                                                                      |
| Note: (+) is ad                                                                                                            | ded equipment to                                                                                                                                                         | vehicle, (-) is re<br>stimated Tota<br>Vertical CG<br>140.75                                                                                                                                                         | emoved equipme<br>al Weight (lb.<br>Location (in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ent from vehicle<br>.) 5021<br>.) 28.17741                                 |                                                                                                                   | 141478.77                                                                                   | l                                                                                    |
| Wheel Base                                                                                                                 | ded equipment to<br>E:<br>≩ (in.)<br>≩ravity                                                                                                                             | vehicle, (-) is re<br>stimated Tota<br>Vertical CG<br><u>140.75</u><br><b>2270P MA</b>                                                                                                                               | emoved equipme<br>al Weight (lb.<br>Location (in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | est Inertia                                                                                                       | 141478.77                                                                                   | Difference                                                                           |
| Wheel Base<br>Center of C                                                                                                  | ded equipment to<br>E:<br>≩ (in.)<br>≩ravity<br>Weight (lb.)                                                                                                             | vehicle, (-) is re<br>stimated Tota<br>Vertical CG<br><u>140.75</u><br><b>2270P MA</b><br>5000                                                                                                                       | emoved equipme<br>al Weight (lb.<br>Location (in.<br><b>SH Targets</b><br>) ± 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | est Inertia                                                                                                       | 141478.77<br>                                                                               | Difference                                                                           |
| Wheel Base<br>Center of C<br>Test Inertial                                                                                 | ded equipment to<br>E:<br>≩ (in.)<br>≩ravity<br>Weight (lb.)<br>I CG (in.)                                                                                               | vehicle, (-) is re<br>stimated Tota<br>Vertical CG<br><u>140.75</u><br>2270P MA<br>5000<br>63                                                                                                                        | ASH Targets<br>0 ± 110<br>3 ± 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | <b>est Inertia</b><br>4999<br>61.97                                                                               | 141478.77                                                                                   | Difference<br>-1.(<br>-1.0294(                                                       |
| Wheel Base<br>Center of C<br>Test Inertial<br>Longitudina<br>Lateral CG                                                    | e (in.)<br>Fravity<br>Weight (lb.)<br>I CG (in.)<br>(in.)                                                                                                                | vehicle, (-) is re<br>stimated Tota<br>Vertical CG<br><u>140.75</u><br>2270P MA<br>5000<br>63<br>NA                                                                                                                  | ASH Targets<br>) ± 110<br>3 ± 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | <b>est Inertia</b><br>4999<br>61.97<br>0.290846                                                                   | <u>141478.77</u>                                                                            | Differenco<br>-1.0<br>-1.02940<br>N/                                                 |
| Wheel Base<br>Center of C<br>Test Inertial<br>Longitudina<br>Lateral CG<br>Vertical CG                                     | e (in.)<br>a (in.)<br>aravity<br>Weight (lb.)<br>I CG (in.)<br>(in.)<br>(in.)                                                                                            | vehicle, (-) is re<br>stimated Tota<br>Vertical CG<br><u>140.75</u><br>2270P MA<br>5000<br>63<br>NA<br>28                                                                                                            | ASH Targets<br>) ± 110<br>3 ± 4<br>3 or greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | <b>est Inertia</b><br>4999<br>61.97<br>0.290846<br>28.18                                                          | 141478.77                                                                                   | Difference<br>-1.0<br>-1.02940<br>N/<br>0.1774                                       |
| Wheel Base<br>Center of C<br>Test Inertial<br>Longitudina<br>Lateral CG<br>Vertical CG<br>Note: Long. C<br>Note: Lateral 0 | ed equipment to<br>E:<br>→ (in.)<br>→ ravity<br>↓ Weight (lb.)<br>↓ CG (in.)<br>(in.)<br>G is measured from<br>CG measured from                                          | vehicle, (-) is re<br>stimated Tot.<br>Vertical CG<br><u>140.75</u><br>2270P MA<br>5000<br>63<br>NA<br>28<br>m front axle of<br>n centerline - po                                                                    | al Weight (lb.<br>a Location (in.<br>ASH Targets<br>$) \pm 110$<br>$3 \pm 4$<br>3<br>or greater<br>test vehicle<br>ositive to vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                           | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | <b>est Inertia</b><br>4999<br>61.97<br>0.290846<br>28.18<br>r) side                                               | <u>141478.77</u>                                                                            | Difference<br>-1.0<br>-1.0294(<br>N/<br>0.1774                                       |
| Wheel Base<br>Center of C<br>Test Inertial<br>Longitudina<br>Lateral CG<br>Vertical CG<br>Note: Long. C<br>Note: Lateral ( | ded equipment to<br>E:<br>→ (in.)<br>→ ravity<br>↓ Weight (lb.)<br>↓ CG (in.)<br>(in.)<br>G is measured fror<br>CG measured fror<br>CURB WEIG                            | vehicle, (-) is re<br>stimated Tot.<br>Vertical CG<br><u>140.75</u><br>2270P MA<br>5000<br>63<br>NA<br>28<br>m front axle of<br>n centerline - po                                                                    | ASH Targets<br>ASH Targets<br>3 ± 110<br>3 ± 4<br>3 or greater<br>test vehicle<br>ositive to vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | <b>est Inertia</b><br>4999<br>61.97<br>0.290846<br>28.18<br>r) side                                               | 141478.77                                                                                   | Difference<br>-1.02944<br>N/<br>0.1774                                               |
| Wheel Base<br>Center of C<br>Test Inertial<br>Longitudina<br>Lateral CG<br>Vertical CG<br>Note: Long. C<br>Note: Lateral ( | ded equipment to<br>E:<br>(in.)<br>Fravity<br>Weight (Ib.)<br>I CG (in.)<br>(in.)<br>G is measured from<br>CURB WEIG                                                     | vehicle, (-) is re<br>stimated Tot.<br>Vertical CG<br><u>140.75</u><br>2270P MA<br>5000<br>63<br>NA<br>28<br>m front axle of<br>n centerline - po                                                                    | ASH Targets<br>a Uveight (lb.<br>Location (in.<br>ASH Targets<br>) ± 110<br>3 ± 4<br>3 or greater<br>test vehicle<br>ositive to vehicle<br>Stiller                                                                                                                                                                                                                                                                                                                                                                                                                              | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | <b>Test Inertia</b><br>4999<br>61.97<br>0.290846<br>28.18<br>r) side                                              | I I I I I I I I I I I I I I I I I I I                                                       | Difference<br>-1.02940<br>N/<br>0.1774<br>6HT (Ib.)                                  |
| Wheel Base<br>Center of C<br>Test Inertial<br>Longitudina<br>Lateral CG<br>Vertical CG<br>Note: Long. C<br>Note: Lateral ( | ded equipment to<br>E:<br>(in.)<br>Travity<br>Weight (lb.)<br>I CG (in.)<br>(in.)<br>G is measured from<br>CURB WEIG<br>Front                                            | vehicle, (-) is re<br>stimated Tot:<br>Vertical CG<br><u>140.75</u><br>2270P MA<br>5000<br>63<br>NA<br>28<br>m front axle of<br>n centerline - po<br>iHT (Ib.)<br>Left                                               | ASH Targets<br>ASH Targets<br>0 ± 110<br>3 ± 4<br>3 or greater<br>test vehicle<br>ositive to vehicle<br>Right<br>1 3 84                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ent from vehicle<br>.) 5021<br>.) 28.17741                                 | <b>Fest Inertia</b><br>4999<br>61.97<br>0.290846<br>28.18<br>r) side<br><b>TEST INEF</b>                          | I<br>I<br>RTIAL WEIG<br>Left<br>1375                                                        | Difference<br>-1.0<br>-1.02940<br>N/<br>0.1774<br>iHT (Ib.)<br>Right                 |
| Wheel Base<br>Center of G<br>Test Inertial<br>Longitudina<br>Lateral CG<br>Vertical CG<br>Note: Long. C<br>Note: Lateral 0 | ded equipment to<br>E:<br>→ (in.)<br>→ravity<br>Weight (lb.)<br>I CG (in.)<br>(in.)<br>G is measured from<br>CURB WEIG<br>Front<br>Rear                                  | vehicle, (-) is re<br>stimated Tot.<br>Vertical CG<br><u>140.75</u><br>2270P MA<br>5000<br>63<br>NA<br>28<br>m front axle of<br>n centerline - po<br>iHT (Ib.)<br>Left<br><u>1471</u><br>1127                        | al Weight (lb.         al Weight (lb.         b Location (in.         ASH Targets         b ± 110         b ± 110         3 ± 4         A         3 or greater         test vehicle         ositive to vehicle         sitive to vehicle         al Right         1       1383         7       1110                                                                                                                                                                                                                                                                             | ent from vehicle<br>.) 5021<br>.) 28.17741<br>e right (passenge            | <b>Fest Inertia</b><br>4999<br>61.97<br>0.290846<br>28.18<br>r) side<br><b>TEST INEF</b><br>Front<br>Rear         | TIAL WEIG<br>Left<br>1375<br>1103                                                           | Difference<br>-1.0<br>-1.02940<br>N/<br>0.1774<br>iHT (Ib.)<br>Right<br>1423<br>1098 |
| Wheel Base<br>Center of C<br>Test Inertial<br>Longitudina<br>Lateral CG<br>Vertical CG<br>Note: Long. C<br>Note: Lateral ( | ded equipment to<br>E:<br>→ (in.)<br>→ ravity<br>↓ Weight (lb.)<br>↓ CG (in.)<br>(in.)<br>G is measured fror<br>CURB WEIG<br>Front<br>Rear<br>FRONT                      | vehicle, (-) is re<br>stimated Tot.<br>Vertical CG<br><u>140.75</u><br><b>2270P MA</b><br>5000<br>63<br>NA<br>28<br>m front axle of<br>n centerline - po<br>i <b>HT (lb.)</b><br>Left<br><u>1471</u><br>1127         | ASH Targets<br>a Weight (lb.<br>Location (in.<br>ASH Targets<br>) ± 110<br>3 ± 4<br>3 or greater<br>test vehicle<br>ositive to vehicle<br>Right<br>1 138<br>7 1110                                                                                                                                                                                                                                                                                                                                                                                                              | ent from vehicle<br>.) 5021<br>.) 28.17741<br>e right (passenge<br>50<br>0 | <b>est Inertia</b><br>4999<br>61.97<br>0.290846<br>28.18<br>r) side<br><b>TEST INEF</b><br>Front<br>Rear<br>FRONT | TIAL WEIG<br>Left<br>1375<br>1103<br>2798                                                   | Difference<br>-1.02944<br>N/<br>0.1774<br>6HT (Ib.)<br>Right<br>1423<br>1098         |
| Wheel Base<br>Center of C<br>Test Inertial<br>Longitudina<br>Lateral CG<br>Vertical CG<br>Note: Long. C<br>Note: Lateral ( | ded equipment to<br>E:<br>(in.)<br>Tavity<br>Weight (lb.)<br>I CG (in.)<br>(in.)<br>G is measured from<br>G measured from<br>CURB WEIG<br>Front<br>Rear<br>FRONT<br>REAR | vehicle, (-) is re<br>stimated Tot:<br>Vertical CG<br><u>140.75</u><br><b>2270P MA</b><br>5000<br>63<br>NA<br>28<br>m front axle of<br>n centerline - po<br>iHT (Ib.)<br>Left<br><u>1471</u><br>1127<br>2856<br>2237 | Right         I         Right         I         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | ent from vehicle<br>.) 5021<br>.) 28.17741<br>e right (passenge<br>50<br>0 | r) side                                                                                                           | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | Difference<br>-1.02940<br>N/<br>0.1774<br>BHT (Ib.)<br>Right<br>1423<br>1098<br>Ib.  |

Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-3

# Appendix E. Deformation Records

![](_page_103_Figure_1.jpeg)

Figure E-1. Floor Pan Deformation Data - Set 1, Test No. NJPCB-3

![](_page_104_Figure_1.jpeg)

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-3

![](_page_105_Figure_1.jpeg)

Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-3

![](_page_106_Figure_1.jpeg)

Figure E-4. Occupant Compartment Deformation Data - Set 2, Test No. NJPCB-3

![](_page_107_Figure_1.jpeg)

Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-3


Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-3

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NJPCB-3



Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-3

102



Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-3



Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-3

104



Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-3



Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-3



Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-3



Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-3

108



Figure F-8. Acceleration Severity Index (SLICE-1), Test No. NJPCB-3



Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-3



Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-3



Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-3



Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-3



Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-3



Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-3



Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-3



Figure F-16. Acceleration Severity Index (SLICE-2), Test No. NJPCB-3

## **END OF DOCUMENT**