

Research Project Number TPF-5(193) Supplement #88

PERFORMANCE EVALUATION OF NEW JERSEY'S PORTABLE CONCRETE BARRIER WITH A PINNED CONFIGURATION AND GROUTED TOES – TEST NO. NJPCB-1

Submitted by

Surajkumar K. Bhakta, M.S.M.E. Former Graduate Research Assistant

> Ronald K. Faller, Ph.D., P.E. Research Professor MwRSF Director

Research Engineer John D. Reid. Ph.D.

Karla A. Lechtenberg, M.S.M.E., E.I.T.

ohn D. Reid, Ph.D Professor

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

NEW JERSEY DEPARTMENT OF TRANSPORTATION

1035 Parkway Avenue, Trenton, New Jersey 08625

MwRSF Research Report No. TRP-03-338-18

December 6, 2018

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-338-18	2.		3. Recipient's Accession No.	
4. Title and Subtitle Performance Evaluation of New Jersey's Portable Concrete Barrier with a Pinned Configuration and Grouted Toes – Test No. NJPCB-1			5. Report Date	
			December 6, 2018	
			6.	
7. Author(s)			8. Performing Organization Report No.	
Bhakta, S.K., Lechtenberg, K.A., Urbank, E.L.	Faller, R.K., Reid,	J.D., Bielenberg, R.W., and	TRP-03-338-18	
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln			10. Project/Task/Work Unit No.	
Main Office: Prem S. Paul Research Center at Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Whittier School	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract © or Grant (G) No. TPF-5(193) Supplement #88	
12. Sponsoring Organization Name and AddressNew Jersey Department of Transportation1035 Parkway AvenueTrenton, New Jersey 08625			13. Type of Report and Period Covered Final Report: 2015-2018	
			14. Sponsoring Agency Code	
15. Supplementary Notes Prepared in cooperation with U.S	. Department of Tra	ansportation, Federal Highway	Administration.	
	NJDOT) Precast Co	oncrete Curb, Construction Bar	nvestigate the performance of New Jersey rrier, which will be referred to as portable s part of this study.	
(Alternative B) with a pinned con Design Manual. Barrier nos. 1, 3 nine 1-in. (25-mm) diameter by 1 holes in the concrete tarmac. Non adjacent barrier segments. The ba Assessing Safety Hardware (MAS truck. Following the successful re acceptable according to TL-3 tes	nfiguration and gro 5, 5, 7, 9, and 10 we 15-in. (381-mm) lon 1-shrink grout wedg urrier was evaluated SH 2009). The researed edirection of the pion of the signation no. 3 ary due to previous	uted toes, corresponding to jo ere anchored to a concrete tarr ng ASTM A36 steel pins inser es were placed at the toe of ea according to the Test Level 3 arch study included one full-sca ckup truck, the safety perform -11 evaluation criteria specifie testing. The barrier successfu	berformance of NJDOT's PCB, Type 4 int class C in the 2013 NJDOT <i>Roadway</i> mac through the pin anchor recesses with ted into 1 ¹ /4-in. (32-mm) diameter drilled ch barrier segment in every joint between (TL-3) criteria set forth in the <i>Manual for</i> ale vehicle crash test with a 2270P pickup ance of the system was determined to be ed in MASH 2009. The 1100C small car illy met MASH 2009 TL-3 criteria. This	

crash test was deemed unnecessary due to previous testing. report is the first of nine documents in the nine-test series.

17. Document Analysis/Descripto Highway Safety, Crash Test, Roa Compliance Test, MASH 2009, L Concrete Barrier, PCB, Anchored	dside Appurtenances, ongitudinal Barrier, Portable	 Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 		
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price	
Unclassified	Unclassified	122		

DISCLAIMER STATEMENT

This report was completed with funding from the New Jersey Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Mr. James Holloway, Research Engineer and Assistant Director – Physical Testing Division.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) New Jersey Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Assistant Director – Physical Testing Division
J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
C.S. Stolle, Ph.D., Research Assistant Professor
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer
M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate
S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
E.W. Krier, B.S., Construction and Testing Technician I
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
M.A. Rasmussen, Construction and Testing Technician I
M.T. Ramel, B.S.C.M., former Construction and Testing Technician I
J.E. Kohtz, B.S.M.E., CAD Technician
Undergraduate and Graduate Research Assistants

New Jersey Department of Transportation

Dave Bizuga, former Senior Executive Manager, Roadway Design Group 1 Giri Venkiteela, Research Project Manager, NJDOT Bureau of Research Hung Tang, Design Standards Bureau, Roadway Standards Unit Lee Steiner, Project Engineer, Bureau of Traffic Engineering

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	. ii
UNCERTAINTY OF MEASUREMENT STATEMENT	. ii
INDEPENDENT APPROVING AUTHORITY	. ii
ACKNOWLEDGEMENTSi	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLESi	ix
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	. 1 . 2
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	. 3
3 DESIGN DETAILS	. 6
4 TEST CONDITIONS24.1 Test Facility24.2 Vehicle Tow and Guidance System24.3 Test Vehicle24.4 Simulated Occupant24.5 Data Acquisition Systems24.5.1 Accelerometers24.5.2 Rate Transducers24.5.3 Retroreflective Optic Speed Trap34.5.4 Digital Photography3	25 25 29 29 29 29 29 30
5 FULL-SCALE CRASH TEST NO. NJPCB-1	32 32 34 35 37

7 MASH IMPLEME	NTATION	57
8 REFERENCES		59
9 APPENDICES		61
Appendix A.	NJDOT PCB Standard Plans	62
Appendix B.	Material Specifications	68
Appendix C.	Concrete Tarmac Strength	93
Appendix D.	Vehicle Center of Gravity Determination	96
Appendix E.	Vehicle Deformation Records	98
Appendix F.	Accelerometer and Rate Transducer Data Plots, Test No. NJPCB-1	. 105

LIST OF FIGURES

Figure 1. Test Installation Layout, Test No. NJPCB-1	7
Figure 2. PCB Pin Anchor Details, Test No. NJPCB-1	8
Figure 3. PCB Pin Anchor Locations, Test No. NJPCB-1	9
Figure 4. PCB Details, Test No. NJPCB-1	
Figure 5. PCB Reinforcement Details, Test No. NJPCB-1	11
Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-1	12
Figure 7. PCB Connection Key Assembly Details, Test No. NJPCB-1	
Figure 8. PCB Connection Key Component Details, Test No. NJPCB-1	14
Figure 9. PCB Connection Socket Details, Test No. NJPCB-1	15
Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-1	16
Figure 11. Connection Key Placement Details, Test No. NJPCB-1	
Figure 12. PCB Reinforcement Details, Test No. NJPCB-1	18
Figure 13. General Notes, Test No. NJPCB-1	19
Figure 14. Bill of Materials, Test No. NJPCB-1	20
Figure 15. NJDOT PCB with Pinned Configuration and Grouted Toes Test Installation,	
Test No. NJPCB-1	21
Figure 16. PCB Connection Key and Connection Socket, Test No. NJPCB-1	22
Figure 17. PCB Pin Anchor Recesses, Test No. NJPCB-1	
Figure 18. Grout at Toes between PCBs, Test No. NJPCB-1	24
Figure 19. Test Vehicle, Test No. NJPCB-1	
Figure 20. Vehicle Dimensions, Test No. NJPCB-1	
Figure 21. Target Geometry, Test No. NJPCB-1	
Figure 22. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-1	31
Figure 23. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
NJPCB-1	35
Figure 24. Summary of Test Results and Sequential Photographs, Test No. NJPCB-1	38
Figure 25. Additional Sequential Photographs, Test No. NJPCB-1	39
Figure 26. Additional Sequential Photographs, Test No. NJPCB-1	40
Figure 27. Documentary Photographs, Test No. NJPCB-1	41
Figure 28. Impact Location, Test No. NJPCB-1	42
Figure 29. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-1	43
Figure 30. System Damage – Front, Back, Upstream and Downstream Views, Test No.	
NJPCB-1	44
Figure 31. System Damage at Impact Location, Test No. NJPCB-1	45
Figure 32. Barrier No. 3 – Traffic and Back Side Damage, Test No. NJPCB-1	46
Figure 33. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-1	
Figure 34. Barrier No. 5 – Traffic and Back Side Damage, Test No. NJPCB-1	48
Figure 35. Barrier No. 6 – Traffic and Back Side Damage, Test No. NJPCB-1	49
Figure 36. Vehicle Damage, Test No. NJPCB-1	
Figure 37. Vehicle Damage on Impact Side, Test No. NJPCB-1	51
Figure 38. Vehicle Windshield and Window Damage, Test No. NJPCB-1	
Figure 39. Occupant Compartment Deformation, Test No. NJPCB-1	
Figure 40. Undercarriage Damage, Test No. NJPCB-1	
Figure A-1. NJDOT PCB Standard Plans	

Figure A-3. NJDOT PCB Standard Plans	65
Figure A-4. NJDOT PCB Standard Plans	
Figure A-5. NJDOT PCB Standard Plans	
Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-1	
Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-1	
Figure B-4. Anchor Pins Material Certificate, Test No. NJPCB-1	
Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-1	
Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-1	
Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-1	
Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-1 Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-1	
Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-1	
Figure B-10. Rebar No. 4 Material Certificate, Test No. NJPCB-1	
Figure B-12. Rebar No. 6 Material Certificate, Test No. NJPCB-1	
Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-1	
Figure B-14. Steel Tube Material Certificate, Test No. NJPCB-1	
Figure B-15. Steel Tube Material Certificate, Test No. NJPCB-1	
Figure B-16. Steel Tube Material Test Certificate, Test No. NJPCB-1	
Figure B-17. Steel Tube Material Certificate, Test No. NJPCB-1	
Figure B-18. Steel Tube Material Certificate, Test No. NJPCB-1	86
Figure B-19. 2-in. × ¹ / ₄ -in. (51-mm × 6-mm) Bent Steel Plate, Test No. NJPCB-1	87
Figure B-20. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-1	88
Figure B-21. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-1	
Figure B-22. Non-Shrink Grout Specifications, Test No. NJPCB-1	
Figure B-23. Non-Shrink Grout Specifications, Test No. NJPCB-1	
Figure B-24. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-1	
Figure C-1. Concrete Tarmac Strength Test	
Figure C-2. Concrete Tarmac Strength Test	
Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-1	
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-1	
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-1 Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-1	
Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-1	
Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJTCB-1	
Figure E-6. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-1	
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-1	
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-1	
Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-1	
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-1	
Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-1	
Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-1	111
Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-1	112
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. NJPCB-1	
Figure F-9. 10-ms Average Longitudinal Deceleration (DTS), Test No. NJPCB-1	
Figure F-10. Longitudinal Occupant Impact Velocity (DTS), Test No. NJPCB-1	
Figure F-11. Longitudinal Occupant Displacement (DTS), Test No. NJPCB-1	
Figure F-12. 10-ms Average Lateral Deceleration (DTS), Test No. NJPCB-1	117

Figure F-13. Lateral Occupant Impact Velocity (DTS), Test No. NJPCB-1	118
Figure F-14. Lateral Occupant Displacement (DTS), Test No. NJPCB-1	119
Figure F-15. Vehicle Angular Displacements (DTS), Test No. NJPCB-1	
Figure F-16. Acceleration Severity Index (DTS), Test No. NJPCB-1	

LIST OF TABLES

Table 1. 2013 NJDOT Roadway Design Manual PCB Guidance [1]	1
Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]	1
Table 3. MASH 2009 TL-3 Crash Test Conditions for Longitudinal Barriers	3
Table 4. MASH 2009 Evaluation Criteria for Longitudinal Barrier	5
Table 5. Weather Conditions, Test No. NJPCB-1	32
Table 6. Sequential Description of Impact Events, Test No. NJPCB-1	32
Table 7. Maximum Occupant Compartment Deformations by Location	36
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-1	37
Table 9. Summary of Safety Performance Evaluation	56
Table B-1. Bill of Materials, Test No. NJPCB-1	69

1 INTRODUCTION

1.1 Background

The New Jersey Department of Transportation (NJDOT) currently uses a New Jersey shape, Precast Concrete Curb, Concrete Barrier, which will be referred to as portable concrete barrier (PCB), with a vertical, I-beam connection pin to attach barriers end to end within their work zones and construction areas. The 2013 NJDOT *Roadway Design Manual* [1] provided guidance on allowable barrier deflections for various classes of PCB joint treatments, as shown in Table 1. The current 2015 NJDOT *Roadway Design Manual* [2] provides guidance on allowable deflections for various connection types, as shown in Table 2.

Joint Class	Use	Joint Treatment
А	Allowable movement over 16 to 24 inches	Connection Key only
В	Allowable movement over 11 to 16 inches	Connection Key and grout in every joint
С	Allowable movement of 11 inches	Connection Key and grout in every joint and pin every other unit. In units to be anchored, pin should be required in every recess
D	No allowable movement (i.e., bridge parapet)	Connection Key and grout in every joint and bolt every anchor pocket hole in every unit.

Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]

Connection Type	Use	Joint Treatment*
А	Maximum allowable deflection of 41 inches	Connection Key and barrier end sections fully pinned
В	Maximum allowable deflection of 28 inches (Cannot be used with traffic on both sides of the barrier.)	Connection Key, 6" by 6" box beam, and barrier end sections fully pinned
С	Maximum allowable deflection of 11 inches	Connection Key, construction side of all sections pinned, and barrier end sections fully pinned

* Barrier end sections fully pinned – first and last barrier segments of the entire run regardless of connection type have pins in every anchor recess on both sides.

The guidance provided in both the 2013 and 2015 *Roadway Design Manual* was based on test data obtained from previous testing standards, which needs to be updated to be consistent with current crash testing standards and a changing vehicle fleet. Crash testing of other PCB systems under the Test Level 3 (TL-3) criteria of the *Manual for Assessing Safety Hardware* (MASH 2009) [3] has indicated that dynamic barrier deflections can increase significantly when compared to dynamic deflections based on older crash test data. Thus, a need exists to investigate the

performance of the NJDOT PCB system in various configurations in order to provide updated design guidance. The NJDOT PCB standard plans are shown in Appendix A.

1.2 Objective

The objective of this research effort was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) with a pinned configuration and grouted toes, corresponding to joint class C in the 2013 NJDOT *Roadway Design Manual* [1]. The system was to be evaluated according to the Test Level 3 (TL-3) criteria set forth in the *Manual for Assessing Safety Hardware* (MASH 2009) [3].

1.3 Scope

The research objective was achieved through completion of several tasks. One full-scale crash test was conducted on the PCB system according to MASH 2009 test designation no. 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the PCB system.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as PCBs, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [4]. Note that there is no difference between MASH 2009 and MASH 2016 for most longitudinal barriers, such as the PCB system tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016. According to TL-3 of MASH 2009, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 3. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,268)	62 (100)	25	A,D,F,H,I

 Table 3. MASH 2009 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 4.

In test no. 7069-3, a rigid, F-shape, concrete bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-8]. In additional, in test no. 2214NJ-1, a rigid, New Jersey, ½-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid concrete barriers as seen in test no. 47 [10]. As such, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2009 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2009 criteria and the lack of experience and knowledge regarding the performance of the new vehicle types with certain types of hardware could result in unanticipated barrier performance. Thus, any

tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2009 criteria.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the PCB system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH 2009. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2009.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2009.

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
Occupant	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH 2009.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH 2009 for calculation procedure) should satisfy the following limits:				
Risk		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH 2009 for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		

3 DESIGN DETAILS

The test installation consisted of ten 20-ft (6.1-m) long NJDOT PCBs with a pinned configuration and grouted toes, as shown in Figures 1 through 14. This system uses NJDOT barriers, Type 4 (Alternative B) with joint class C as specified in the 2013 NJDOT *Roadway Design Manual*. Photographs of the test installation are shown in Figures 15 through 18. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The concrete mix for the barrier sections required a minimum 28-day compressive strength of 3,700 psi (25.5 MPa). A minimum concrete cover of 1½ in. (38 mm) was used along all rebar in the barrier. All of the steel reinforcement in the barrier was ASTM A615 Grade 60 rebar and consisted of four No. 6 longitudinal bars, eight No. 4 bars for the vertical stirrups, four No. 6 lateral bars, and nine No. 4 bars for the anchor hole reinforcement loops. The section reinforcement details are shown in Figures 5 and 6.

The barrier sections used a connection key, as shown in Figures 7 through 11 and 16. The connection key assembly consisted of ¹/₂-in. (13-mm) thick, ASTM A36 steel plates welded together to form the key shape. A connection socket was configured at each end of the PCB section, as shown in Figures 2, 15, and 16. The connection socket consisted of three ASTM A36 steel plates welded on the sides of an ASTM A500 Grade B or C steel tube, as shown in Figures 9 and 10. The connection key was inserted into the steel tubes of two adjoining PCBs to form the connection, as shown in Figure 11.

Barrier nos. 1, 3, 5, 7, 9, and 10 were anchored to the concrete tarmac through the pin anchor recesses with nine 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins inserted into 1¹/₄-in. (32-mm) diameter holes in the concrete tarmac, as shown in Figures 12 and 17. The steel pins were embedded to a depth of 5 in. (127 mm), as shown in Figure 1. During installation, the barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints. After slack was removed from all the joints, 1¹/₄-in. (32-mm) diameter holes were drilled for pin anchors at pin recess locations. Five samples of concrete tarmac were tested from five different locations of the MwRSF Outdoor Test Site. The concrete tarmac had a compressive strength ranging between 5,970 and 7,040 psi (41.2 and 48.5 MPa), as shown in Appendix C. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments, as shown in Figure 18. The grout wedges consisted of a grout mix with a minimum 1-day compressive strength of 1,000 psi (6.9 MPa).

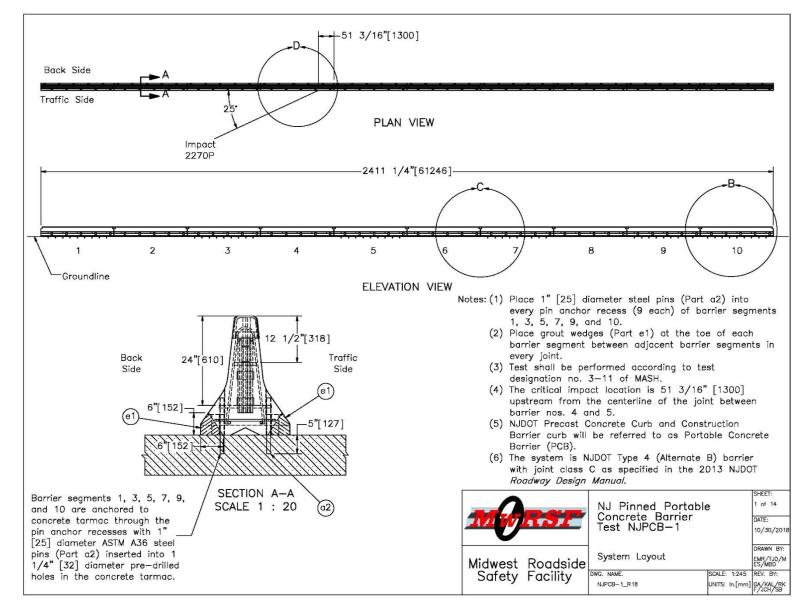


Figure 1. Test Installation Layout, Test No. NJPCB-1

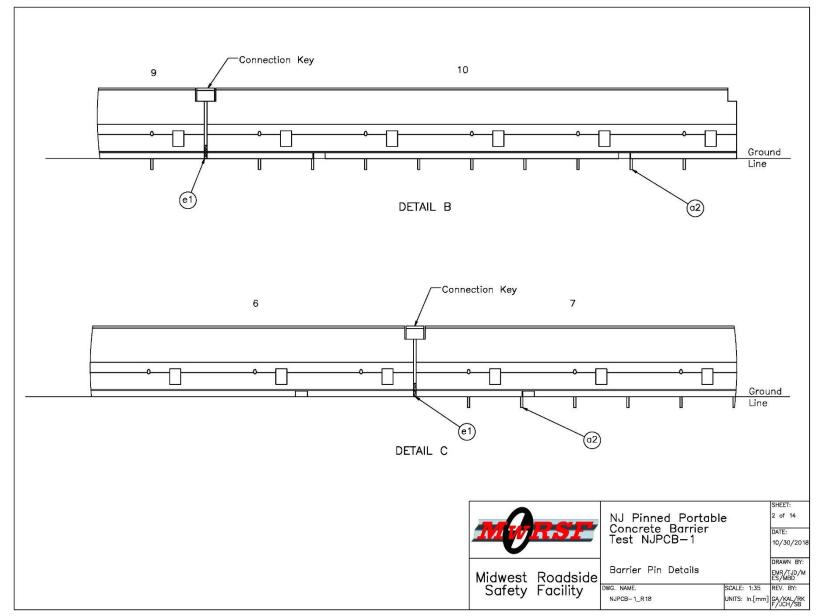


Figure 2. PCB Pin Anchor Details, Test No. NJPCB-1

 ∞

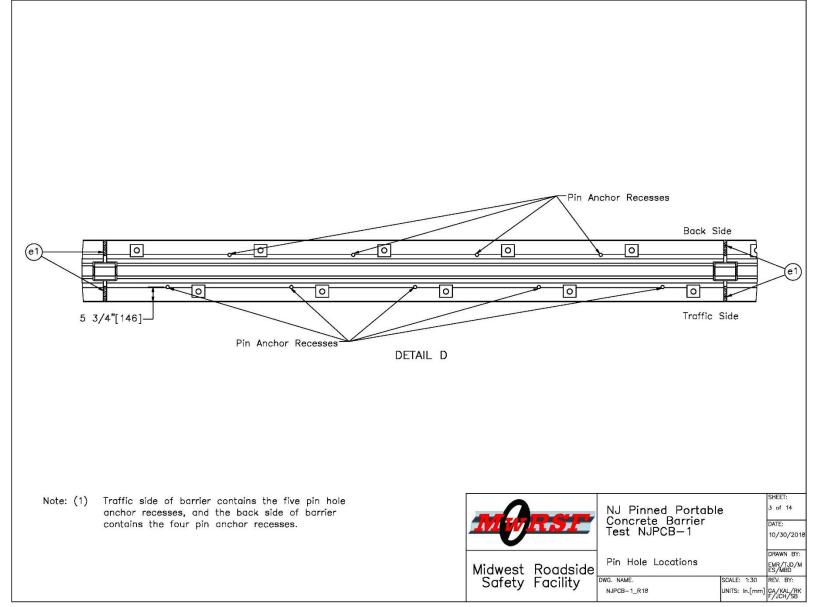


Figure 3. PCB Pin Anchor Locations, Test No. NJPCB-1

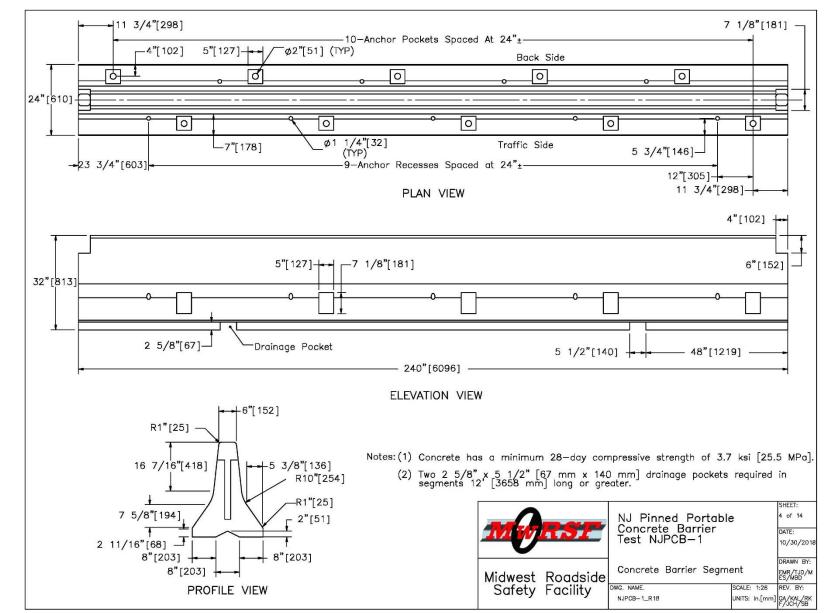


Figure 4. PCB Details, Test No. NJPCB-1

10

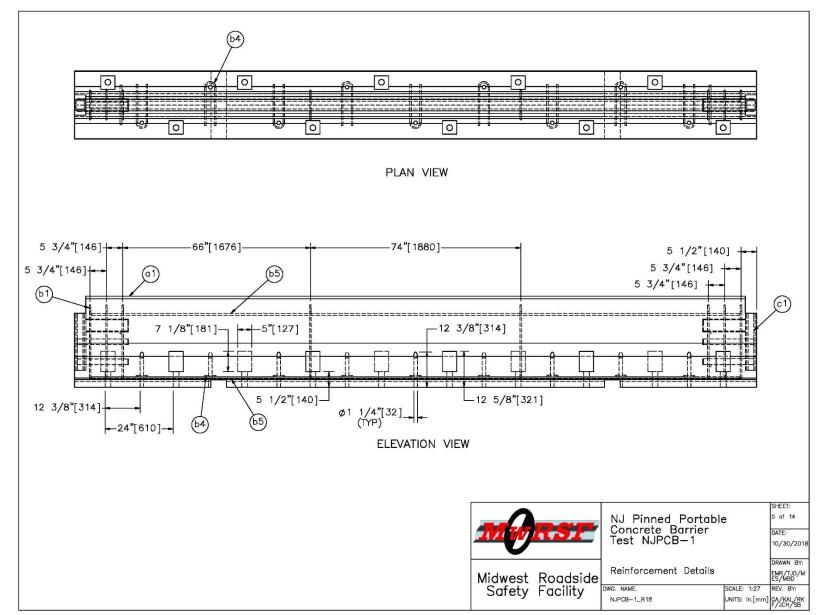


Figure 5. PCB Reinforcement Details, Test No. NJPCB-1

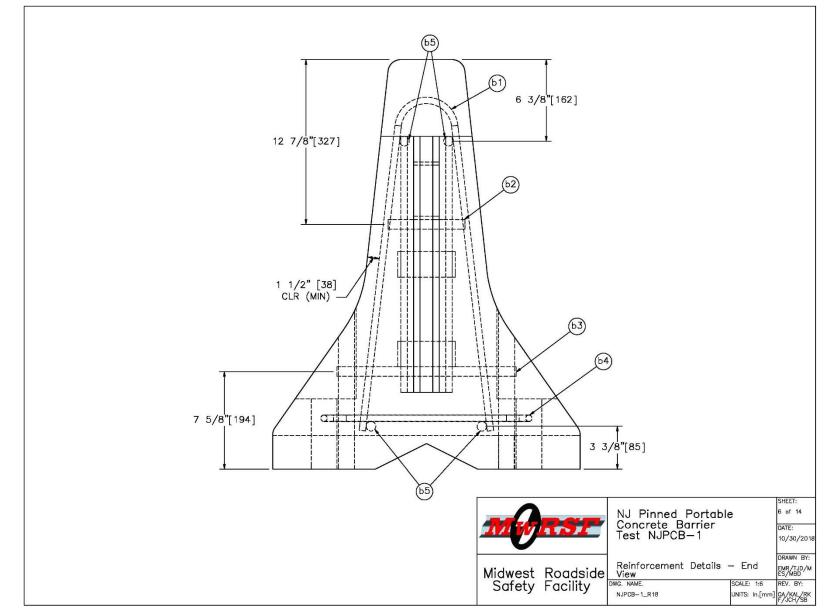


Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-1

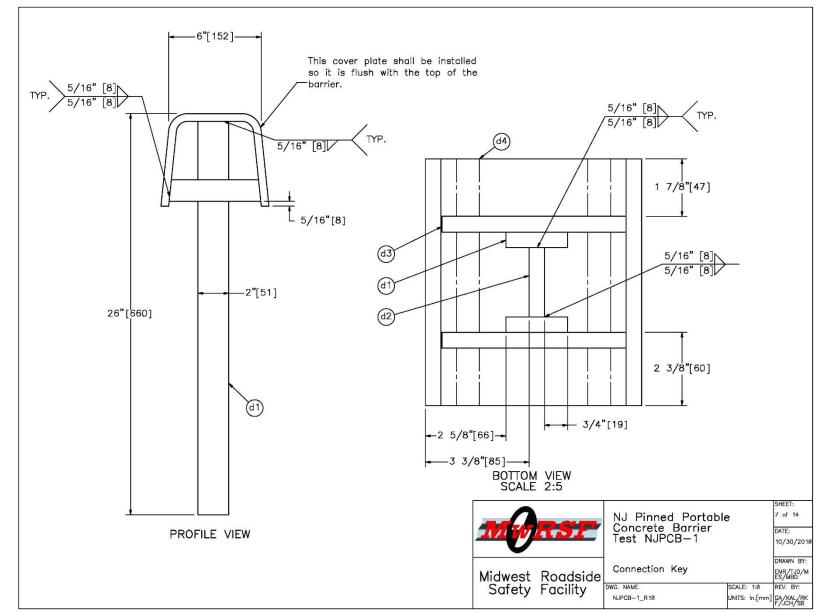


Figure 7. PCB Connection Key Assembly Details, Test No. NJPCB-1

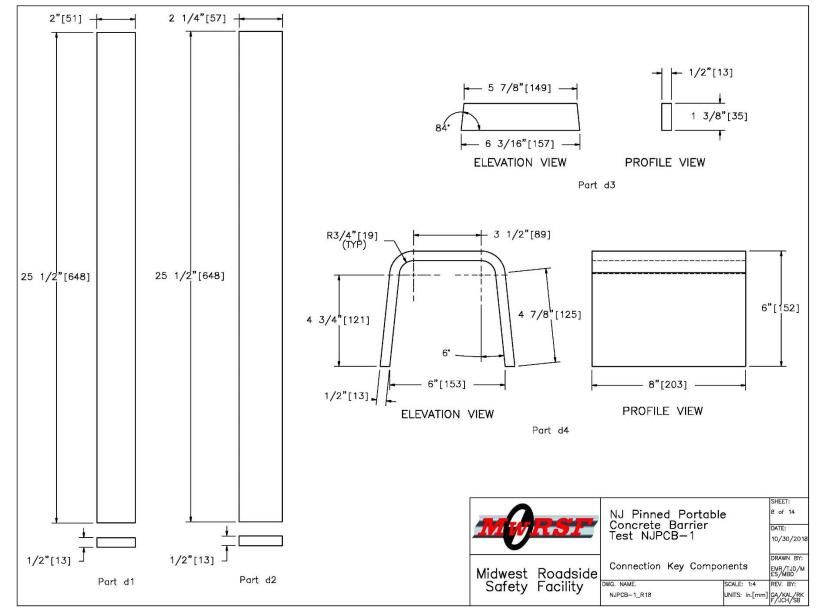


Figure 8. PCB Connection Key Component Details, Test No. NJPCB-1

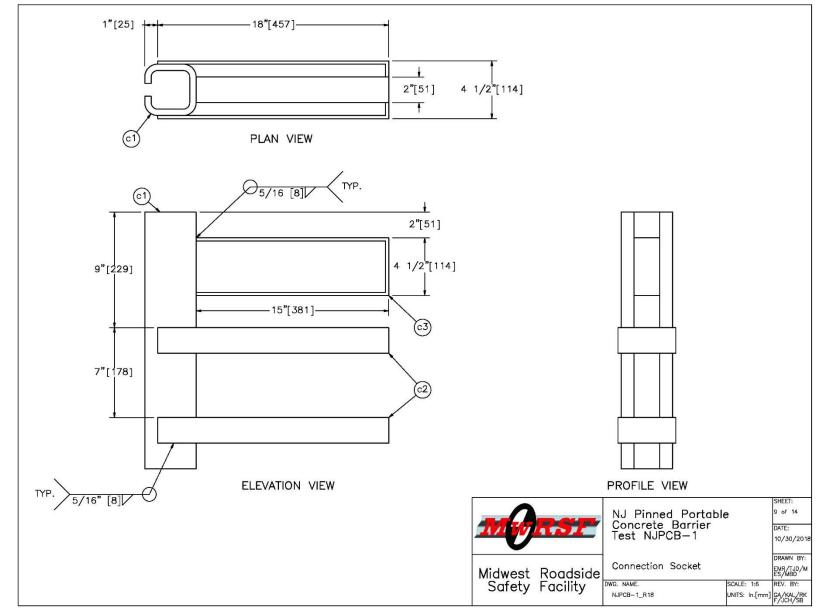


Figure 9. PCB Connection Socket Details, Test No. NJPCB-1

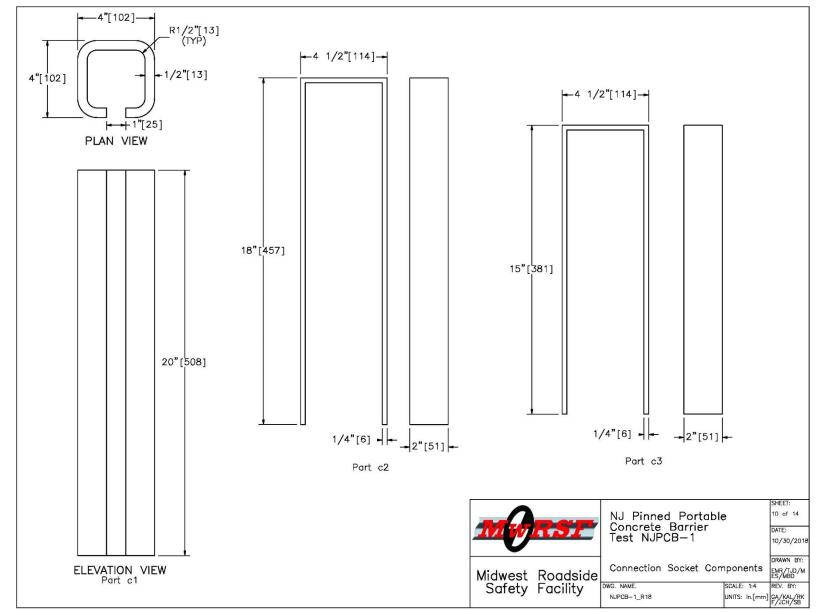


Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-1

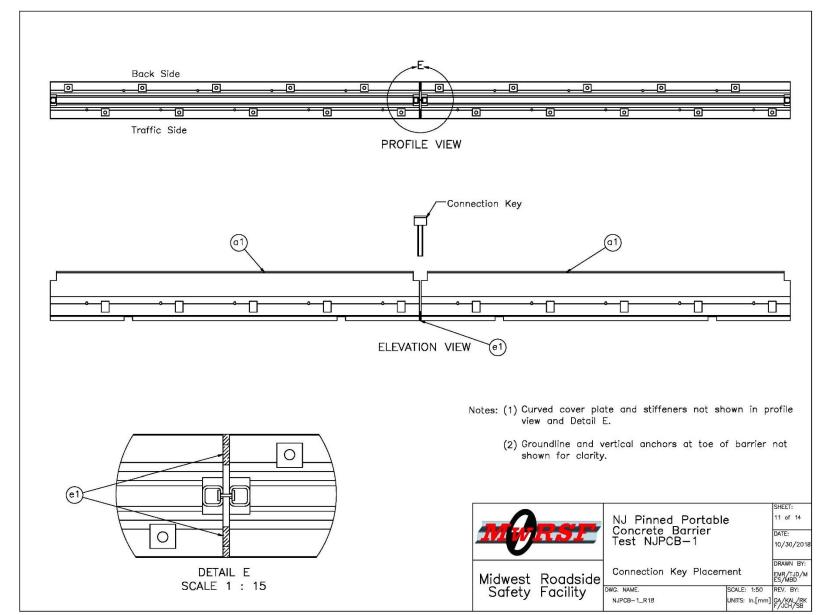


Figure 11. Connection Key Placement Details, Test No. NJPCB-1

17

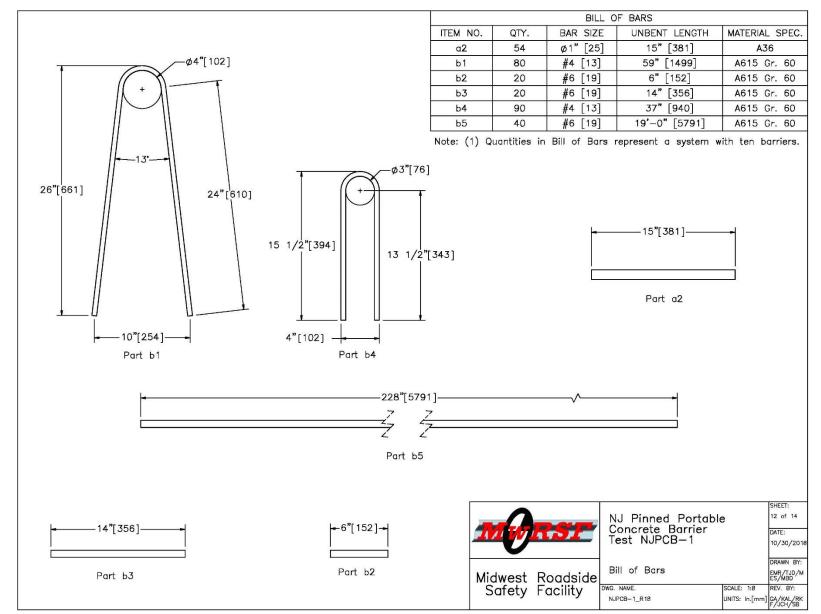


Figure 12. PCB Reinforcement Details, Test No. NJPCB-1

December 6, 2018 MwRSF Report No. TRP-03-338-18

18

- (1) Minimum concrete clear cover for reinforcement steel shall be 1 1/2" [38 mm].
- (2) All end segments shall be pinned.
- (3) After a segment has been placed and the connection key inserted, pull the unit in a direction parallel to its longitudinal axis to remove any slack in the joint.
- (4) The portable concrete barrier shall be cast in steel forms.
- (5) The portable concrete barrier shall be barrier segments of 20 feet [6,096 mm]. However, other lengths may be used to meet field conditions. The number and placement of the b2 and b3 reinforcement steel will vary with the length of the barrier segment as shown on the table of variable reinforcement steel. The b5 reinforcement steel shall be 10" [254 mm] shorter than the nominal length of the barrier segments.
- (6) Reinforcing shown is the minimum required. Additional reinforcing necessary for handling shall be the option and responsibility of the contractor.
- (7) Welding and fabrication of steel structures shall be in accordance with sections 1 thru 6 of the ANSI/AASHTO/AWS D1.5 bridge welding code and section 10 of the ANSI/AWS D1 structural welding code. Surfaces to be welded shall be free of scale, slag, rust, moisture, grease or any other material that will prevent proper welding or produce objectional fumes. Welding shall be shielded metal arc welding using properly dried 5/32" [4 mm] dia. E7018 electrodes.
- (8) The length of the pins shall be such that a minimum embedment length of 5" [127 mm] is obtained when embedded into concrete pavement. When anchor pins are in place, they shall not project above the plane of the concrete surface of the barrier. Holes in bridge decks shall be 1 1/4" [32 mm] diameter maximum and made with a core drill or any other approved rotary drilling device that does not impart an impact force.
- (9) Use non-shrink grout of a plastic consistency that is listed on the QPL and conforms to ASTM C 1107 with the following amendments: 1. Ensure that the grout has a working time of at least 30 minutes from the time the water is added.
 - 2. Match the color of the hardened grout, where visible, to the color of the adjacent hardened concrete.
 - 3. Include 1-day strength tests as part of the performance requirements of ASTM C 1107.
 - 4. Ensure that the grout contains no more than 0.05 percent chlorides or 5.0 percent sulfates by weight.
 - 5. Minimum 1-day compressive strength of 1,000 psi [6.9 MPa].
- (10) Use connection key in every joint. Grout is placed at the toe of each barrier segment between adjacent barrier segments in every joint. Pin every other segment, except both end segments are pinned. In segments that are to be anchored, pins shall be required in every anchor pin recess.

MWRSE	NJ Pinned Portable Concrete Barrier Test NJPCB-1	SHEET: 13 of 14 DATE: 10/30/2018
Midwest Roadside	General Notes	DRAWN BY: EMR/TJD/M ES/MBD
Safety Facility	DWG. NAME. SCALE: None NJPCB-1_R18 UNITS: In.[mm	REV. BY:] GA/KAL/RK F/JCH/SB

Figure 13. General Notes, Test No. NJPCB-1

Item No.	QTY.	Description	Material Spec	Galvanization Spec
a1	10	Concrete Barrier Segment - NJDOT Type 4 Barrier (Alternate B)	f'c = 3,700 psi [25.5 MPa]	-
۵2	54	1" [25] Dia., 15" [381] Long Anchor Steel Pin	ASTM A36	ASTM A123*
b1	80	1/2" [13] Dia., 59" [1,499] Long Bent Rebar	ASTM A615 Gr. 60	-
b2	20	3/4" [19] Dia., 6" [152] Long Rebar	ASTM A615 Gr. 60	
b3	20	3/4" [19] Dia., 14" [356] Long Rebar	ASTM A615 Gr. 60	
b4	90	1/2" [13] Dia., 37" [940] Long Bent Rebar	ASTM A615 Gr. 60	-
b5	40	3/4" [19] Dia., 228" [5,791] Long Rebar	ASTM A615 Gr. 60	-
c1	20	4"x4"x1/2" [102x102x13] x 20" [508] Long Tube	ASTM A500 Gr. B or C	-
c2	40	40 1/2"x2"x1/4" [1,029x51x6] Bent Steel Plate	ASTM A36	-
c3	20	34 1/2"x2"x1/4" [876x51x6] Bent Steel Plate	ASTM A36	-
d1	18	25 1/2"x2"x1/2" [648x51x13] Steel Plate	ASTM A36	-
d2	9	25 1/2"x2 1/4"x1/2" [648x57x13] Steel Plate	ASTM A36	
d3	18	6 3/16"x1 3/8"x1/2" [157x35x13] Steel Plate — Stiffener	ASTM A36	H
d4	9	17"x8"x1/2" [432x203x13] Bent Steel Plate - Top Plate	ASTM A36	-
e1	18	Non-Shrink Grout	Min. 1-day Compressive Strength 1,000 psi [6.9 MPa]	1

*Component does not need to be galvanized for testing purposes.

MORSE	NJ Pinned Portable Concrete Barrier Test NJPCB-1 Bill of Materials	9	SHEET: 14 of 14 DATE: 10/30/2018 DRAWN BY: EVIO (T.D. (MS)
Midwest Roadside			EMR/TJD/ME S/MBD
Safety Facility	DWG. NAME. NJPCB-1_R18	SCALE: None UNITS: In.[mm]	REV. BY: GA/KAL/RKI /JCH/SB

Figure 14. Bill of Materials, Test No. NJPCB-1

Figure 15. NJDOT PCB with Pinned Configuration and Grouted Toes Test Installation, Test No. NJPCB-1

Figure 16. PCB Connection Key and Connection Socket, Test No. NJPCB-1

Figure 17. PCB Pin Anchor Recesses, Test No. NJPCB-1

Figure 18. Grout at Toes between PCBs, Test No. NJPCB-1

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicle

For test no. NJPCB-1, a 2010 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,229 lb (2,372 kg), 5,013 lb (2,274 kg), and 5,174 lb (2,347 kg), respectively. The test vehicle is shown in Figure 19, and vehicle dimensions are shown in Figure 20.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [12] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 20 and 21. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 21. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicle would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-

speed digital videos. A remote-controlled brake system was installed in the test vehicle to bring the vehicle safely to a stop after the test.

Figure 19. Test Vehicle, Test No. NJPCB-1

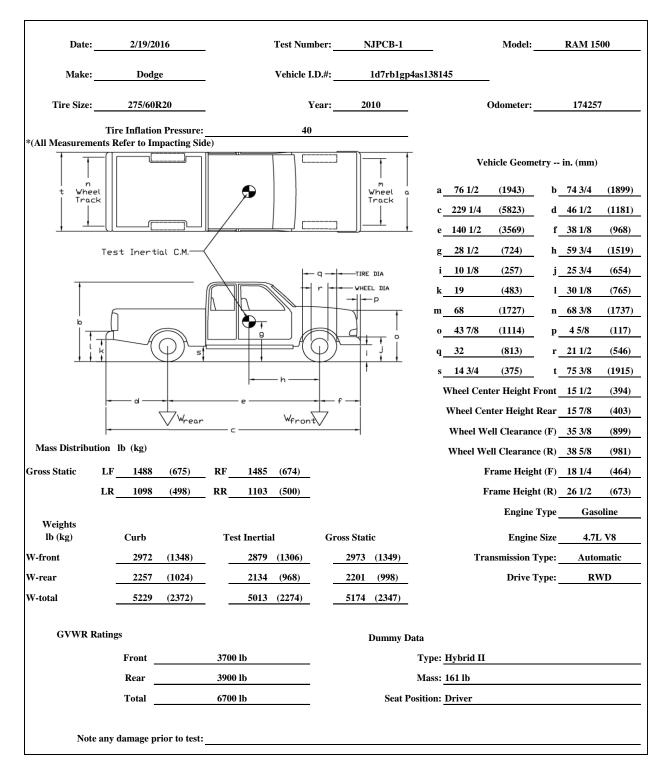


Figure 20. Vehicle Dimensions, Test No. NJPCB-1

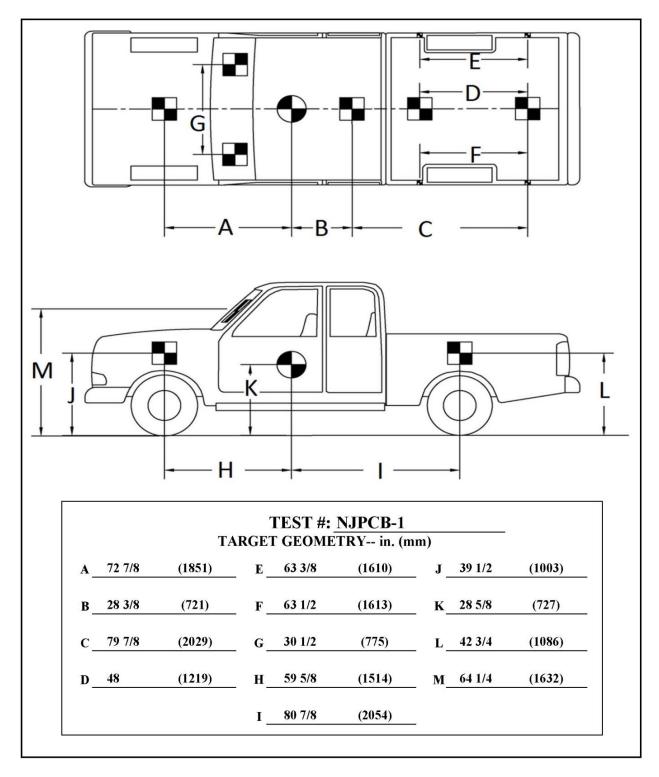


Figure 21. Target Geometry, Test No. NJPCB-1

4.4 Simulated Occupant

For test no. NJPCB-1, A Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 161 lb (73 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2009, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometers were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [13].

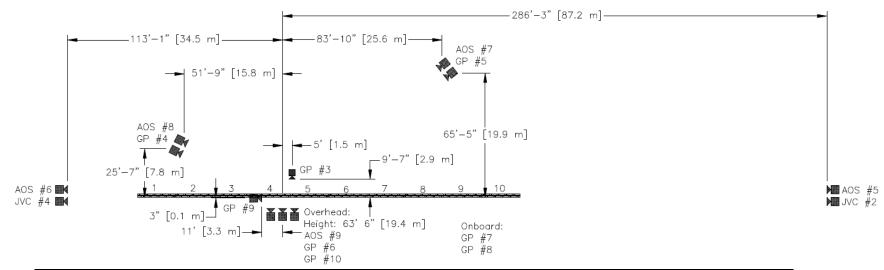
The first accelerometer, the SLICE-1 unit, was a modular data acquisition system manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-1 unit was designated as the primary system. The acceleration sensors were mounted inside the body of a custom-built, SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The second accelerometer system was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by DTS of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module configured rack was with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

The first angular rate sensor system, which was mounted inside the body of the SLICE-1 event data recorder, measured the rates of rotation of the test vehicle. The SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessor. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare"

computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


The second angular rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw), measured the rates of rotation of the test vehicle. The angular rate sensor was mounted on an aluminum block inside the test vehicle near the c.g. and recorded data at 10,000 Hz to the DTS SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras, eight GoPro digital video cameras, and two JVC digital video cameras were utilized to film test no. NJPCB-1. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 22. The high-speed digital videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed digital videos. A Nikon digital still camera was also used to document pre- and post-test conditions for the test.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	VIVITAR 135mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	SIGMA 28-70 DG	50
AOS-8	AOS S-VIT 1531	500	SIGMA 28-70	35
AOS-9	AOS TRI-VIT	500	KOWA 12mm Fixed	-
GP-3	GoPro Hero 3+	120		
GP-4	GoPro Hero 3+	120		
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	240		
GP-8	GoPro Hero 4	240		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	240		
JVC-2	JVC – GZ-MG27u (Everio)	29.97		
JVC-4	JVC – GZ-MG27u (Everio)	29.97		

Figure 22. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-1

31

5 FULL-SCALE CRASH TEST NO. NJPCB-1

5.1 Weather Conditions

Test no. NJPCB-1 was conducted on February 19, 2016 at approximately 1:15 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Temperature	66° F
Humidity	24%
Wind Speed	16 mph
Wind Direction	280° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

Table 5. Weather Conditions, Test No. NJPCB-1

5.2 Test Description

The 5,013-lb (2,274-kg) pickup truck impacted the NJDOT PCB, Type 4 (Alternative B) with a pinned configuration and grouted toes, corresponding to joint class C in the 2013 NJDOT *Roadway Design Manual*, at a speed of 62.6 mph (100.7 km/h) and at an angle of 24.7 degrees. A summary of the test results and sequential photographs are shown in Figure 24. Additional sequential photographs are shown in Figure 25 and 26. Documentary photographs of the crash test are shown in Figure 27.

Initial vehicle impact was to occur 4 ft $-3^{3}/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5, as shown in Figure 28, which was selected using Table 2.6 of MASH 2009. The actual point of impact was $2^{1}/_{8}$ in. (54 mm) downstream from the target location. A sequential description of the impact events is contained in Table 6. The vehicle came to rest 193 ft – 11 in. (59.1 m) downstream from the impact point and 9 ft – 4 in. (2.8 m) laterally away from the traffic side of the barrier. The vehicle trajectory and final position are shown in Figures 24 and 29.

TIME (sec)	EVENT		
0.000	Vehicle's left-front corner impacted barrier no. 4 at 4 ft $- 1^{1/16}$ in. (1.25 m) upstream from centerline of joint between barrier nos. 4 and 5.		
0.004	Left corner of front bumper deformed inward.		
0.008	Left headlight contacted top of barrier no. 4 and deformed.		

Table 6. Sequential Description of Impact Events, Test No. NJPCB-1

0.020	Downstream end of barrier no. 4 deflected backward.			
0.022	Vehicle's hood and grille contacted front face of barrier no. 4, and barrier deformed.			
0.026	Vehicle's left-front door contacted downstream front face of barrier no. 4, and door deformed.			
0.038	Vehicle yawed away from system.			
0.044	Vehicle's airbags deployed, and upstream end of barrier no. 4 cracked.			
0.046	Upstream end of barrier no. 5 deflected backward.			
0.050	Downstream end of barrier no. 3 deflected backward.			
0.058	Vehicle's left-rear door contacted downstream end of barrier no. 4, and door deformed.			
0.064	Downstream end of barrier no. 5 cracked.			
0.066	Center and upstream end of barrier no. 5 cracked.			
0.068	Upstream end of barrier no. 6 deflected backward.			
0.084	Downstream end of barrier no. 4 spalled.			
0.088	Center and downstream portions of barrier no. 5 spalled.			
0.092	Upstream end of barrier no. 5 spalled.			
0.098	Vehicle's left-front window shattered from occupant's head, and vehicle rolled away from system.			
0.110	Vehicle's right-front tire became airborne.			
0.130	Upstream end toe on front side of barrier no. 4 cracked, and large piece of concrete separated from back side of barrier no. 5.			
0.142	Large piece of concrete separated from downstream end of barrier no. 4.			
0.192	Vehicle's left-rear tire contacted top of barrier no. 5.			
0.200	Left headlight detached away from vehicle.			
0.204	Vehicle was parallel to system at a speed of 46.5 mph (74.8 km/h).			
0.226	Vehicle pitched downward.			
0.278	Vehicle's right-rear tire became airborne.			
0.344	Vehicle became airborne and exited system at a speed of 46.0 mph (74.1 km/h) and at an angle of 9.2 deg.			
0.652	Vehicle's right-front tire regained contact with ground with vehicle exhibiting approximately 33.8 deg of roll.			
0.990	Vehicle's left-front tire regained contact with ground.			
1.020	Vehicle's left-front tire separated from left-front rim.			
1.050	Left-front wheel detached from vehicle, and left-rear tire deflated.			
1.104	Occupant's left arm contacted vehicle's A-pillar.			

5.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 30 through 35. Barrier damage consisted of contact and gouge marks on the front face of the PCB segments, spalling of the concrete, and concrete cracking and fracture. The length of vehicle contact along the barrier was approximately 19 ft – $4\frac{1}{2}$ in. (5.9 m), which spanned from 4 ft – $2\frac{1}{2}$ in. (1.3 m) upstream from the center of the joint between barrier nos. 4 and 5 through 15 ft – 2 in. (4.6 m) downstream from the center of the joint between barrier nos. 4 and 5.

Tire marks were visible on the front face of barrier nos. 4 and 5. Scrape marks were also found on the front and top faces of barrier nos. 4 and 5. The traffic-side grout between barrier nos. 3 and 4 was displaced ¼ in. (6 mm) laterally toward back side. Grout between barrier nos. 4 and 5 had crumbled. A 26¼-in. (667-mm) long crack on the front face extended from the upstream end to the toe of barrier no. 4. An 18¼-in. (464-mm) long crack on the front face of barrier no. 4 extended from the downstream end to anchor pocket no. 9. Barrier no. 5 was fractured from top to bottom at 60½-in. (1,537-mm) downstream from the upstream end. A 32¾-in. (832-mm) long crack was found on the front face of barrier no. 5 beginning at the bottom of anchor pocket no. 3. A 15½-in. (394-mm) long crack near the bottom on the back side of barrier no. 5 was approximately 31-in. (787-mm) downstream from the upstream end. A 32½-in. (826-mm) long crack on the back side of barrier no. 5 extended vertically from anchor pocket no. 4. Minor cracks were found on the back side of barrier no. 6. A 2½-in. (64-mm) long vertical crack was found at the corner of the upstream end of the back face of barrier no. 6. A 16-in. (406-mm) long crack was found at the corner of the upstream end of the back face of barrier no. 6. Anchor pin nos. 2, 6 and 7 in barrier no. 5 were bent, and the concrete around those pin anchors were cracked.

Concrete spalling occurred on barrier nos. 3 through 6. A 2-in. $\times 2\frac{1}{2}$ -in. $\times \frac{1}{4}$ -in. (51-mm \times 64-mm \times 6-mm) concrete piece disengaged from barrier no. 3 at the lower-upstream corner on the front face. A $2\frac{1}{2}$ -in. $\times \frac{1}{2}$ -in. $\times \frac{1}{8}$ -in. (73-mm \times 38-mm \times 3-mm) piece of concrete was removed from the upper-downstream end of barrier no. 3. Concrete spalling of $52\frac{1}{4}$ in. $\times 11\frac{1}{2}$ in. $\times 4\frac{3}{4}$ in. (1,327 mm × 292 mm × 121 mm) and an 11³/₈-in. (289-mm) long crack occurred at the lower-front upstream corner of barrier no. 4. The front side of barrier no. 4 experienced concrete spalling 30¹/₄ in. \times 15 in. \times 10³/₄ in (768 mm \times 381 mm \times 273 mm) at the lower downstream corner. A 4¹/₄-in. x 5¹/₂-in. x ⁵/₈-in. (108-mm \times 140-mm \times 16-mm) piece of concrete was removed from the upperdownstream corner of barrier no. 4 below the connection key socket. Minor spalling occurred below the connection key socket on the front-upstream end of barrier no. 5. Concrete spalling occurred on the back side of barrier no. 5 at the upstream end from top to bottom, and a 24-in. (610 mm) long piece was removed, which exposed the connection key socket tube. Concrete spalling, measuring $42\frac{5}{8}$ in. $\times 16$ in. $\times 3\frac{5}{8}$ in. (1,083 mm $\times 406$ mm $\times 92$ mm) occurred below the fractured section on the back side of barrier no. 5. Concrete spalling, measuring $67\frac{1}{8}$ in. $\times 9\frac{1}{8}$ in. $\times 1\frac{1}{8}$ in. $(1,705 \text{ mm} \times 232 \text{ mm} \times 29 \text{ mm})$ occurred at the back-side downstream end of barrier no. 5. The back side of barrier no. 6 experienced concrete spalling at the lower-downstream corner and near the middle of the barrier.

The maximum permanent set deflection of the barrier system was 6¼ in. (159 mm) at the downstream end of barrier no. 4, as measured in the field. The maximum lateral dynamic barrier deflection, including minor tipping of the barrier along the top surface, was 13.5 in. (343 mm) at the upstream end of barrier no. 5, as determined from high-speed digital video analysis. The

working width of the system was found to be 37.5 in. (953 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 23. In addition, NJDOT identifies the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For this test, the clear space behind the barrier was 13.5 in. (343 mm).

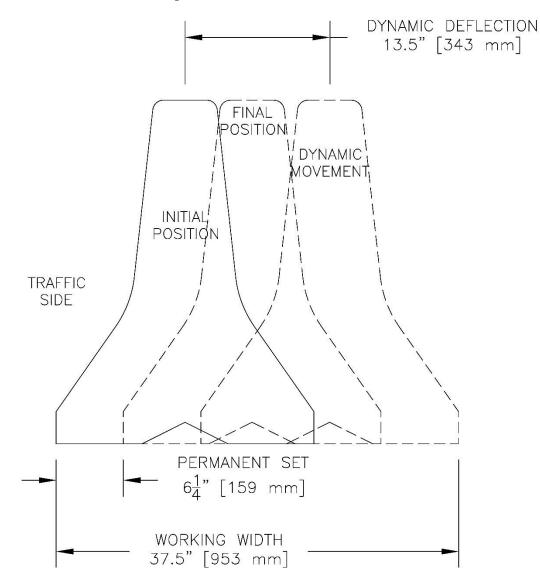


Figure 23. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. NJPCB-1

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 36 through 40. The maximum occupant compartment deformations are listed in Table 7 along with the deformation limits established in MASH 2009 for various areas of the occupant compartment. Note that none of the MASH 2009 established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. The left side of the bumper crushed inward. The plastic bumper portion separated from the left side and bent toward the right side of the vehicle. The hood separated from the right fender. The left-front fender was deformed 4 in. (102 mm) inward toward the engine compartment. A 2-in. × 3-in. (51-mm × 76-mm) dent was found on the rear of the left fender approximately 19 in. (483 mm) from the bottom of the fender. Denting, scraping, and gouging were observed on the entire left side of the cab. Gouging and contact marks were found at the bottom of the left-front door, starting from the front of the door and extending 4 in. (102 mm) backward. Scraping was found at the bottom of the left-front door, extending 211/2 in. (546 mm) toward the rear of the door. Contact marks were found on the left-rear door, starting from the front of the left-rear door and extending 15 in. (381 mm) backward. The left-front headlight and tire disengaged from the vehicle. A tear was found on the left-rear tire extending from the outer side wall through the tread and two-thirds of the way around the tire. A 15-in. \times 5-in. \times 1-in. (381 $mm \times 127$ -mm $\times 25$ -mm) dent extended from the left edge of the front bumper and 3 in. (76 mm) from the bottom of the bumper. A 3-in. \times 2-in. \times ¹/₄-in. (76-mm \times 51-mm \times 6-mm) dent was found 11 in. (279 mm) from the left edge of the bottom of the front bumper.

The lower-left control arm was scraped and crushed. The left-front lower control arm had a 2½-in. (64-mm) tear on the leading edge approximately 5½ in. (140 mm) from the lower ball joint. The left-front wheel and hub were disengaged. The brake disk disengaged from the overall assembly but remained attached. The rear transmission and rear axle were shifted toward the right of the vehicle. Scrape marks were found on the exhaust pipe. The left-front side window glass shattered. The roof remained undamaged. The windshield had 30-in. (762-mm) diameter spider web cracking and an additional crack extending from the spider-web crack to the left-bottom corner.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2009 ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	45/8 (117)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1¼ (32)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	¹ ⁄4 (6)	≤ 12 (305)
Side Door (Above Seat)	³ ⁄ ₄ (19)	≤ 9 (229)
Side Door (Below Seat)	¹ ⁄4 (6)	≤ 12 (305)
Roof	1/2 (13)	≤ 4 (102)
Windshield	0 (0)	≤ 3 (76)
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article
Dash	¹ / ₂ (13)	N/A

Table 7. Maximum Occupant Compartment Deformations by Location

N/A - Not applicable

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 8. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2009. The calculated THIV, PHD, and ASI values are also shown in Table 8. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 24. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Transducer		MASH 2009	
		SLICE-1 (Primary)	DTS	Limits	
OIV	Longitudinal	-14.27 (-4.35)	-14.53 (-4.43)	± 40 (12.2)	
ft/s (m/s)	Lateral	19.33 (5.89)	17.38 (5.30)	± 40 (12.2)	
ORA	Longitudinal	-9.97	-9.24	± 20.49	
g's	Lateral	7.17	8.53	± 20.49	
MAX.	Roll	-39.9	38.5	± 75	
ANGULAR DISPL.	Pitch	-12.8	10.5	±75	
deg.	Yaw	36.0	37.1	not required	
THIV ft/s (m/s)		23.49 (7.16)	21.75 (6.63)	not required	
PHD g's		10.23	10.20	not required	
ASI		1.23	1.13	not required	

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-1

5.6 Discussion

The analysis of the test results showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 9.2 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. NJPCB-1 was determined to be acceptable according to the MASH 2009 safety performance criteria for test designation no. 3-11.

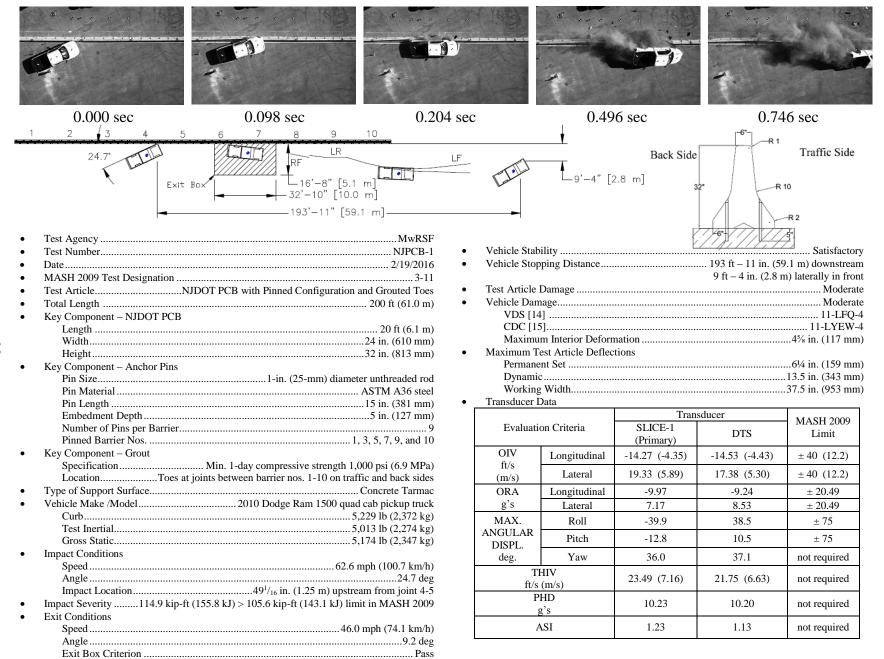
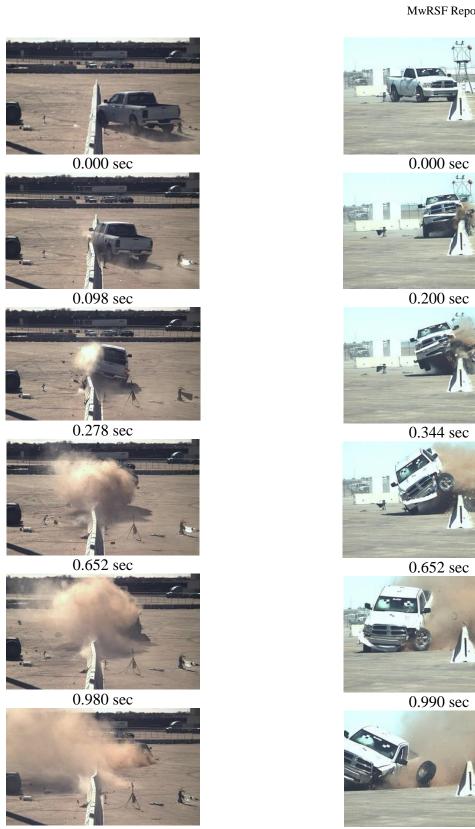



Figure 24. Summary of Test Results and Sequential Photographs, Test No. NJPCB-1

December 6, 2018 MwRSF Report No. TRP-03-338-18

1.682 sec

1.332 sec

Figure 25. Additional Sequential Photographs, Test No. NJPCB-1

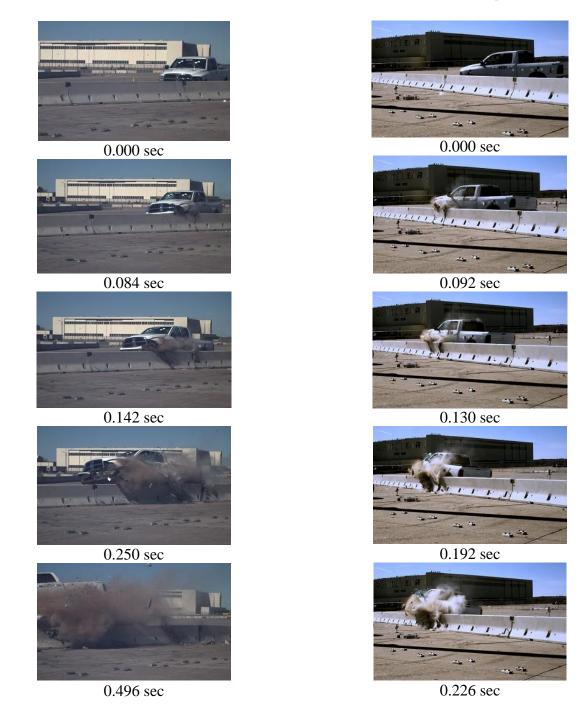
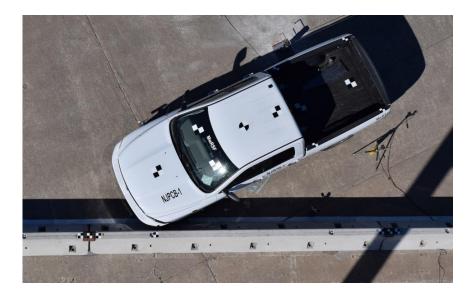



Figure 27. Documentary Photographs, Test No. NJPCB-1

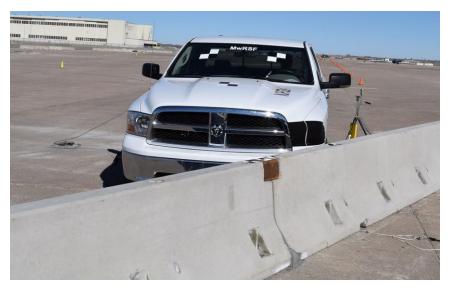


Figure 28. Impact Location, Test No. NJPCB-1

Figure 29. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-1

Figure 30. System Damage - Front, Back, Upstream and Downstream Views, Test No. NJPCB-1

Figure 31. System Damage at Impact Location, Test No. NJPCB-1 45

Figure 32. Barrier No. 3 – Traffic and Back Side Damage, Test No. NJPCB-1

46

Figure 33. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-1

Figure 34. Barrier No. 5 – Traffic and Back Side Damage, Test No. NJPCB-1

Figure 35. Barrier No. 6 – Traffic and Back Side Damage, Test No. NJPCB-1

49

Figure 36. Vehicle Damage, Test No. NJPCB-1

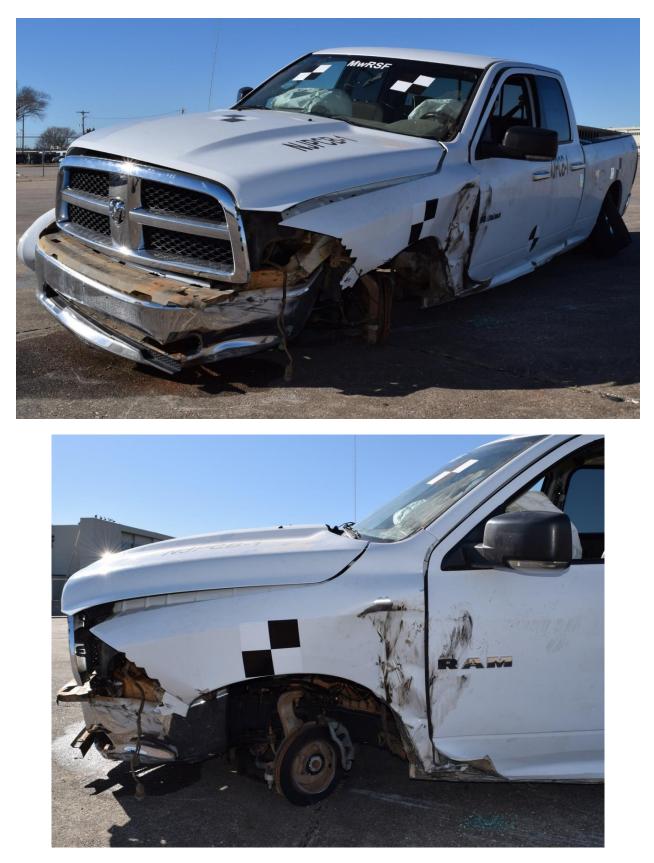


Figure 37. Vehicle Damage on Impact Side, Test No. NJPCB-1

Figure 38. Vehicle Windshield and Window Damage, Test No. NJPCB-1

Figure 39. Occupant Compartment Deformation, Test No. NJPCB-1

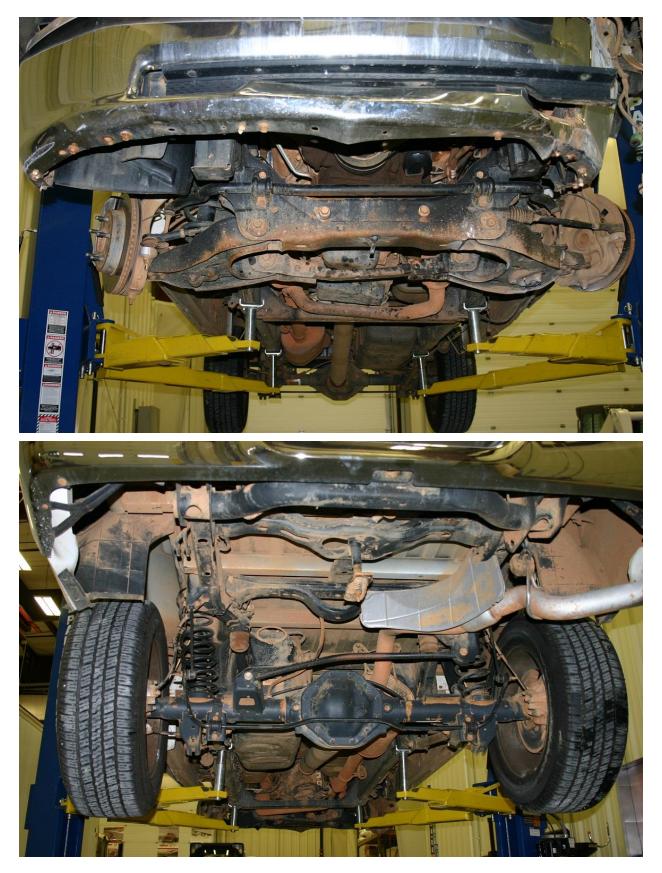


Figure 40. Undercarriage Damage, Test No. NJPCB-1 54

6 SUMMARY AND CONCLUSIONS

Test no. NJPCB-1 was conducted on the NJDOT PCB system with a pinned configuration and grouted toes according to MASH 2009 test designation no. 3-11. This system uses NJDOT barriers, Type 4 (Alternative B) with joint class C, as specified in the 2013 NJDOT *Roadway Design Manual*. Barrier nos. 1, 3, 5, 7, 9 and 10 were anchored to the rigid concrete tarmac through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins.

During test no. NJPCB-1, the 5,013-lb (2,274 kg) pickup truck impacted the NJDOT PCB system at a speed of 62.6 mph (100.7 km/h) and at an angle of 24.7 degrees, resulting in an impact severity of 114.9 kip-ft (155.8 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 46.0 mph (74.1 km/h) and at an angle of 9.2 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier and the vehicle. Barrier nos. 4, 5, and 6 experienced spalling and cracking. A dynamic deflection of 13.5 in. (343 mm) and working width of 37.5 in. (953 mm) were observed during the test, as shown in Figure 23. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. NJPCB-1 was determined to satisfy the safety performance criteria for MASH 2009 test designation no. 3-11. A summary of the test evaluation is shown in Table 9.

	Evaluation Criteria			Test No. NJPCB-1
A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			S
D.	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.			S
	2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.			
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S
H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH 2009 for calculation procedure) should satisfy the following limits:			
	Occupant Impact Velocity Limits			
	Component	Preferred	Maximum	
	Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)	
I.	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH 2009 for calculation procedure) should satisfy the following limits:			
	Occupant Ridedown Acceleration Limits			
	Component	Preferred	Maximum	
	Longitudinal and Lateral	15.0 g's	20.49 g's	
MASH 2009 Test Designation No.				3-11
	Final Evaluation	n (Pass or Fail)		Pass
	D. F. H.	 A. Test article should contain to a controlled stop; the override the installation al article is acceptable. D. 1. Detached elements, fra should not penetrate or secondartment, or present a or personnel in a work zor 2. Deformations of, or should not exceed limits MASH 2016. F. The vehicle should rema maximum roll and pitch a H. Occupant Impact Velocit MASH 2009 for calculat limits: Occupa Component Longitudinal and Lateral I. The Occupant Ridedow: Section A5.3 of MASH 2 the following limits: Occupant Impact Velocit the following limits: 	 A. Test article should contain and redirect the vehicle to a controlled stop; the vehicle should not pene override the installation although controlled lateral or article is acceptable. D. 1. Detached elements, fragments or other debris f should not penetrate or show potential for penetr compartment, or present an undue hazard to other or personnel in a work zone. 2. Deformations of, or intrusions into, the occus should not exceed limits set forth in Section 5.2.2 MASH 2016. F. The vehicle should remain upright during and a maximum roll and pitch angles are not to exceed 75 MASH 2009 for calculation procedure) should sa limits: Occupant Impact Velocity (OIV) (see Appendix A MASH 2009 for calculation procedure) should sa limits: Occupant Impact Velocity (OIV) (see Appendix A MASH 2009 for calculation procedure) should sa limits: I. The Occupant Ridedown Acceleration (ORA) Section A5.3 of MASH 2009 for calculation procedure the following limits: Occupant Ridedown Acceleration Li Component Preferred Longitudinal and Lateral 15.0 g's 	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. D. 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. 2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016. F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees. H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH 2009 for calculation procedure) should satisfy the following limits: Component Preferred Maximum Longitudinal and Lateral 30 ft/s (9.1 m/s) 40 ft/s (12.2 m/s) I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH 2009 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration Limits Occupant Ridedown Acceleration Limits Occupant Ridedown Acceleration Limits Component Preferred MASH 2009 Test Designation No. Maximum

Table 9. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

7 MASH IMPLEMENTATION

The objective of this research was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) with a pinned configuration and grouted toes, corresponding to joint class C in the 2013 NJDOT *Roadway Design Manual*. The NJDOT barriers consisted of NJDOT PCBs joined with a connection key. Barrier nos. 1, 3, 5, 7, 9 and 10 were anchored to the concrete roadway surface through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins. The barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints prior to installation of the steel anchor pins. A wedge of grout was placed at the toe of each joint on both the traffic side and back side of the system.

According to TL-3 evaluation criteria in MASH 2009, two tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 3-10 - an 1100C small car and (2) test designation no. 3-11 - a 2270P pickup truck. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

In test no. 7069-3, a rigid, F-shape bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-9]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ½-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid concrete barriers as seen in test no. 47 [10]. Therefore, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system. It should be noted that any tests within the evaluation matrix deemed not critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

During test no. NJPCB-1, a 5,013-lb (2,274 kg) pickup truck with a simulated occupant seated in the left-front passenger seat, impacted the NJDOT PCB system with joint class C, as specified in the 2013 NJDOT *Roadway Design Manual*, at a speed of 62.6 mph (100.7 km/h) and at an angle of 24.7 degrees, resulting in an impact severity of 114.9 kip-ft (155.8 kJ). At 0.204 sec after impact, the vehicle became parallel to the system with a speed of 46.5 mph (74.8 km/h). At 0.344 sec, the vehicle became airborne and exited the system at a speed of 46.0 mph (74.1 km/h) and an angle of 9.2 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were minimal with a maximum of $4\frac{5}{8}$ in. (117 mm), which did not violate the limits established in MASH 2009. Damage to the barrier was also moderate, consisting of contact marks on the front face of the PCB segments, concrete spalling, and concrete cracking on barrier nos. 4, 5, and 6. The maximum dynamic barrier deflection was 13.5 in. (343 mm), which included minor tipping of the barrier at the top surface. The working width of the PCB system was 37.5 in. (953 mm). All occupant risk measures were within the recommended limits, and the occupant compartment

deformations were also deemed acceptable. Therefore, NJDOT barriers, Type 4 (Alternative B) with joint class C as specified in the 2013 NJDOT *Roadway Design Manual*, successfully met all the safety performance criteria of MASH 2009 test designation no. 3-11.

The NJDOT barriers, Type 4 (Alternative B) with joint class C, as specified in the 2013 NJDOT *Roadway Design Manual*, consisting of NJDOT PCB barriers joined with a connection key, joint slack removed, grouted toes, and every other barrier pinned on both the traffic side and back side, was successfully crash tested and evaluated according to the AASHTO MASH 2009 TL-3 criteria. This barrier successfully met all the requirements of MASH 2009 test designation no. 3-11. In addition, the researchers consider the system MASH 2009 compliant based on the successful test designation no. 3-11 test and the previous justification for test designation no. 3-10 being deemed not critical. Further, since there is no difference between MASH 2009 and MASH 2016 for the evaluation of longitudinal barriers such as the PCB system tested in this project, except for the additional occupant compartment deformation measurements required by MASH 2016, this system also meets MASH 2016 TL-3 criteria.

While no previous comparison between crash tests exists, it is anticipated that little to no benefit would be observed in reduced barrier deflections and clear space requirements due to joint slack removal and/or use of grouted toes. The finding is primarily due to no barrier reinforcement in the toes of the New Jersey PCB segments. The lack of steel reinforcement led to concrete fracture near the barrier toes when they were loaded by adjacent barrier segments, which caused increased rotation of the barrier joints. This concrete toe disengagement reduced the expected benefit that would have been provided by the removal of joint slack and use of grouted toes. Further, the PCB segments used in this test have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems, which utilize joint spacings up to 4 in. (102 mm). Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segments, among others. Thus, some variability would be expected in barrier performance, even for basically identical systems.

In the 2013 NJDOT *Roadway Design Manual*, the allowable deflection is determined by the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For joint class C, as specified in the 2013 NJDOT *Roadway Design Manual* and utilized in this system, the NJDOT allowable movement guidance is 11 in. (279 mm). For this test, the clear space behind the barrier was 13.5 in. (343 mm).

8 REFERENCES

- 1. New Jersey Department of Transportation, *Roadway Design Manual*, Revised May 10, 2013.
- 2. New Jersey Department of Transportation, *Roadway Design Manual*, Revised 2015.
- 3. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 4. *Manual for Assessing Safety Hardware, Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- 5. Buth, C. E., Hirsch, T. J., and McDevitt, C. F., *Performance Level 2 Bridge Railings*, Transportation Research Record No. 1258, Transportation Research Board, National Research Council, Washington, D.C., 1990.
- 6. *Guide Specifications for Bridge Railings*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 1989
- 7. Bronstad, M. E., Calcote, L. R., and Kimball Jr, C. E., *Concrete Median Barrier Research-Vol.2 Research Report*, Report No. FHWA-RD-77-4, Submitted to the Office of Research and Development, Federal Highway Administration, Performed by Southwest Research Institute, San Antonio, TX, March 1976.
- Buth, C. E., Campise, W. L., Griffin III, L. I., Love, M. L., and Sicking, D. L., *Performance Limits of Longitudinal Barrier Systems-Volume I: Summary Report*, FHWA/RD-86/153, Final Report to the Federal Highway Administration, Office of Safety and Traffic Operations R&D, Performed by Texas Transportation Institute, Texas A&M University, College Station, TX, May 1986.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Permanent New Jersey Safety Shape Barrier – Update to NCHRP 350 Test No. 3-10 (2214NJ-1)*, Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
- 10. Fortuniewicz, J. S., Bryden, J. E., and Phillips, R. G., *Crash Tests of Portable Concrete Median Barrier for Maintenance Zones*, Report No. FHWA/NY/RR-82/102, Final Report to the Office of Research, Development, and Technology, Federal Highway Administration, Performed by the Engineering Research and Development Bureau, New York State Department of Transportation, December 1982.
- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 12. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- 13. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 14. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 15. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

9 APPENDICES

Appendix A. NJDOT PCB Standard Plans

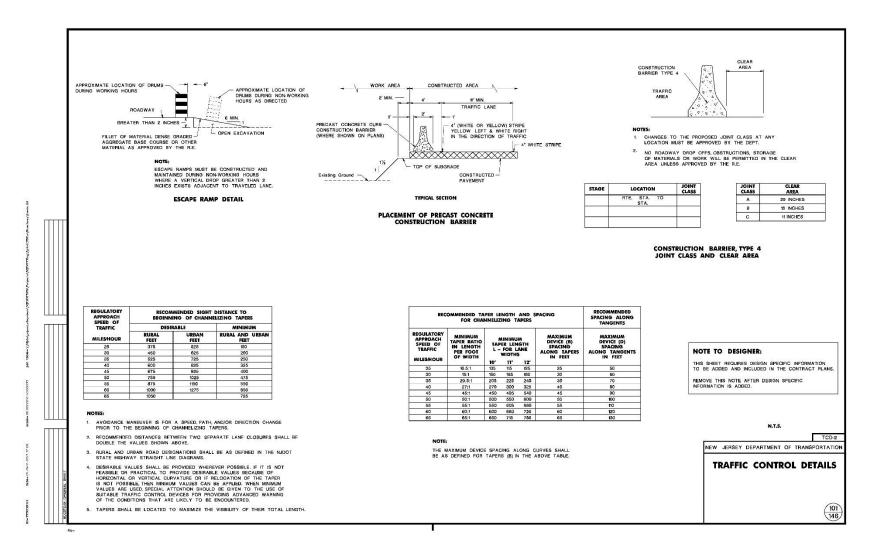


Figure A-1. NJDOT PCB Standard Plans

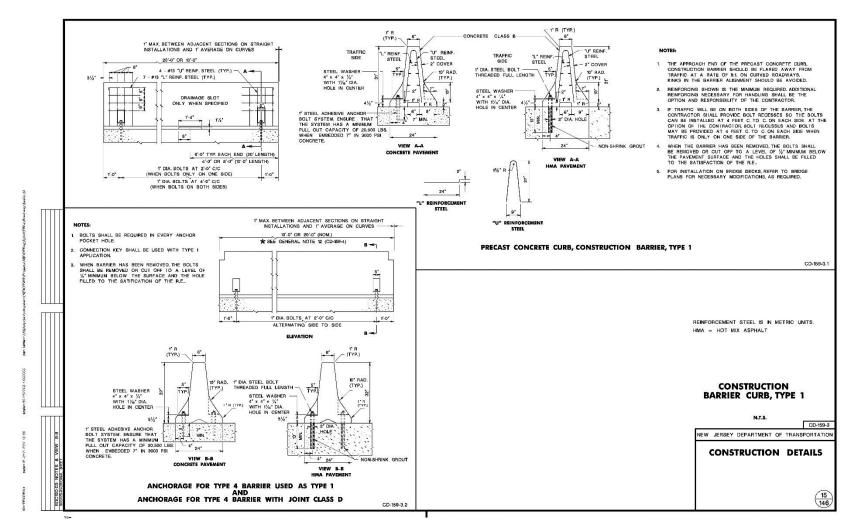


Figure A-2. NJDOT PCB Standard Plans

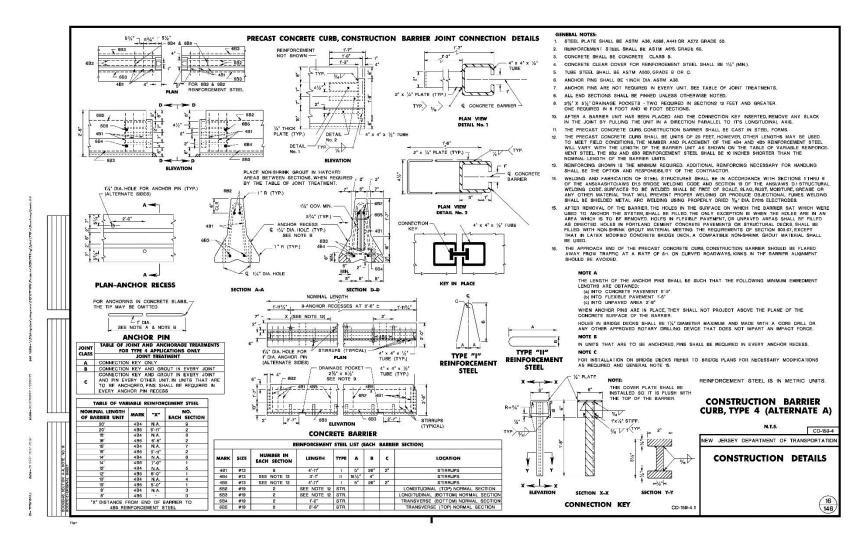


Figure A-3. NJDOT PCB Standard Plans

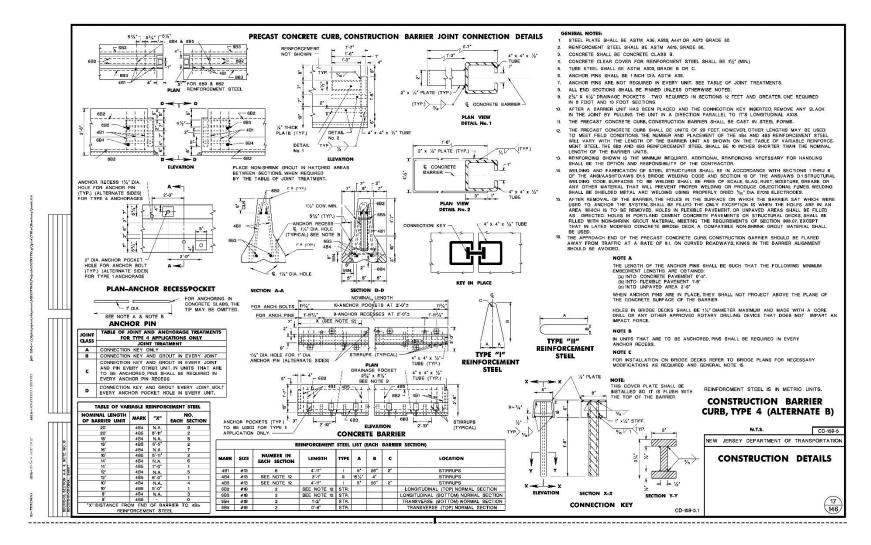


Figure A-4. NJDOT PCB Standard Plans

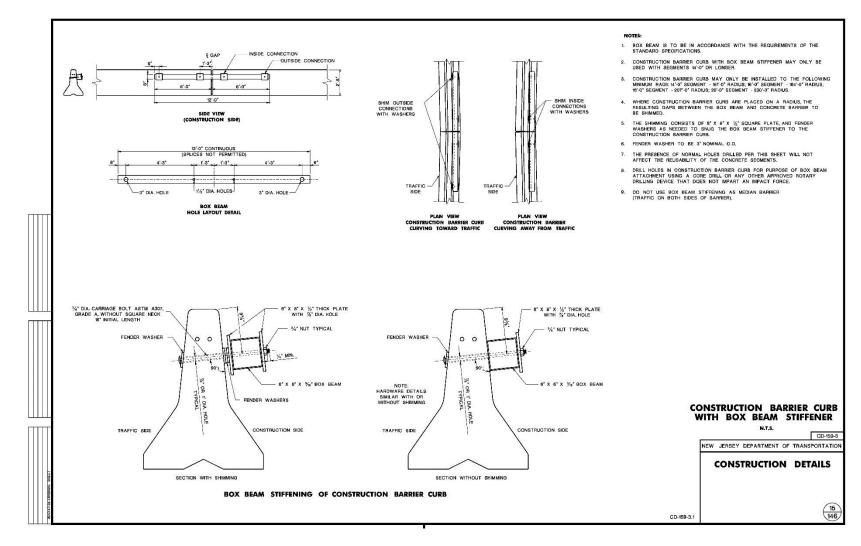


Figure A-5. NJDOT PCB Standard Plans

Appendix B. Material Specifications

Table B-1	. Bill of	Materials,	Test No.	NJPCB-1
-----------	-----------	------------	----------	---------

Item No.	Description	Material Specification	Reference
A1	Concrete Barrier Segment	Min. f'c = 3,700 psi (25.5 MPa)	University of Nebraska 15-563
A2	Anchor Steel Pin	ASTM A36	Barrier #1: Heat #54147657 Other Barriers: Heat #54141812
B1	Rebar - #4 Vertical Stirrup	ASTM A615 Gr. 60	Heat #61101274, 61101493, 61101510, 61101492, 61101499, 61101772
B2, B3	Rebar - #6 Longitudinal Bar	ASTM A615 Gr. 60	Heat #6115448, 61105472
B4	Rebar - #4 Horizontal Anchor Recess, Reinforcement Stirrup	ASTM A615 Gr. 60	Heat #61101274, 61101493, 61101510, 61101492, 61101499, 61101772
B5	Rebar - #6 Top and Bottom Cross Bar	ASTM A615 Gr. 60	Heat #6115448, 61105472
C1	Steel Tube $-4"\times4"\times1/2"(102\times102\times12.7)$ thick \times 20" (508) long	ASTM A500 Gr. B and C	Heat #821597, 1422428, M04495_1, T83539, SD5020
C2	Bent Steel Plate 1, 2"×1/4"	ASTM A36	Heat #1129849
C3	Bent Steel Plate 2, 2"×1/4"	ASTM A36	Heat #1129849
D1	Steel Plate 1, 2"×1/2"	ASTM A36	Heat #L99837
D2	Steel Plate 2, 2-1/4"×1/2"	ASTM A36	Heat #54144612
D3	¹ / ₂ " (13) Steel Plate – Stiffener	ASTM A36	Heat #54144612, L99837
D4	¹ / ₂ " (13) Steel Plate – Top Plate	ASTM A36	Heat #54144612, L99837
E1	Non-Shrink Grout	Min. 1-day Compressive Strength 1,000 psi (6.9 MPa)	Advantage Grout ASTM C1107 Product Code: 67435

					UN	IVER	SITY		IEB	RAS	KA						
							1	5-563									
Cast Date	Age (days)	Cylinder 1	Cylinder 2	Average	Age (days)	Cylinder 1	Cylinder 2	Average	Age (days)	Cylinder 1	Cylinder 2	Average	Air	Slump	Concrete Temp.	Ambient Temp	EMAIL, Mailed, etc
10/26/2015	1	4171	3869	4020	7	7805	7800	7803	28			0	5.5	6 3/4	60	58	
10/27/2015	1	3539	3883	3711	7	7343	7624	7484	28			0	6.8	5 3/4	62	60	
10/28/2015	1	4116	4311	4214	7	6223	6340	6282	28			0	6.0	6 1/2	64	64	
10/29/2015	1	3831	3544	3688	7	7046	6998	7022	28			0	5.8	6 1/2	67	68	
10/30/2015	3	4571	4608	4590	7	6337	6235	6286	28			0	6.0	6 1/2	64	63	
11/2/2015	1	3125	3062	3094	7	6887	6748	6818	28			0	6.2	5 3/4	64	62	
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0	-				
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
					7			0	28			0					
	1			0	7			0	28			0	-				-
	1								28			-					
	1			0	7			0				0					
	1			0	7			0	28			0		-			
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					

Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-1

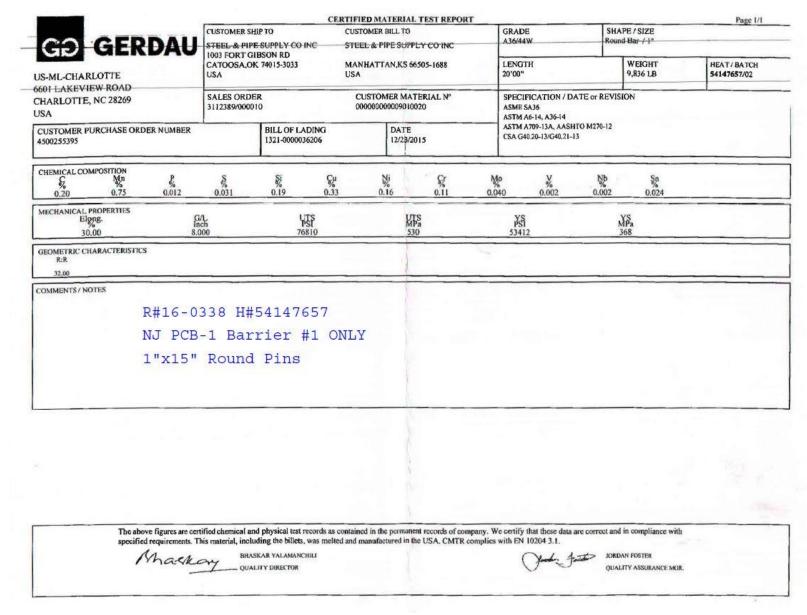


Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-1

					CERTIF	TED MATER	RIAL TEST REPO	RT	•				Page 1/1
-	CEDI	ATT	CUSTOMER SHI			STOMER BILL			GRADE			IAPE / SIZE und Bar / 1"	
Ge	GERI	JAU	STEEL & PIPE JONESBURG I	INDUSTRIAL	PARK		UPPLY CO INC						
US-ML-CHARI	LOTTE		JONESBURG,N USA	MO 63351	MA		CS 66505-1688		LENGTH 20'00"	ι.		WEIGHT 14,968 LB	HEAT / BATCH 54141812/02
6601 LAKEVIE			SALES ORDE	R		CUSTOMER	MATERIAL Nº		SPECIFI	CATION / D/	TE or REV	ISION	
CHARLOTTE, USA	INC 28209		1384530/00004			000000000009			I-ASTM	6/A6M-11, A3			
CUSTOMER PU 4500233654	JRCHASE ORDER	NUMBER	1	BILL OF LA 1321-000002			TE 18/2014	4		0.21-04(R2009)	44W		
CHEMICAL COM	MPOSITION Mn 0.69	P 0.018	\$ 0.031	Şi 0.19	Си 0.41	Ni 0.13	Çr 0.11	M 0.0	o 30	% 0.001	Nb 0.001	Şn 0.014	
MECHANICAL PI Eloy 23.	ng.	G/ Inc 8.00	L ch 100	۲ ۲	UTS PSI 7428		UTS MPa 534		YS PSI 54195			YS MPa 374	
GEOMETRIC CH	ARACTERISTICS							-			····		
32.00		-								-	-	* 2 *	
COMMENTS / NO												÷.	
R#16-0	230 AS	TM A3	6 1"x]	15" Ro	ound P	Bar					-		2 A
New Je	ersey T	CB Ba	rrer F	Anchor	r Dowe	el Pin	ns						
H#5414	1812 R	#16-0	230 De	ecembe	er 201	.5							
							a.						*
										•			
	i.				kom an tin se ki ke an an ba					9			
												*	
													2
r													Series and the first of the fir
							manent records of c d in the USA. CMT				are correct a	nd in compliance with	
	N	haska	ne	SKAR YALAMANC	сніц				(Youth for	ocase.	RDAN FOSTER ALITY ASSURANCE MGR.	
			QUAL	ATT DIRECTOR	*						QU	ALIT ASSURANCE MOR.	

Figure B-4. Anchor Pins Material Certificate, Test No. NJPCB-1

141. A. S.					CERTIF	TED MATERI	AL TEST REPO	RT					Page 1/1
GÐ	GER	DAU	CUSTOMER SHI RESTEEL SUI 2000 EDDYST	PLY CO INC	RE	TOMER BILL TO STEEL SUPPL DEDDYSTON		PARK	GRADI 60 (420			PE / SIZE 7 / #4 (13MM)	
US-ML-SAYRI NORTH CROS	SMAN ROAD		USA	PA 19022	EDI USA	DYSTONE, PA	9022-1588		LENG'I 40'00"	н		WEIGHT 5,050 LB	HEAT / BATCH 61101274/02
SAYREVILLE, USA			SALES ORDEI 1785955/00001			CUSTOMER M	ATERIAL Nº			FICATION / D/ 4615/A615M-14	ATE or REVIS	ION	
CUSTOMER PL BB 22777	JRCHASE ORD	ER NUMBER		BILL OF LA 1331-00000		DAT 01/23	B /2015						
CHEMICAL COM	POSITION Mn 0.66	P % 0.012	% 0.048	\$i 0.23	Cu % 0.43	Ni 0.16	€7 0.05	M % 0.0		\$n 0.019		CEqyA706 0.56	
MECHANICAL P PS 668 674	S SI 350	Mi 46 46	1	93	7TS 950 100		UTS MPa 648 656		G/L Inch 8.000 8.000)	20	G/L_ am 20.0 20.0	
MECHANICAL P. Elo 13. 13.	.50	Bend Ol Ol	K										
GEOMETRIC CH %Light % 4.10 3.20	ARACTERISTICS Def Hgt Inch 0.030 8,030	Def Gap Inch 0,099 0,099	DelSpace Inch 0,320 0.320										
COMMENTS / NO This grade meets th		the following grades:											
													5
				physical test r ing the billets, AR VALAMANC	mas meneu alla	ed in the perma manufactured in	ient records of con the USA. CMTR	complies v	with EN 1	0204 3.1.		compliance with	
	/	hacke	QUAL	TY DIRECTOR	aute			0	land.	7 Com	2 IOSEFF	I T HOMIC FY ASSURANCE MGR	

Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-1

1. 4. C (2. A.		CERTIF	IED MA	TERIAL TES	ST REPORT					Page 1/1
GÐ GERDAU	CUSTOMER SHI RE STEEL SUP 2000 EDDYSTO			UPPLY CO R			RADE 0 (420)		PE/SIZE r /#4 (13MM)	
US-ML-SAYREVILLE NORTH CROSSMAN ROAD	EDDYSTONE,I USA		DYSTON	E,PA 19022-1			ENGTH D'00'		WEIGHT 5,023 LB	HEAT / BATCH 61101493/04
SAYREVILLE, NJ 08872 USA	SALES ORDER 1785955/000014		CUSTOM	IER MATERI	AL Nº		PECIFICATION / DATE STM A615/A6[5M-14	or REVIS	ION	
CUSTOMER PURCHASE ORDER NUMBER BB 22777		BILL OF LADING 1331-0000029243		DATE 01/23/2015						
CHEMICAL COMPOSITION C Min P 0.42 0.65 0.012	\$ 0.058	Si Cµ 0.19 0.43). 0.	Vi % 15	Cr % 0.09 (Mo %	Sn 0.020	V % 0.009	CEqyA706 0.56	
71350 4	75 1Pa 92 91	UTS PSI 104900 105600		UTS MPa 723 728			G/L Inch 8.000 8.000	2	G/L mm :00.0	
%	dTest DK. DK.				4		·			
GEOMETRIC CHARACTERISTICS %Light Def Flgt Def Gap % Inch Inch .2.70 0.032 0.098 1.40 0.034 0.099	DefSpace Inco 0.321 0.321									
COMMENTS / NOTES This grade meets the requirements for the following grad	35.									
			*							
specified requirements.	this material, inclu	d physical test records as conta ding the billets, was melted an	ined in the	e permanent r ctured in the U	SA. CMTR compi	ies w	th EN 10204 3.1.		in compliance with	
Mack	QUAL QUAL	SKAR YALAMANCHILI LITY DIRECTOR				A	Sup 7 Kom	JOSE	PH T HOMIC LITY ASSURANCE MGR.	
L									· · · · · · · · · · · · · · · · · · ·	

Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-1

		CER	RTIFIED MATERIAL TE	ST REPORT				Page 1/1
GÐ GERDAU	CUSTOMER SHI RE STEEL SUP 2000 EDDYST	PLY CO INC	CUSTOMER BILL TO RE STEEL SUPPLY CO I (2000 EDDYSTONE INDL		GRADE 60 (420)	SHAPE / S Rebar / #4		
US-MI-SAYREVILLE NORTH CROSSMAN ROAD	EDDYSTONE, USA		EDDYSTONE, PA 19022- USA	1588	LENGTH 40'00'		GHT 0 LB	HEAT/BATCH 61101510/03
SAYREVILLE, NJ 08872 USA	SALES ORDER 1785955/00001		CUSTOMER MATER	IAL N⁰	SPECIFICATION / DATE ASTM A615/A615M-14	or REVISION		
CUSTOMER FURCHASE ORDER NUMBER BB 22777		BILL OF LADING 1331-0000029243	DATE 01/23/2015					
CHEMICAL COMPOSITION C Mn P 0.42 0.66 0.018	8 0.046	Si Çu % % 0.21 0.30	Ni % 0.11	Gr N 0.06 0.0	fa Şu 35 0.018	ү с 0.015	EqvA706	
MECHANICAL PROPERTIES YS PSI 73400 75600	YS MPa 506 521	UTS PSI 107150 110500	UTS MPa 739 762		G/L Inch 8.000 8.000	G/L mm 200.0 200.0		
12.00	ndTest OK OK							
GEOMETRIC CHARACTERISTICS %Light Def Hgt Def Gap % Inch Inch 2.40 0.032 0.080	DefSpace Indi 0.322 0.322						-	
COMMENTS / NOTES Tais grade meets the requirements for the following gra	des:			2				
The above figures are o	ertified chemical ar	nd physical test records as e	contained in the permanent r	ecords of company. V	Ve certify that these data are o	correct and in con	pliance with	
specified requirements MacAk	BHA	iding the billets, was molto SKAR YALAMANCHILI LITY DIRECTOR	x) and manufactured in the I		with EN 10204 3.1.	JOSEPH T H QUALITY A:	OMIC SSURANCE MGR.	

Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-1

					CERTIF	TED MA	TERIAL TI	ST REPOR	T					F	age 1/1
GÐ	GERI	DAU	CUSTOMER SHI RE STEEL SUF 2000 EDDYSTO	PLY CO INC	RE		UPPLY CO		RK	GRADE 60 (420)			PE/SIZE 1/#4 (13MBM)		
US-ML-SAYRE NORTH CROSS	VILLE		EDDYSTONE, USA			DYSTON	E,PA 19022		nux	LENGTH 40'00"	i		WEIGHT 10,020 LB	HEAT/B 6110149	
SAYREVILLE, I USA			SALES ORDER 1785955/00001		,	CUSTON	IER MATER	LAL Nº			CATION / DA 15/A615M-14	TE or REVIS	ION		
CUSTOMER PUI BB 22777	RCHASE ORDER	RNUMBER		BILL OF LA 1331-000002			DATE 01/23/2015								
CHEMICAL COMI C V. 0.43	POSITION Mn % 0.67	P 0.014	\$ 0.054	Si 0.20	Ç# 0.43	0.	Vi 21	Çr 0.10	M 9 0.0		Sn % 0.018	¥ % 0.017	CEqyA706 0.57		
MECHANICAL PR PS 651: 684:	5 I 50	4	S Pa 49 72	96	TS SI 100 600		UTS MPa 663 687			G/L Inch 8.000 8.000		2	G/L Dira 00.0 00.0		
MECHANICAL PP Elop 15.0 15.0	1g. 00	0	fTest K K												
GEOMETRIC CHA %Light % 3.60 1.70	ARACTERISTICS Def Hgt loeb 0,031 0,029	Def Gap Inch 0.078 0.090	DefSpace Inch 0,322 0,322												
COMMENTS / NO This grade meets the	TES e requireeneents for th	e following grade	S.						1						
							9								
r															
	specified	e tigures are cer requirements. T Hack —	his material, inclu	d physical test r ding the billets SKAR YALAMANG LITY DIRECTOR	, was melled and	ined in the	e permanent i stured in the 1	records of cor USA, CMTR	complies	with EN 1	at these data ar 0204 3.1.		in conipliance with PH T HOMIC ЛГҮ ASSURANCE MGR		

Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-1

······································					CERTIFIED M	IATERIAL T	EST REPORT					Page [/]
GÐ	GERI	DAU	CUSTOMER SHI RE STEEL SUP 2000 EDDYSTO	PLY CO INC	CUSTOME RE STEEI L PARK2000 EDD	L SUPPLY CO	INC		(420)		APE / SIZE nr / #4 (33MM)	
US-ML-SAYRI NORTH CROS	EVILLE		EDDYSTONE,I USA	PA 19022		ONE,PA 19022			ENGTH '00'		WEIGHT 5,050 LB	HEAT/BATCH 61101499/04
SAYREVILLE, USA			SALES ORDER 1785955/00001		CUSTO	OMER MATER	RIAL Nº		ECIFICATION / DA'	TE or REVIS	ION	
CUSTOMER PU BB 22777	RCHASE ORDE	R NUMBER		BILL OF LADIN 1331-000002924		DATE 01/23/2015	i					
CHEMICAL CON C % 0.43	MII MII % (P.68	P % 0.026	\$% 0.064	\$j 0.21	Cµ 0.33	Ni %	Çr 0.19 0	Mo %	§n 0.016	V % 0.012	CEqyA706 0.58	
MECHANICAL P P 709 689		M 41 41	S Pa 89 75	UTS PSI 10550 10320	0	UTS MPa 727 712			G/L Iach 8.000 8.000	2	G/L mm 200.0 200.0	
MECHANICAL P Elg 11.	PROPERTIES Mg. .00 .00	C	ITest K K									
GEOMETRIC CH MLight 34 1.90 1.90	IARACTERISTICS Def Hgt Inch 0.032 0.032	Def Gap Inch 0.088 0.086	DefSpace Inch 0.321 0.321									
COMMENTS / NO		c 11				****						
1743 grade noets t	he requirements for th	ie following grade	a:									
	The abov specified	e figures are cer requirements. T	tified chemical an his material, inclu	d physical test reco ding the billets, wa	ords as contained in as melted and manu	the permanent factured in the	records of company. USA. CMTR compli	We ce es wit	tify that these data ar EN 10204 3.1.	e correct and	in compliance with	
		hack		KAR YALAMANCHIL ITY DIRECTOR					A Thomas	D JOSE QUA	PH T HOMIC LITY ASSURANCE MGR.	

Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-1

1.288.20					CERTI	FIED MATERIAL	TEST REPORT						Page 1/1
GÐ	GERI	DAU	CUSTOMER SHI	PLY CO INC	RE	STOMER BILL TO	CO INC NDUSTRIAL PARI	v	GRADE 60 (420)			PE / SIZE - / #4 (13MM)	
US-ML-SAYRE	EVILLE		EDDYSTONE, USA			DYSTONE, PA 19		r.	LENGTH 40'00"		_1	WEIGHT 4,008 LB	HEAT / BATCH 61101772/04
NORTH CROSS SAYREVILLE, USA			SALES ORDER 1785955/00001			CUSTOMER MA	TERIAL Nº		SPECIFICATI ASTM A615/A6	ON / DATE or 15M-14	REVISI	ON	
CUSTOMER PU BB 22777	RCHASE ORDER	NUMBER	•	BILL OF LAD 1331-0000025		DATE 01/23/2	015	•					
CHEMICAL COM C % 0.44	POSITION Mn % 0.67	P % 0.019	\$ 0.059	Si %	Ср 0.38	Ni 0.16	Çr % 0.06	M 0.0	lo \$	5n % 0170	V %	CEqyA706 0.57	
MECHANICAL P Y PS 664 658	5 31 •00	M 4: 4:	S Pa 58 54	U 969 977	ЮО	6	15 Pa 58 74		G/L Inch 8.000 8.000		2	3/L Dm 00.0 00.0	
MECHANICAL P Elg 16. 17.	ກອ. 00	C	TTest NC										
GEOMETRIC CH MLight M 1.10 0.80	ARACTERISTICS Def Hgt Inté 0.025 0.029	Def Gap Inch 0.099 0.215	DefSpace Inch 0.320 0.320										
COMMENTS / NO This grade meets th	ITES 10 raquirements for th	e following grade	5.										- L
	The above	e figures are cer	tified chemical an	d physical test re	cords as conta	ained in the perman	ent records of comp the USA. CMTR co	iany. W	/e certify that the	ese data are con	rect and	in compliance with	
	A	hark	BHA QUA	SKAR YALAMANC LITY DIRECTOR		na manunaciured in	uie USA, UMIIK CO		with EN 10204			PH T HOMIC LITY ASSURANCE MGR.	
1	5							5					

Figure B-10. Rebar No. 4 Material Certificate, Test No. NJPCB-1

And and a state of the state of					CERTIFIED N	MATERIAL	TEST REPORT						Page 1/1
C 2 (ERC		CUSTOMER SHIP	PLY CO INC	CUSTOME RE STEE	ER BILL TO	O INC		GRADE 60 (420)			PE / SIZE / #6 (19MM)	-
JS-ML-SAYREVI			2000 EDDYSTC PARK EDDYSTONE,F USA	ONE INDUSTRIA PA 19022		OYSTONE IN ONE,PA 1902	IDUSTRIAL PAR 22-1588	.K	LENGTH 40'00"			WEIGHT 30,282 LB	HEAT / BATCH 61105448/03
NORTH CROSSM SAYREVILLE, NJ JSA			SALES ORDER 2886827/000020		CUST	OMER MAT	ERIAL N°		SPECIFICATI ASTM A615/A6		or REVISI	ON	
CUSTOMER PURC BB-23635	CHASE ORDER	NUMBER	1	BILL OF LADI 1331-000003890		DATE 10/08/20	115						
CHEMICAL COMPO C % 0.48	OSITION Mn % 0.75	Р % 0.010	\$ 0.064	Si % 0.23	Cu % 0.33	Ni % 0.18	Cr % 0.09	M 9 0.0	o § 36 0.0	Sn % 028	V % 0.018	CEqvA706 % 0.65	
MECHANICAL PRO YS PSI 70159 . 70590		4	S Pa 84 87	UTS PSI 10731 10836	8 4	UT MF 74 74	0		G/L Inch 8.000 8.000		2	G/L mm 00.0 00.0	
MECHANICAL PRO Elong 14.00 13.00		C	dTest DK DK										
GEOMETRIC CHAR %Light % 5.80 5.80	RACTERISTICS Def Hgt Inch 0.040 0.040	Def Gap Inch 0.090 0.090	DefSpace Inch 0.477 0.477	5									
COMMENTS / NOTE	ES												
							1		Wa aartifu that t	hace data are	correct an	d in compliance with	
	specified	requirements.	This material, incl	nd physical test red uding the billets, v SKAR YALAMANCH	as melted and ma	nufactured in	the USA. CMTR	complie	s with EN 1020	4 3.1.		d in compliance with	
	15	hack	QUA QUA	LITY DIRECTOR				6	Jana 1	Khome)	QUA	LITY ASSURANCE MGR.	

Figure B-11. Rebar No. 6 Material Certificate, Test No. NJPCB-1

		and the second s	MATERIAL TH	CT DEPODT					Page 1/1
	CUSTOMER SHIP TO		ER BILL TO	EST REFORT	GRADE			PE / SIZE	
CO CEDDALL	RE STEEL SUPPLY CO		EL SUPPLY CO	INC	60 (420)		Rebar	/ #6 (19MM)	
GO GERDAU	2000 EDDYSTONE INDU	JSTRIAL 2000 ED	DYSTONE IND	USTRIAL PARK	LENGTH	1	_	WEIGHT	HEAT / BATCH
	PARK	EDDYS1 USA	TONE, PA 19022	-1588	40'00"	1		4,987 LB	61105472/03
US-ML-SAYREVILLE	EDDYSTONE, PA 19022 USA	USA							
NORTH CROSSMAN ROAD	SALES ORDER	CUST	TOMER MATER	RIAL N°		CATION / DATE of 515/A615M-15	r REVIS	ION	
SAYREVILLE. NJ 08872 USA	2886827/000020				ASIMA	515/A615M-15			
	DILLO	F LADING	DATE		-				
CUSTOMER PURCHASE ORDER NUMBER BB-23635		000038904	10/08/2015	5					
BB-23033									
CHEMICAL COMPOSITION						6	V	CEavA706	
CHEMICAL COMPOSITION C Mn P % %	S‰ Si	Cu % 0.38	Ni %		Mo %	Sn %	V % 0.022	CEqvA706 % 0.63	
0.46 0.72 0.019	0.048 0.21	0.38	0.15	0.14 (0.036	0.017	0.022	0.05	
MECHANICAL PROPERTIES			LITTO		C/I			G/L	
YS PSI N	YS 1Pa	UTS PSI 106977	UTS MPa		G/L Inch 8.000			mm 200.0	
73296	505	106977 107455	738 741		8.000	,)		200.0	
70000									
MECHANICAL PROPERTIES Elong. Ber	ndTest								
13.00	ОК								
15.00	ЭК								
GEOMETRIC CHARACTERISTICS	D								
%Light Def Hgt Def Gap % Inch Inch	DefSpace Inch 0.481								
4.20 0.058 0.072 4.50 0.058 0.072	0.481								
COMMENTS / NOTES									
					×				
The above figures are of	certified chemical and physic	al test records as containe	d in the permane	ent records of company	y. We certif	y that these data are	correct a	nd in compliance with	
specified requirements	. This material, including the	billets, was melted and m	nanufactured in th	he USA. CMTR com	plies with El	N 10204 3.1.		SEPH T HOMIC	
10	BHASKAR YA	AMANCHILI			//	1 Kom	105		
Mark	QUALITY DIR				frange		OU	ALITY ASSURANCE MGR.	

Figure B-12. Rebar No. 6 Material Certificate, Test No. NJPCB-1

stomer Name	Customer PO#	Shipper No Heat Number
bel Modern Mfg.	Leon	272001
	2001	273924 821597
Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 160 Tal: 519-738-3541 Fax: 519-738-3537	MATERIAL TEST REPORT	oustoinoi, 1457
<u>Sold to</u> Triad Metals Internationa 1 Village Road HORSHAM PA 19044-3 USA	1	<u>Shipped to</u> Triad Metals International 3507 Grand Avenue PITTSBURGH PA 15225 USA
Material: 3.0x3.0x125x24'0"0(7x7). Sales order: 989576	Material No: 300301252400 Purchase Order: 75461	Made In: Canada Molted in: Canada
Heat No C Mn P	S SI AI Cu Cb N	Λο Ni Cr V Ti B N
Bundle No PCs Yield Te	0.007 0.019 0.044 0.060 0.006 0.00	06 0.026 0.045 0.002 0.002 0.000 0.003 Certification CE: 0.34 ASTM A500-13 GRADE B&C
Material: 4.0x4.0x500x40'0"0(4x2). Sales order: 995107	Material No: 400405004000 Purchase Order: 76312	Made in: Canada Melted in: Canada
Heat No C Min P	S Si Al Cu Cb M	
Bundle No PCs Yield Ter	nsile Eln.2in	02 0.011 0.032 0.002 0.002 0.000 0.003 Certification CE: 0.35 ASTM A500-13 GRADE B&C
Material: 4.0x4.0x500x40'0"0(4x2). Sales order: 995107	Material No: 400405004000	Made in: Canada Melted in: Canada
Heat No C Mn P	Purchase Order: 76312 S Si Al Cu Cb Mo	D NI Cr V TI B N
	0.009 0.013 0.040 0.026 0.006 0.00 sile Eln.2in (
Marcia Addie Marvin Phillips Authorized by Quality Assurance: The results reported on this report repre	esent the actual attributes of the material furnich	ted and indicate full compliance with all applicable
Specification and contract requirements. CE calculated using the AWS D1.1 met Steel Tube Institute of NORTH AMERICA	hod. Page : 1 Of 4	Metals Service Center Institute

Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-1

tomer Name	Custom	ner PO#			Shipper N	10 1	Heat Nu	umber		
el Modern Mfg.	Leon				273924		321597			
Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 1G0 Tel: 519-738-3541 Fax: 519-738-3537 Sold to Tried Marche Luce			STEEL G	AS ROUP	Tube	Cus	.B/L: e: tomer:	80664 05.08 1497		
Triad Metals Interna 1 Village Road HORSHAM PA 19 USA						Tria 350 PIT USA	d Metal 7 Grand TSBURG 4	s Interr d Aven H PA	nationa ue 15225	5
Material: 4.0x4.0x500x40'0"0{ Sales order: 995107	4×2).		o: 400405 Drder: 763					: Cana in: Cana		
Heat No C Mn	P S	Si Al	Cu		o Ni		-	ті	в	N
Bundle No PCs Yield		Eln.2in	0.020 0		4 0.013 Certification ASTM A500				0.000 E: 0.35	
Material: 6.0x2.0x188x24'0*0(3	3×9).	Material No					Made in Melted i			
Heat No C Mn	P S	Purchase O Si Al	Cu	Cb Mo	Ni	C -	v	Ti	в	
821679 0.180 0.790 Bundle No PCs Yield	0.010 0.008 (Tensile	0.015 0.040 Eln.2in		.002 0.00		0.038	0.002	0.002		
Material: 6.0×6.0×188×40'0"0(3	×3).	Material No	: 6006018	84000			Made in: Meited in			
Sales order: 1001173		Purchase O	rder: 7749	8						
Bundle No PCs Yield	P S 0.013 0.006 0 	Si Al 0.017 0.059 Eln.2in 30.5 %		c					B 0.000 E: 0.34	
	Massen Billiger									
Authorized by Quality Assurance The results reported on this rapo specification and contract require specification and co	rt represent the ac	tual attributes o Page : 2 (ial furnished	and indica					le

Figure B-14. Steel Tube Material Certificate, Test No. NJPCB-1

stom	ier Name			C	ustomer	PO#				Shippe	r No	Heat	Numb	er		
bel M	lodern Mfg.			L	eon					27392	4	1422	428			
	1855	East 12 10, Illino 773-6-	07p (Atlas 22nd Stree bls, USA 46-4500 46-61 28	Tube Cł t	nicago) C			STEEL			ibe	P Ref. Dat Cus	.B/L: e: stomer:	8066 04.15 1497	0765 5.2015	
					N	ATE	RIAL	TES	T REF	ORT						
	Sold											Ship	oped to	1		
	1 Vil	INIEta lage F SHAM	lls Intern Road PA 19	ational 044-3								350	d Meta 07 Gran TSBURC A	d Aver	NIA	
	Material: 4.0	x4.0x50	0°0*40'0"0	(4×2).		٨	laterial N	lo: 4004	0500400	00			Made in			
	Sales order:	98962	3			P	urchase	Order: 7	5462				Meited	in: Rus:	sian Fød	•
	Hoat No	¢	Mn	Р	S	Si	AI	Cu	СЬ	Мо	Ni	Cr	v	Ti	в	N
	1422428	0.200		0.007		0.013		0.040	0.000	0.000	0.020	0.030	0.000	0.000	0.000	0.00
	Bundle No M800549020 Material Note		Yield 070619		ensile 181004 Psi		2in			Cer STM A50				C	E: 0.3	,
	Sales Or.Noto	:														
	Material: 4.0x	4.0x50	0x40'0"0(4x2).		M	aterial N	o: 4004	0500400	0			Mado ir			
	Sales order:	98962	3			P	urchase (Order: 7	5462				Melted	in: Russ	aian Fed.	
	Heat No	С	Min	Р	S	Si	AI	Cu	Сь	Mo	Ní	Cr	v	TI	8	N
	1422428	0.200	0.930	0.007	0.010	0.013	0.043	0.040	0.000	0.000	0.020	0.030	0.000	0.000	0.000	
	Bundle No	PCs	Yield		ensile	Eln.	2in			Cer	tification			С	E: 0.37	
	M800549017 Material Note: Sales Or.Note		070619	Psi 0	81004 Psí	36 %				5TM A 50						
	Material: 20.0	x4.0x3	13x48'0°0	(1x4).		м	aterial No	: 2000	4031348	00			Made in	u: USA In: USA		
	Sales order:	994677	•			Pu	irchaso C	rder: 75	5051-repl	acement			marted	in: USA		
	Heat No	c	Mn	Р	S	Si	AI	Cu	СЬ	Mo	Ni	Cr	v	ті	B	N
	A73575	0.200	0.490	0.009	0.002	0.030	0.034	0.120	0.000	0.020	0.060	0.050	0.001	0.002	0.000	0.00
	Bundle No	PCs	Yield		ansile	Eln.:					ification			С	E: 0.31	
	M900754817 Material Note: Sales Or.Note:		057121	*si 07	74148 Psi	30 %			AS	TM A50	0-13 GR	ADE B&C	2			
	Sales Ur.Note:															
				Man	in the											
	Authorized by The results rep specification ar	ortad o	on this rep ract requir	e: ort repr			tributes	of the ma	aterial fu	rnished a	nd Indica	ata full c	ompliance	e with al	1 applica	ble
	The results rep	ortad o	on this rep ract requir	e: ort repr	esont the a	ictual at	tributes Page : 3		aterial fu	-			ompliance CE Centi			ble

Figure B-15. Steel Tube Material Certificate, Test No. NJPCB-1

Customer	Name			C	ustomer	PO#				Shipp	er No	Heat	Numb	er		
Seibel Mod	ern Mfg.			L	eon					27392	24	M044	195_1			
	1855 E Chicago	ast 122	p (Atlas Ind Street	Tube Ch	C				as	5 T (ube	Ref.	B/L: a: tomer:	8066 05.18 1497	5303 .2015	
		773-64 773-64			C	100			GROU			ous		1437		
					N	IATE	RIAL	TEST	T REF	PORT						
	1 Villa	Metal	s Intern bad PA 19									Tria 350	d Meta 7 Gran 7SBURG	d Aven	LIA	
	aterial: 4.0x			(3x2).					0500480	DO			Made ir Melted	i: USA in: USA		
He	at No	с	Mn	Р	S	SI	Al	Order: 7 Cu	5462 Cb	Mo	Ni	Cr	v	TI	В	N
MC Bu	04495_1 ndte No	0.190 PCs	0.750 Yield		ensile	0.019 Eln.2		0.050	0.004	0.004 Ca	0.010	0.040	0.001	0.001 C	0.000 E: 0.3	0.005
Ma Ma	300554030 aterial Note: los Or.Note:		072918		82550 Psi	35 %			A	STM A5	00-13 GR	ADE B&	0			

5	pecification and contract requirements.		s material furnished and indicate full compliance with all appli
•	Institute	Page : 4 Of	4 Metals Service Center Institute

Figure B-16. Steel Tube Material Test Certificate, Test No. NJPCB-1

stomer Name	Customer PO#	Shi	pper No H	leat Number
bel Modern Mfg.	Leon	27	3924 T	83539
Atlas ABC Corp (Atl 1355 East 122nd St Chicago, Illinois, USA 60633 Tel: 773-646-6128 Fax: 773-646-6128	DOD JMCS	tias Tu	be Ba	of.B/L: 80619794 ste: 08.22.2014 istomer: 1497
<u>Sold_to</u> Triad Metais Inte 1 Village Road HORSHAM PA USA		TEST REPORT	Tr 35	<mark>lipped to</mark> iad Metals International 500 Neville Road EVILLE ISLAND PA 1522: SA
Material: 4.0x4.0x375x48'0" Salos order: 934921		No: 400403754800 Order: 67358		Made in: USA Melted in: USA
Heat No C Mr		Cu Ch Mo	Ni Cr	V TI B N
E84203 0.190 0.800 Bundle Na PCs Yield	0.015 0.011 0.021 0.050 Tensile Ein.2in	0.040 0.005 0.006 Ce	0.010 0.040 rtification	0.001 0.001 0.000 0.004 CE: 0.34
M800504131 8 071470 Material Noto: Sales Or.Note;			00-13 GRADE B&	
Material: 4.0x4.0x500x40'0"0 Sales order: 934921 Heat No C Mm T83539 0.200 0.820 Bundle No PCs Yield M800500342 8 072654	Purchase P S Si Al 0.012 0.007 0.015 0.054 Tensile Eln.2in		Ni Cr 0.010 0.040 rtification 000-13 GRADE B&	
Material Note: Sales Or.Note:				
Matorial: 12.0×12.0×250×40'0 Sales order: 933979		lo: 1201202504000 Order: 67228		Mado In: USA Molted in: USA
Hoat No C Mn T84047 0.180 0.800 Bundle No PCs Yield M900697115 4 055286 Material Note: Sales Or.Note:			Ni Cr 0.010 0.040 rtification 00-13 GRADE B&	
Maurin Mathin Marvin Phillips				
Authorized by Quality Assura The results reported on this spacification and contract red CE calculated using the AWS Steel Tube	report represent the actual attribute juirements.	s of the material furnished	l and indicate full	compliance with all applicable

Figure B-17. Steel Tube Material Certificate, Test No. NJPCB-1

Customer Name	Customer PO#		Shipper No	Heat Num	ber
Seibel Modern Mfg.	Leon		273924	SD5020	
Independence Tube	2	6226 W. 74th St Chicago, IL 60638 708-496-0380 Fax: 708-563-1950			ependencetube.com itctube.com umber: DCR 250913
Sold By: INDEPENDENCE TUBE CORF 6226 W, 74th St. Chicago, IL 60638 Tei: 708-496-0380 Fax: 708-563-1950	PORATION	Purchase Order No: Sales Order No: DCI Bill of Lading No: DC Invoice No:	R 64130 - 5	Shipped: Invoiced:	1/16/2015
Sold To: 2103 - TRIAD METALS 1 VILLAGE ROAD HORSHAM, PA 19044-3812		Ship To: 39 - TRIAD METALS MILE MARKER 7.3 OHIO RIVER NEVILLE ISLAND, P			
CERTIFICATE of ANAL Customer Part No:	YSIS and TESTS		c	Certificate No: DC Test Date: 1/1	
TUBING A500 GRADE B(C) 4" SQ X 1/2" X 48'				Total Pieces 36	Total Weight 37,376
Bundle Tag Mill Heat 844458 40 SD5020 844459 40 SD5020 844460 40 SD5020 844460 40 SD5020 844461 40 SD5020	9	Weight 9,344 9,344 9,344 9,344			
Mill #: 40 Heat #: SD5020 Yield 0.1352	: 72,300 psi Tensile: 78	3,800 psi Elongation:	28.50 % Y/T R	atio: 0.9175 Cart	bon Eq:
C Mn P 0.0500 0.3900 0.0090 0.	S, Si Al 0040 0.2240 0.0260	Cu Cr 0.0900 0.0400	Mo V 0.0200 0.0010	Ni Nt 0.0300 0.00	
Certification:					
I certify that the above results are Corporation. Sworn this day, 1/14	a true and correct copy //2015	of records prepared an	nd maintained by	Independence T	ube
WE PROUDLY MANUFACTURE INDEPENDENCE TUBE PRODU AND INSPECTED IN ACCORDA	CT IS MANUFACTURE	HE USA. D. TESTED, IDARDS.	ha	1 Mar	Timez
CURRENT STANDARDS: 	-13	-	1	r	0
				Jose Martinez,	QMS Manager
MATERIAL IDENTIFIED AS A500 ASTM A500 GRADE B AND A500	GRADE B(C) MEETS E GRADE C SPECIFICA	BOTH TIONS.			

Figure B-18. Steel Tube Material Certificate, Test No. NJPCB-1

and a second second resolution of the second sec

MID-AMERICA STEEL CORPORATION TEST REPORT

No. F33822

TO:	SEIBEL	MODERN	MFG	&	WELDING	DATE:	02/19/13
						P.O. #:	SBJ-40

ATTN:

TAG#	SIZE	SPEC
K78419	1/4 x 48.000 x 144.000	A-36
K78420	$1/4 \times 48.000 \times 144.000$ $1/4 \times 48.000 \times 144.000$	A-36
K78421	$1/4 \times 48.000 \times 144.000$	A-36
K78422	$1/4 \times 48.000 \times 144.000$	A-36

CHEMICAL ANALYSIS

	TAG#	HEAT#	C	Mn	P	S
F	(78419	1129849	0.063	0.760	0.012	0.004
F	78420	1129849	0.063	0.760	0.012	0.004
F	78421	1129849	0.063	0.760	0.012	0.004
F	78422	1129849	0.063	0.760	0.012	0.004

PHYSICAL ANALYSIS

TAG#	HEAT#	TENSILE	YIELD	ELONGATION
K78419	1129849	75,102	58,422	26%
K78420	1129849	75,102	58,422	26%
K78421	1129849	75,102	58,422	26%
K78422	1129849	75,102	58,422	26%

All material made and melted in the U.S.

.

Thank you,

JOHN RATICA MID-AMERICA STEEL CORPORATION

Figure B-19. 2-in. ×¹/₄-in. (51-mm × 6-mm) Bent Steel Plate, Test No. NJPCB-1

T and the second se	Telephone (86	NESSEE 37748 5) 882-5100					
sted in Accord	ance	Sales Order 1		Date 09/09/2		81536 80833851	
th: ASTM A6			lat bars 199837	Cust 4000888 Grade A365295		ces 288	
and of a		Cust.Mat.	199031	Length 20' 00"		ight 19607.04	
-		Size 2	2" X1/2" X3.4	04			
CHEMICAL	MECHANICAL	1	TEST 1	TE	ST 2	TI	EST 3
ANALYSIS	PROPERTIES	IMPERIAL	METRIC	IMPERIAL	METRIC	IMPERIAL	METRIC
C 0.13	YIELD STRENGTH	52710 PS	I 363 MP	53770 PSI	371 MPa		
Mn 0.88	TENSILE STRENGTH	72220 PS	- Contraction of the second		514 MPa		
P 0.007	ELONGATION	25			25 %		
S 0.018	GAUGE LENGTH	8 11	N 203 m	n 8 IN	203 mm		
1	BEND TEST DIAMETER						1
	BEND TEST RESULTS	1					
Ni 0.17	SPECIMEN AREA						
Cr 0.14 Mo 0.065	REDUCTION OF AREA						
Mo 0.065 Cb 0.020	IMPACT STRENGTH						
V 0							
	IMPACT STRENGTH	IMPERIAL I	METRIC I	NTERNAL CLEANLIN	NESS GRAIN S	SIZE	
Al	AVERAGE		SEV	ERITY	HARDNES	ss	
Sn 0.012	TEST TEMP	l.	FRE	QUENCY	GRAIN I	PRACTICE	
N	ORIENTATION		RAT	ING	REDUCTI	ION RATIO	1
Ti	This heat makes the	following gra	des: A36-08.A	52950-05.G40.21	-CSASOW, CSA44	W, A70936-09a,	ASME SA36-201
	A57250-07, A70950-1						
Ci							
CE							
r.							
mereby certify	that the material t	est results pr	esented here	are from the re	ported heat a	and are correct	ct. All tests w
formed in acco	rdance to the speci	fication repor	ted above. Al	l steel is elec	tric arc furn	ace melted ()	pillets),
ufactured, pro	cessed, tested in t	he U.S.A with	satisfactory	results. No well	d repair was	performed on	this heat.
1. Sec. 1. Sec					بر المنظم المرادر	0	
arized upon re	quest:			Signed	Keith D.	Funding	
		9th day of Se	otember 2019		elected and the second s	LIMBURG. OUAL	ITY ASSURANCE
orn to and subs	cribed before me on						

Figure B-20. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-1

				and the second se	FIED MATERIAL	TEST REPORT					Páge I
GÐ GEI	RDAU	CUSTOMER S TRIAD MET. 3507 GRANE	ALS	T	USTOMER BILL TO RIAD METALS INT ET	ERNATIONAL	GRAI			IAPE / SIZE I / 1/2 X 2 1/4	
US-ML-CHARLOTTE 6601 LAKEVIEW ROAD		PITTSBURG		1	VILLAGE RD ORSHAM,PA 19044	1-3800	LENG 20'00"			WEIGHT 4,979 LB	HEAT / BATCH 54144612/03
HARLOTTE, NC 28269 SA		SALES ORD 2819476/000			CUSTOMER MAT	FERIAL N"	A6-13	TFICATION / DA' A,A36-12, ASME SA A 529-05(2009), A5	36-13	SION	
CUSTOMER PURCHASE OF 83055W	RDER NUMBER		BILL OF LA 1321-00000		DATE 09/24/20	015	ASTM	I A709-13A, AASHT 540.20-13/G40,21-13	O M270-12		
CHEMICAL COMPOSITION C Mn 26 % 0.17 0.71	P %	5 % 0.033	<u>Şi</u> 0.20	Çu % 0.47	Ni 2/1 0.14	Çr 9,5	Mo %	0.015	Nb % 0.002	Şn 0.013	-£
MECHANICAL PROPERTIES Elong. 29,40	Gi Ini 8.0	(L ch 00	1	ITS PS1 4174	UT M 51		Y: 14	SI 22		МРа 355	
				-11-	and the second se	I contract the second se					
GEOMETRIC CHARACTERISTI R.B. 22300 COMMENTS - NOTES This goale neets the requirements I SATM Grades: A36, A529-50; A53 CSA Grades: A4W; 50W AASITO Grades: A270-36; M220 AASITO Grades: A270-36; M220	or the following grades (2-50; A709-36; A709-										
R.R 22.60 "OMMENTS - NOTES This grade neets the requirements I STM Grades: A36, A529-50; A53 "53 Grades: 449; 50W ASITO Grades: M270-36; M270	or the following grades (2-50; A709-36; A709-										
R.R 22.60 "OMMENTS - NOTES This grade neets the requirements I STM Grades: A36, A529-50; A53 "53 Grades: 449; 50W ASITO Grades: M270-36; M270	or the following grades (2-50; A709-36; A709-										
R:R 22:00 COMMENTS : NOTES This grade neets the requirements I STM Grades: A36, A529-50; A53 CSA Grades; 44W; 50W	or the following grades (2-50; A709-36; A709-										
R.R. 22.60 COMMENTS - NOTES This grade neets the requirements I ASTM Grades: A36, A529-50; A5 25 A Grades: 4497; 500 AASITO Grades: M270-36; M270	or the following grades (2-50; A709-36; A709-										
R.R. 22.80 COMMENTS - NOTES This grade needs the requirements of ASTM Grades: A36, A529-50; A52 (53) Grades: A49; 500 AASHTO Grades: M270-36; M270 ASME Grades: SA36 The ab specific	or the following grades (2-50; A709-36; A709-	ied chemical an	d physical test re				y. We certify 1	that these data are a 10204 3.1.	correct and		

Figure B-21. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-1

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

DESCRIPTION

The 1107 Advantage Grout is a non-shrink, nonmetallic, non-corrosive, cementitious grout that is designed to provide a controlled, positive expansion to ensure an excellent bearing area. The 1107 Advantage Grout can be mixed from a fluid to a dry pack consistency.

USE

Exterior grouting of structural column base plates, pump and machinery bases, anchoring bolts, dowels, bearing pads and keyway joints. It finds applications in paper mills, oil refineries, food plants, chemical plants, sewage and water treatment plants etc.

FEATURES

- Controlled, net positive expansion
- Non shrink
- Non metallic/non corrosive
- Pourable, pumpable or dry pack consistency
- Interior/exterior applications

PROPERTIES

Corps of Engineers Specification for non-shrink grout: CRD-C 621 Grades A, B, C ASTM C-1107 Grades A, B, C ASTM C-827 - 1107 Advantage Grout yielded a controlled positive expansion

Expansion - ASTM C-1090:

1 day: 0-0.3 3 days: 0-0.3 14 days: 0-0.3 28 days: 0-0.3

Test Results

	@1	Day	63	Days	@ 7	Days	@ 28	Days
Fluidity	PSI	MPa	PSI	MPa	PSI	MPa	PSI	MPa
Dry-Pack	5000	34.5	7000	48.2	9000	62.0	10000	68.9
Flowable	2500	17.2	5000	34.5	6000	41.4	8000	55.1
Fluid	2000	13.8	4000	27.6	5000	34.5	7500	51.7

Note:

The data shown is typical for controlled laboratory conditions. Reasonable variation from these results can be expected due to interlaboratory precision and bias. When testing the field mixed material, other factors such as variations in mixing, water content, temperature and curing conditions should be considered.

Estimating Guide

Yield (Flowable Consistency): 0.43 cu, ft./50 lbs. (0.0122 cu, M/22.67 kg) bag 0.59 cu, ft./50 lbs. (0.017 cu, M/22.67 kg) bag extended with 25 lbs. (11.34 kg) of washed 3/8 in. (1cm) pea gravel

Packaging

PRODUCT	-	S	ZE
CODE	PACKAGE	lbs	kg
67435	Bag	50	22.67
67437	Supersack	3,000	1,360.78

STORAGE

Store in a cool, dry area free from direct sunlight. Shelf life of unopened bags, when stored in a dry facility, is 12 months. Excessive temperature differential and /or high humidity can shorten the shelf life expectancy.

APPLICATION

Surface Preparation:

Thoroughly clean all contact surfaces. Existing concrete should be strong and sound. Surface should be roughened to insure bond. Metal base plates should be clean and free of oil and other contaminants. Maintain contact areas between 45°F (7°C) and 90°F (32°C) before grouting and during curing period.

Thoroughly wet concrete contact area 24 hours prior to grouting, keep wet and remove all surface water just prior to placement. If 24 hours is not possible, then saturate with water for at least 4 hours. Seal forms to prevent water or grout loss. On the placement side, provide an angle in the form high enough to assist in grouting and to maintain head pressure on the grout during the entire grouting process. Forms should be at least 1 in. (2.5 cm) higher than the bottom of the base plate.

Water Regulrements:

Desired Mix Water / 50 lbs. (22.67 kg) Bag Dry Pack: 5 pints (2.4 L) Flowable: 8 pints (3.8 L) Fluid: 9 pints (4.2 L)

Mixing:

A mechanical mixer with rotating blades like a mortar mixer is best. Small quantities can be mixed with a drill and paddle. When mixing less than a full bag, always first agitate the bag thoroughly so that a representative sample is obtained.

Visit www.daytonsuperior.com for the most up to date technical information Page 1 of 3

File Date: 3/27/2015

Figure B-22. Non-Shrink Grout Specifications, Test No. NJPCB-1

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

Place approximately 3/4 of the anticipated mix water into the mixer and add the grout mix, adding the minimum additional water necessary to achieve desired consistency.

Mix for a total of five minutes ensuring uniform consistency. For placements greater in depth than 3 in. (7.6 cm), up to 25 lbs. (11.34 kg) of washed 3/8 in. (1 cm) pea gravel must be added to each 50 lbs. (22.67 kg) bag of grout. The approximate working time (pot life) is 30 minutes but will vary somewhat with ambient conditions.

For hot weather conditions, greater than 85°F (29°C), mix with cold water approximately 40°F (4°C). For cold weather conditions, less than 50°F (10°C), mix with warm water, approximately 90°F (29°C). For additional hot and cold weather applications, contact Dayton Superior.

Placement:

Grout should be placed preferably from one side using a grout box to avoid entrapping air. Grout should not be over-worked or over-watered causing segregation or bleeding. Vent holes should be provided where necessary.

When possible, grout bolt holes first. Placement and consolidation should be continuous for any one section of the grout. When nearby equipment causes vibration of the grout, such equipment should be shut down for a period of 24 hours. Forms may be removed when grout is completely self-supporting. For best results, grout should extend downward at a 45 degree angle from the lower edge of the steel base plates or similar structures.

CLEAN UP

DEC

16

Use clean water. Hardened material will require mechanical removal methods.

CURING

Exposed grout surfaces must be cured. Dayton Superior recommends using a Dayton Superior curing compound, cure & seal or a wet cure for 3 days. Maintain the temperature of the grout and contact area at $45^{\circ}F$ (7°C) to $90^{\circ}F$ (32°C) for a minimum of 24 hours.

LIMITATIONS

FOR PROFESSIONAL USE ONLY

Do not re-temper after initial mixing Do not add other cements or additives

Setting time for the 1107 Advantage Grout will slow during cooler weather, less than 50°F (10°C) and speed up during hot weather, greater than 80°F (27°C) Prepackaged material segregates while in the bag, thus when mixing less than a full bag it is recommended to first agitate the bag to assure it is blended prior to sampling.

PRECAUTIONS

READ SDS PRIOR TO USING PRODUCT

- Product contains Crystalline Silica and Portland Cement Avoid breathing dust Silica may cause serious lung problems
- Use with adequate ventilation n Wear protective clothing, gloves and eye protection (goggles, safety glasses and/or face shield)
- Keep out of the reach of children
- Do not take internally
- In case of ingestion, seek medical help immediately
- May cause skin irritation upon contact, especially prolonged or repeated. If skin contact occurs, wash immediately with soap and water and seek medical help as needed.
- If eye contact occurs, flush immediately with clean water and seek medical help as needed
- Dispose of waste material in accordanc

MANUFACTURER

Dayton Superior Corporation 1125 Byers Road Miamisburg, OH 45342 Customer Service: 888-977-9600 Technical Services: 877-266-7732 Website: www.daytonsuperior.com

WARRANTY

Dayton Superior Corporation ("Dayton") warrants for 12 months from the date of manufacture or for the duration of the published product shelf life, whichever is less, that at the time of shipment by Dayton, the product is free of manufacturing defects and conforms to Dayton's product properties in force on the date of acceptance by Dayton of the order. Dayton shall only be liable under this warranty if the product has been applied, used, and stored in accordance with Dayton's instructions, especially surface preparation and installation, in force on the date of acceptance by Dayton of the order. The purchaser must examine the product when received and promptly notify Dayton in writing of any non-conformity before the product is used and no later than 30 days after such non-conformity is first discovered. If Dayton, in its sole discretion, determines that the product breached the above warranty, it will, in its sole discretion, replace the non-conforming product, refund the purchase price or issue a credit in the amount of the purchase price. This is the sole and exclusive remedy for breach of this warranty. Only a Dayton officer is authorized to modify this warranty. The information in this data sheet supersedes all other sales information received by the customer during the sales process. THE FOREGOING WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF PREATION OF LAW, COURSE OF DEALING, OTHERWISE ARISING BY OPERATION OF LAW, COURSE OF DEALING, CUSTOM, TRADE OR OTHERWISE.

Visit www.daytonsuperior.com for the most up to date technical information Page 2 of 3

File Date: 3/27/2015

Figure B-23. Non-Shrink Grout Specifications, Test No. NJPCB-1

LINCOLN OFFICE 825 "M" Street, Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE **SPECIMENS - 4x8**

ASTM Designation: C 39

Date 25-Feb-16

Client Name: Midwest Roadside Safety Facility Project Name: New Jersey PCB Placement Location: Grout Test A

Designati	on:							Require	ed Streng	th: 1000					
						1	Laboratory	Test Data	a						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Doys Cured in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength, psi.	Type of Fracture	ASTM Proctice for Copping Specimen
PCB-1		2/17/2016	2/24/2016	2/25/2016	7	1	8	8	4.03	12.76	89,005	6,980	1,000	5	C 1231

1 cc: Shaun Tighe

Midwest Roadside Safety Facility

Remarks:							
Concrete test specimens along with documentation and test data were submitted by Midwest Roadside Safety			Sketches of Ty	pes of Fractures			
Facility.			ATT	\square	\square	\square	
Test results presented relate only to the concrete specimens as received from Midwest Roadside Safety	\square		DWN				
	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	ALFRED BENESCH & COMPANY
This report shall not be reproduced except in full, without the written approval of Alfred Benesch & Company.	Reasonably well- formed cones on both ends, less than 1 in.	Well-formed cone on one end, vertical cracks ronning through	Columnar vertical cracking through both ends, no well-formed	Diagonal fracture with no cracking through ends; tap with hammer	Side fractures at top or bottom (occur commonly with	Similar to Type 5 but end of cylinder is pointed	
Report Number 2147368164 Page 1	(25 mm) of cracking through caps	caps, no well-defined cone on other end	cones	to distinguish from Type 1	unbonded cops)		By Brant Wells, Field/Lab Operations Manager

Figure B-24. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-1

Appendix C. Concrete Tarmac Strength

	540 A.S.	/	ASTM Design		the second s	
Client:	UNL			Date:	December 10,	2010
Project:	MwRSF					
Placement Location:	WI - East 1, 2,	3				
Mix Type:	Class:			Mix No.:		
Type of Forms			Cement Facto		n	
			Water-Cement		-	а
Admixture Quantity	r	a	Slump Inches	the second se		а
Admixture Type	r	na	Unit Wt, Ibs/cu	and the second se		а
Admixture Quantity	r	ia	Air Content, %			a
Average Field Temperature	r	na	Batch Volume	, Cu. Yds.	-	a
Temperature of Concrete F		a	Ticket No.		n	a
dentification Laboratory	East 1	East 2	East 3			
Date Cast	1.00				12.2	
Date Received in Laboratory	11/30/2010	11/30/2010	11/30/2010	Start Contractor	a state of the	
Date Tested						0
Days Cured in Field	- 100 - 2014					
Days Cured in Laboratory						
Age of Test, Days						
Length, in.	7.78	7.81	7.75		Selection of	
Average Width (1), in.	3.72	3.72	3.72			
Cross-Sectional Area, sq. in.	10.874	10.869	10.874			
Maximum Load, Ibf	71,030	76,470	73,310			
Compressive Stength, psi	6,530	7,040	6,740			
Length/Diameter Ratio	2.091	2.099	2.083			
Correction						
Corrected Compressive Strength,psi	0	0	0			
Type of Fracture	4	4	4		dia Constraine	Contraction (Contraction)
Required Strength,psi						
Remarks: All concrete break data in this report was pro unless otherwise noted.	oduced by Benes	ch personnel u	using ASTM Star	ndard Methods	and Practices	
This report shall not be reproduced except in	n full, without the v	vritten approva	ALFRED BENE	ESCH & COMP		v

Figure C-1. Concrete Tarmac Strength Test

benesch

LINCOLN OFFICE 825 J Street Lincoln, NE 68508 402/479-2200

COMPRESSION TEST OF Cylindrical CONCRETE SPECIMENS ASTM Designation: C39-03

Client:	UNL	1		Date:	December 13,	2010
Project:	MwRSF				and the second	
Placement Location:	WI - Epoxy W	est 4 &5				
Mix Type:	Class:			Mix No.:		
Type of Forms			Cement Facto	or, Sks/Yd	n	a
			Water-Cemen	nt Ratio	n	а
Admixture Quantity	п	na	Slump Inches		n	a
Admixture Type	n	a	Unit Wt, Ibs/c	u. Ft.	n	а
Admixture Quantity	n	a	Air Content, 9	%	n	a
Average Field Temperature	n	na	Batch Volume	e, Cu. Yds.	n	a
Temperature of Concrete F	n	na	Ticket No.		n	а
dentification Laboratory	4	5	and and the start			
Date Cast			est provide			
Date Received in Laboratory	12/13/2010	12/13/2010	231.000		1.1.1	
Date Tested						
Days Cured in Field	19					
Days Cured in Laboratory	2					
Age of Test, Days	na	na				
Length, in.	8.05	8.06				
Average Width (1), in.	3.91	3.90	STREET, DOOL OF STREET, ST			
Cross-Sectional Area, sq. in.	11.977	11.952				
Maximum Load, Ibf	71,500	71,630				
Compressive Stength, psi	5,970	5,990				
Length/Diameter Ratio	2.061	2.065				
Correction						
Corrected Compressive Strength,psi	0	0				
Type of Fracture	. 3	3				
Required Strength,psi	10					
			Ì		1	
Remarks:	1.00					
	17					
All concrete break data in this report was pro	oduced by Benes	ch personnel u	ising ASTM Sta	ndard Methods	and Practices	
unless otherwise noted.	-		1949 - 1995 - 1997 - 1997			
This report shall not be reproduced except in	n full, without the v	vritten approva	I of Alfred Bene	sch & Company	/	
	-144					
				ESCH & COMP		
			CONSTRUCT	ION MATERIAL	S LABORATOR	Y
			\cap			
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1
			By: Inta		D. Ala	05

Figure C-2. Concrete Tarmac Strength Test

Appendix D. Vehicle Center of Gravity Determination

	t: NJPCB-1 Vehicle:	Dodge			
	venicie CG	Determinat Weight		Vertical M	
VEHICLE	Equipment	(lb.)	Vertical CG (in.)	(lb-in.)	
+	Unbalasted Truck (Curb)	5229		149010.31	
+	Hub	19	15.625		
+	Brake activation cylinder & frame	7	28.125	10110304-10203351235 - 2.39	
+	Pneumatic tank (Nitrogen)	27	26.125		
+	Strobe/Brake Battery	5	23.875	119.375	
+	Brake Reciever/Wires	5	53.125	Viz. 16 (20)2 10 Col. M. (1923).	
	CG Plate including DAS	47	30.375		
+ -	Battery	-46	40.875		
-	Oil	-9	26.875	1.10.0000000 Sec.56.00000.000000	
-	Interior	-95	33.875		
	Fuel	-169	20.875	-3527.875	
- - - +	Coolant	-12	33.875	-406.5	
-	Washer fluid	-8	32.875	-263	
+	Water Ballast	0	00	0	
+	Onboard Battery	14	24.875	348.25	
				0	
				1 10000 00	
Note: (+) is ac	Ided equipment to vehicle, (-) is removed equipment Estimated Total Weight (Ib.) Vertical CG Location (in.)	5014		142832.69	
	Estimated Total Weight (lb.) Vertical CG Location (in.)	5014		142832.69	
Wheel Bas	Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5	5014 28.48677	est Inertia		Difference
Wheel Bas	Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets	5014 28.48677	est Inertia 5013		
Wheel Bas Center of Test Inertia	Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets Il Weight (lb.) 5000 ± 110	5014 28.48677			13.0
Wheel Bas	Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets Il Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4	5014 28.48677	5013		13.0 -3.19011
Wheel Bas Center of Test Inertia Longitudina	Estimated Total Weight (lb.) vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets Il Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA	5014 28.48677	5013 59.81		13.0 -3.19011 NA
Wheel Bas Center of Test Inertia Longitudina Lateral CG Vertical CG	Estimated Total Weight (lb.) vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets Il Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA	5014 28.48677	5013 59.81 0.727714		13.0 -3.19011 NA
Wheel Bas Center of G Test Inertia Longitudina Lateral CG Vertical CG Note: Long. (Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets Il Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA G (in.) 28 or greater	5014 28.48677	5013 59.81 0.727714 28.49		Difference 13.0 -3.19011 NA 0.48677
Wheel Bas Center of G Test Inertia Longitudina Lateral CG Vertical CG Note: Long. (Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets I Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA G (in.) 28 or greater CG is measured from front axle of test vehicle	5014 28.48677	5013 59.81 0.727714 28.49		13.0 -3.19011 NA
Wheel Bas Center of G Test Inertia Longitudina Lateral CG Vertical CG Note: Long. (Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets I Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA G (in.) 28 or greater CG is measured from front axle of test vehicle	5014 28.48677	5013 59.81 0.727714 28.49		13.0 -3.19011 NA 0.48677
Wheel Bas Center of G Test Inertia Longitudina Lateral CG Vertical CG Note: Long. (Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets I Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA G (in.) 28 or greater CG is measured from front axle of test vehicle CG measured from centerline - positive to vehicle CURB WEIGHT (lb.)	5014 28.48677	5013 59.81 0.727714 28.49	I RTIAL WEIG	13.0 -3.19011 NA 0.48677 HT (Ib.)
Wheel Bas Center of G Test Inertia Longitudina Lateral CG Vertical CG Note: Long. (Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets I Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA G (in.) 28 or greater CG is measured from front axle of test vehicle CG measured from centerline - positive to vehicle CG measured from centerline - positive to vehicle	5014 28.48677	5013 59.81 0.727714 28.49	I RTIAL WEIG	13.0 -3.19011 NA 0.48677 HT (Ib.) Right
Wheel Bas Center of G Test Inertia Longitudina Lateral CG Vertical CG Note: Long. (Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets If Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA G (in.) 28 or greater CG is measured from front axle of test vehicle CG measured from centerline - positive to vehicle	5014 28.48677	5013 59.81 0.727714 28.49	I RTIAL WEIG	13.0 -3.19011 NA 0.48677 HT (Ib.)
Wheel Bas Center of G Test Inertia Longitudina Lateral CG Vertical CG Note: Long. (Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets I Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA G (in.) 28 or greater CG is measured from front axle of test vehicle CG measured from centerline - positive to vehicle CG measured from centerline - positive to vehicle CG measured from 1510 1462 Rear 1510 1462	5014 28.48677	5013 59.81 0.727714 28.49) side TEST INEF Front Rear	I RTIAL WEIG Left 1399 1054	13.0 -3.19011 NA 0.48677 HT (Ib.) Right 1480 1080
Wheel Bas Center of G Test Inertia Longitudina Lateral CG Vertical CG Note: Long. (Estimated Total Weight (lb.) Vertical CG Location (in.) e (in.) 140.5 Gravity 2270P MASH Targets I Weight (lb.) 5000 ± 110 al CG (in.) 63 ± 4 (in.) NA G (in.) 28 or greater CG is measured from front axle of test vehicle CG measured from centerline - positive to vehicle CG measured from centerline - positive to vehicle CG measured from 1510 1462	5014 28.48677	5013 59.81 0.727714 28.49	I RTIAL WEIG Left 1399	13.0 -3.19011 NA 0.48677 HT (Ib.) Right 1480 1080 Ib.

Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-1

Appendix E. Vehicle Deformation Records

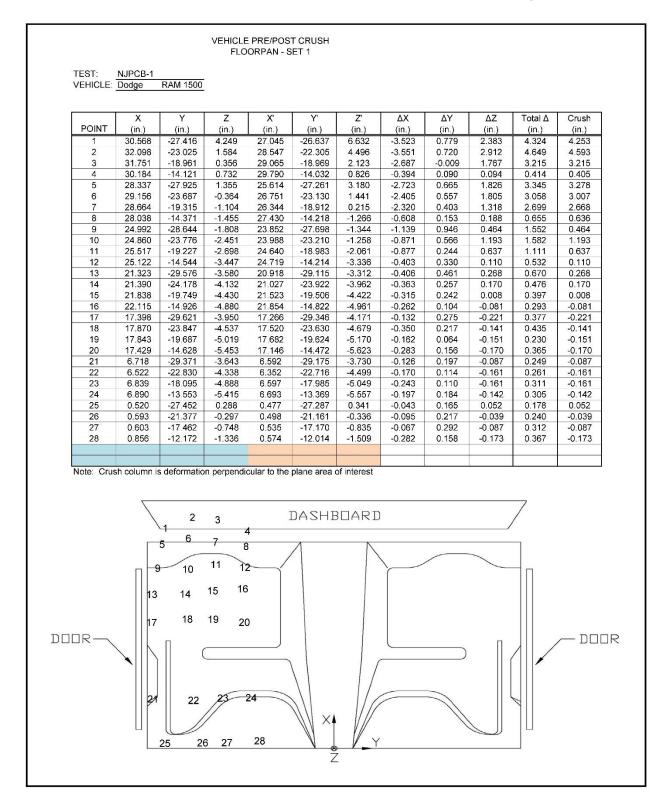


Figure E-1. Floor Pan Deformation Data - Set 1, Test No. NJPCB-1

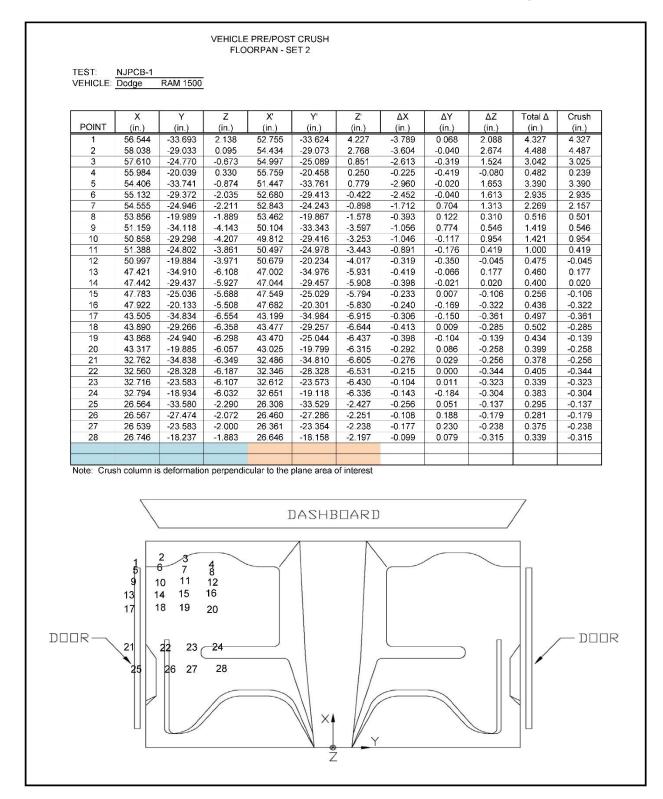


Figure E-2. Floor Pan Deformation Data - Set 2, Test No. NJPCB-1

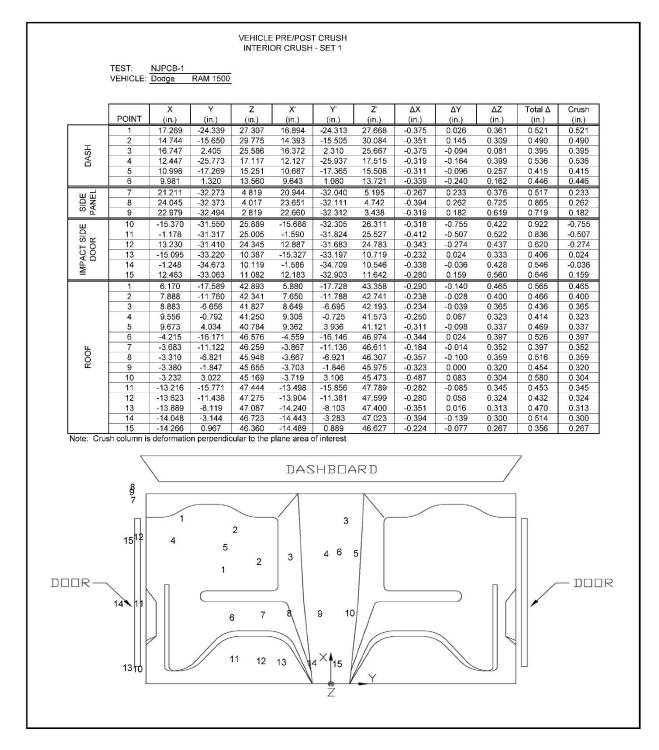


Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-1

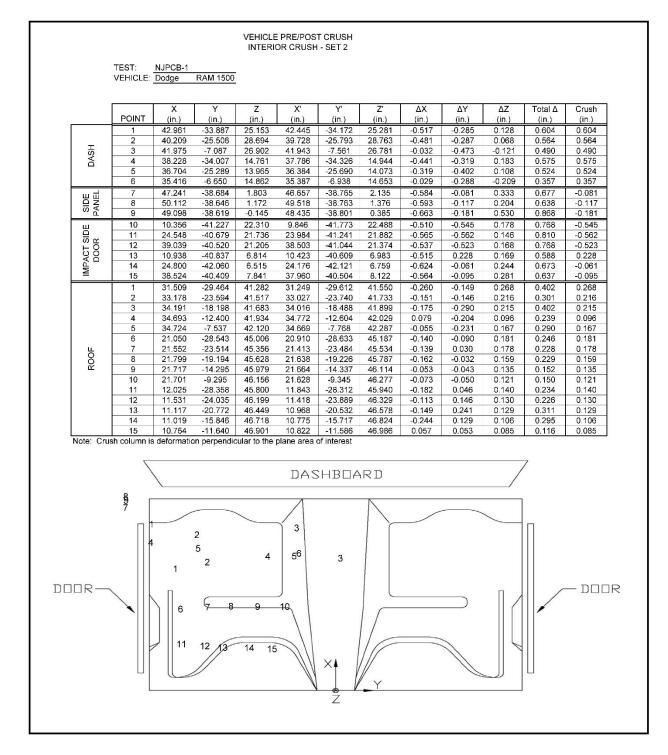


Figure E-4. Occupant Compartment Deformation Data - Set 2, Test No. NJPCB-1

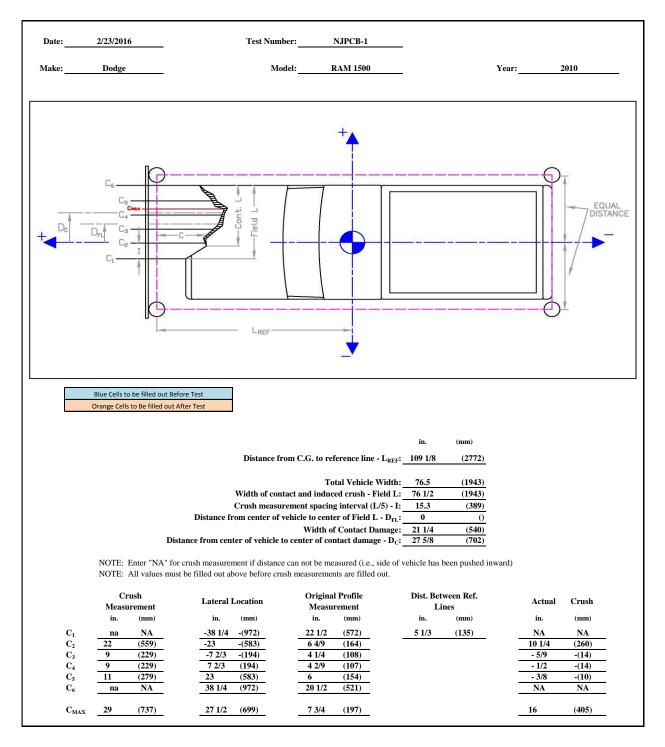


Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-1

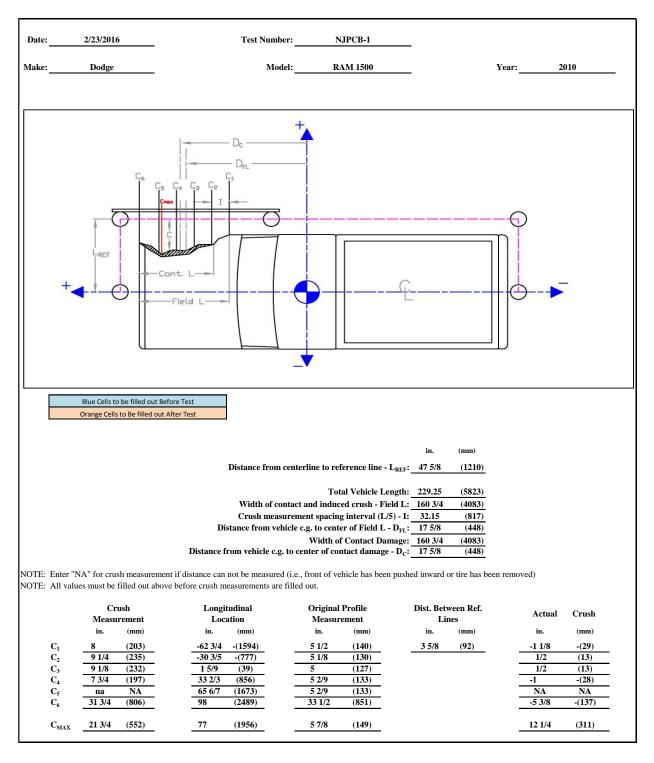


Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NJPCB-1

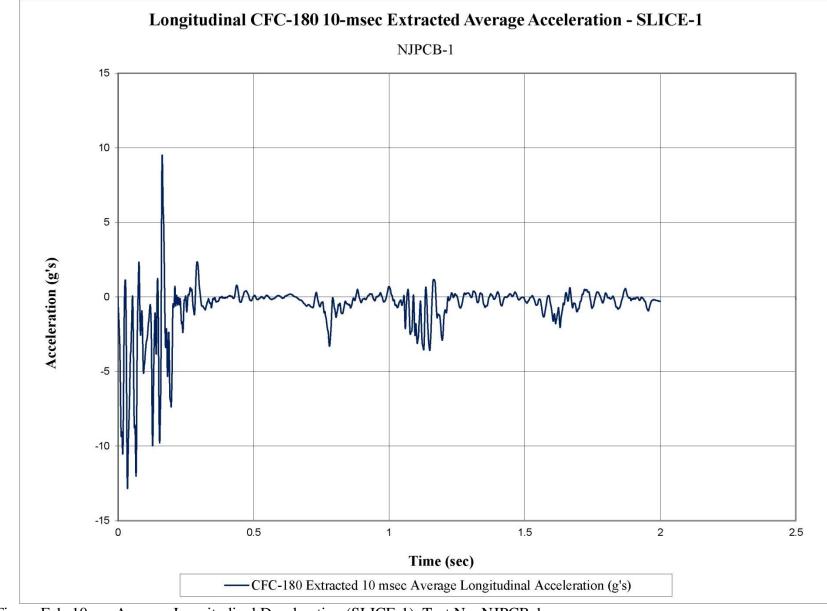


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-1

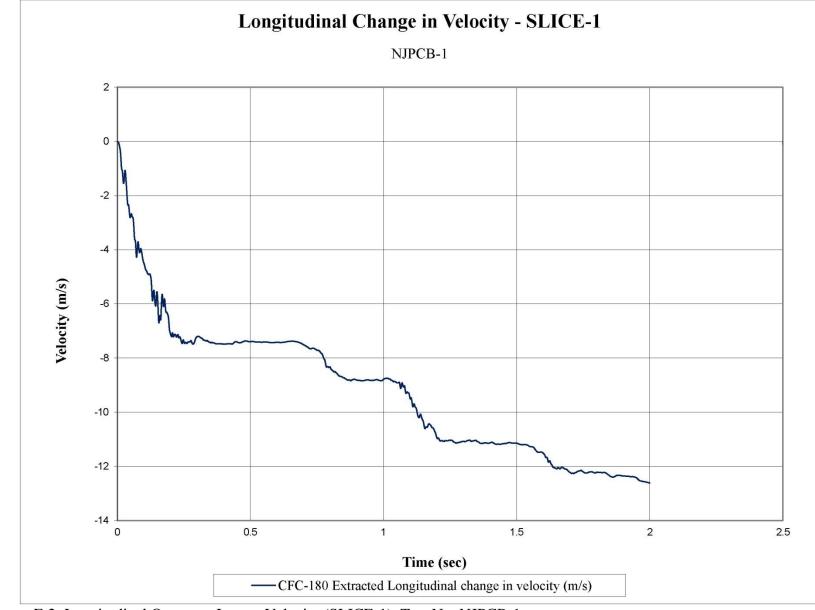


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-1

Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-1

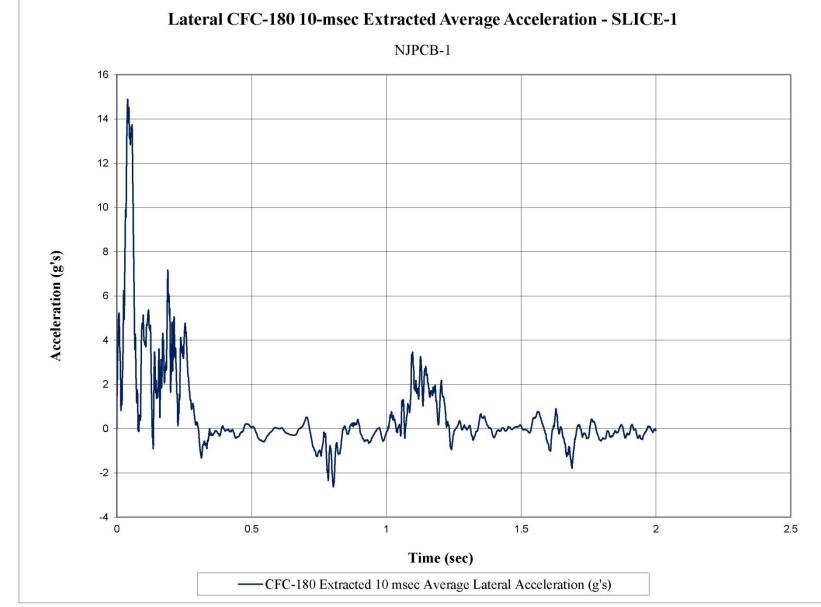


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-1

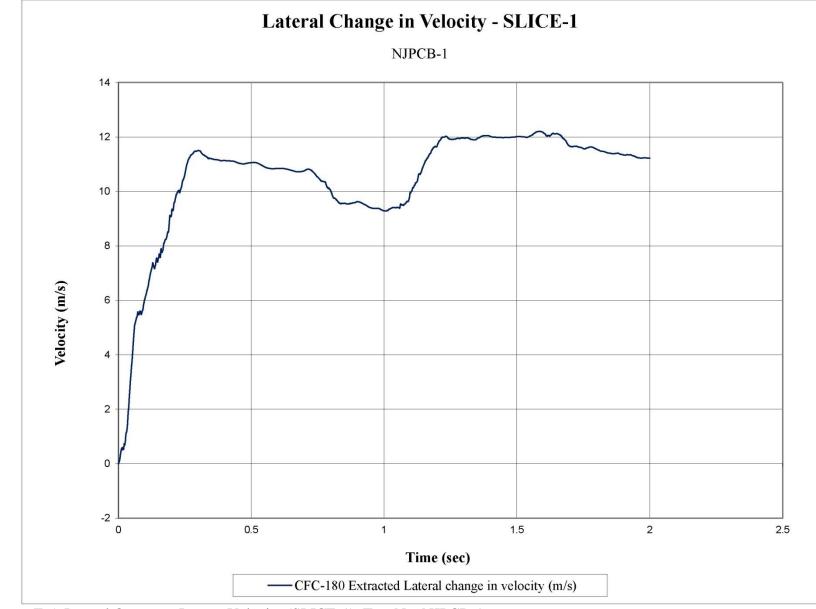


Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-1

Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-1

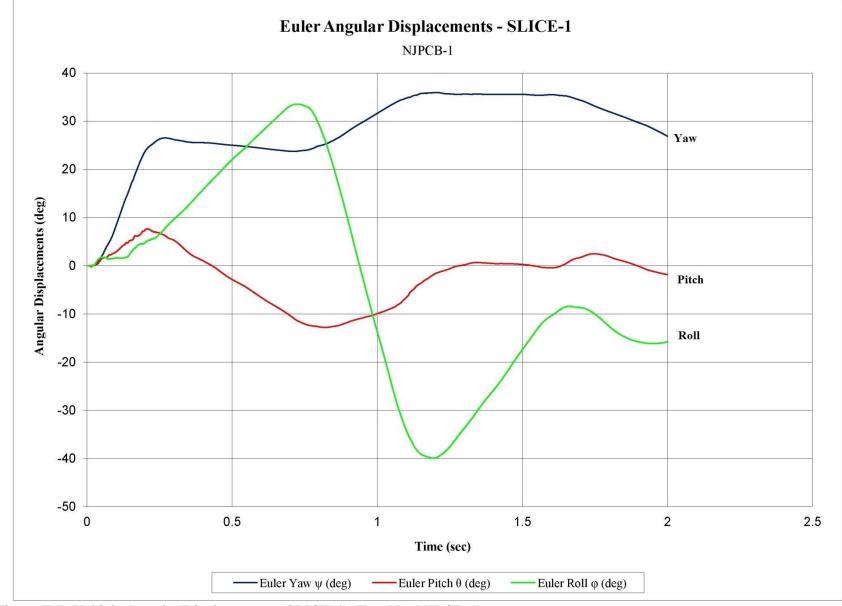


Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-1

December 6, 2018 MwRSF Report No. TRP-03-338-18

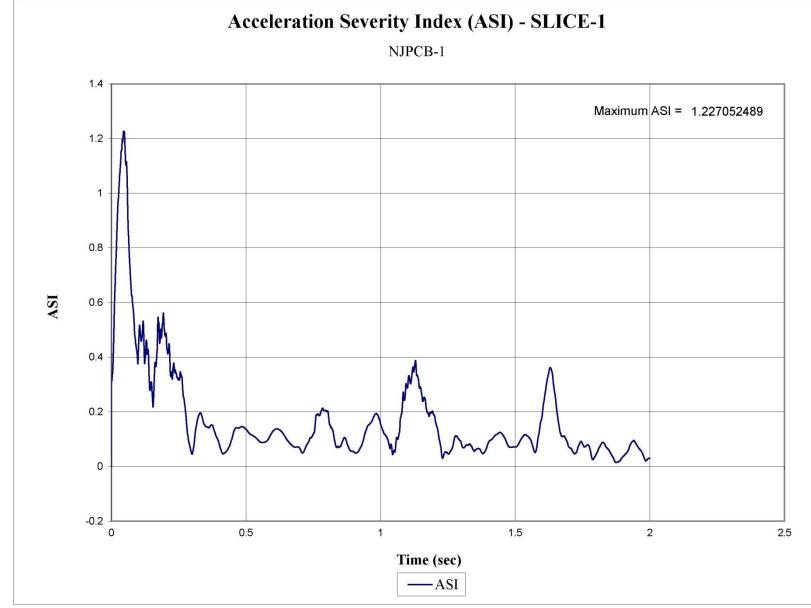


Figure F-8. Acceleration Severity Index (SLICE-1), Test No. NJPCB-1

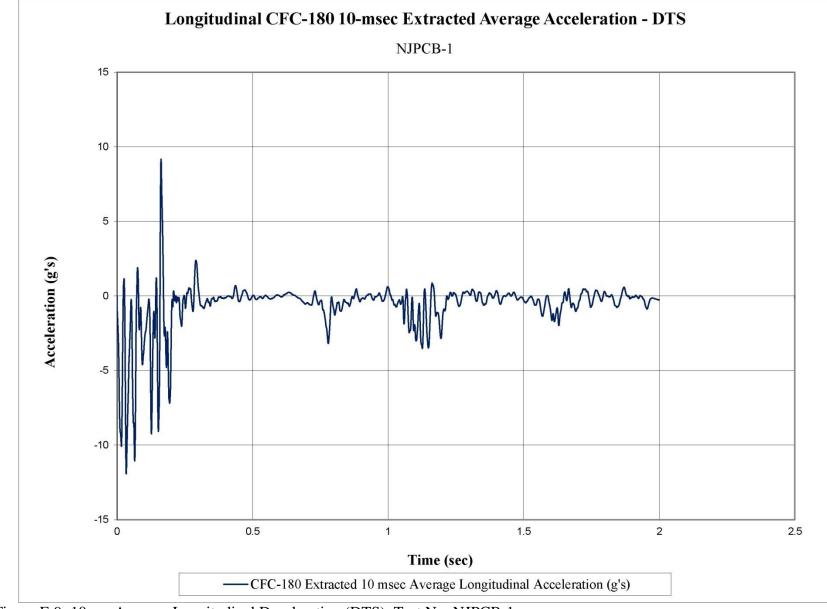


Figure F-9. 10-ms Average Longitudinal Deceleration (DTS), Test No. NJPCB-1

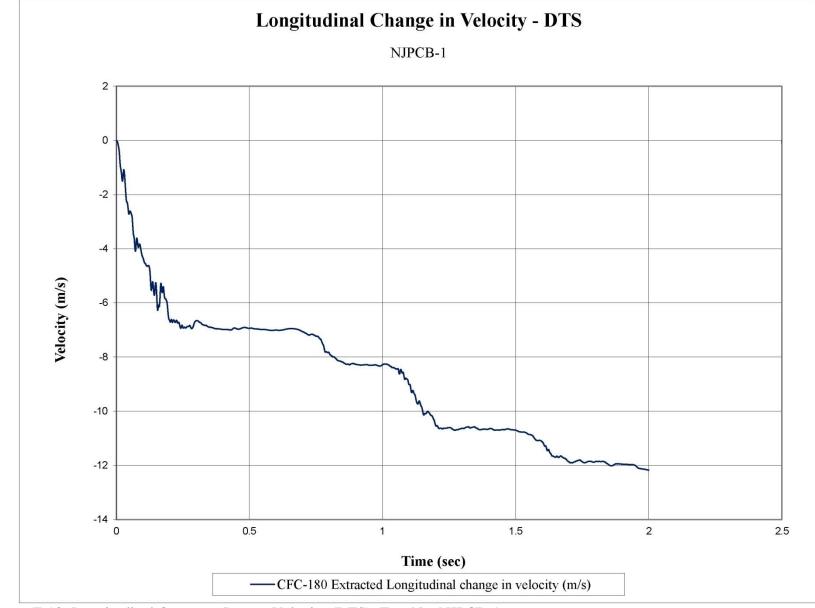


Figure F-10. Longitudinal Occupant Impact Velocity (DTS), Test No. NJPCB-1

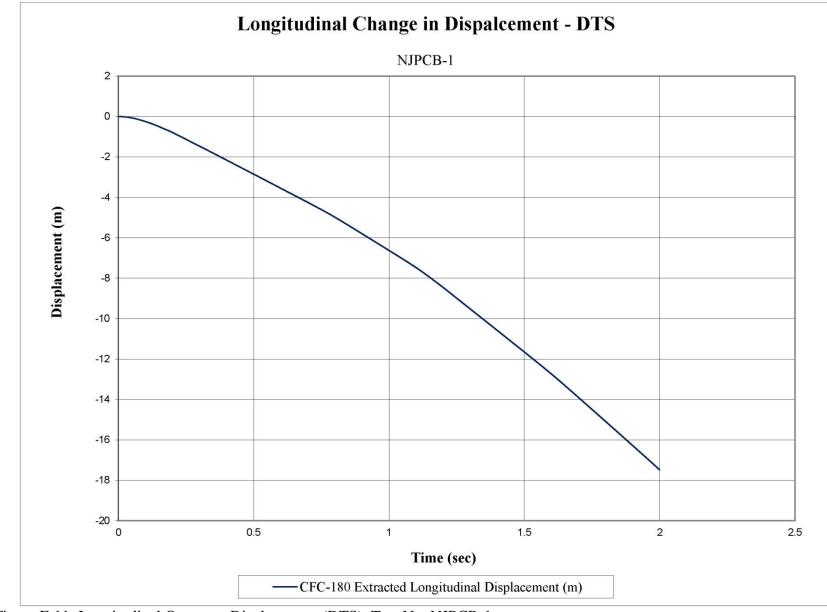


Figure F-11. Longitudinal Occupant Displacement (DTS), Test No. NJPCB-1

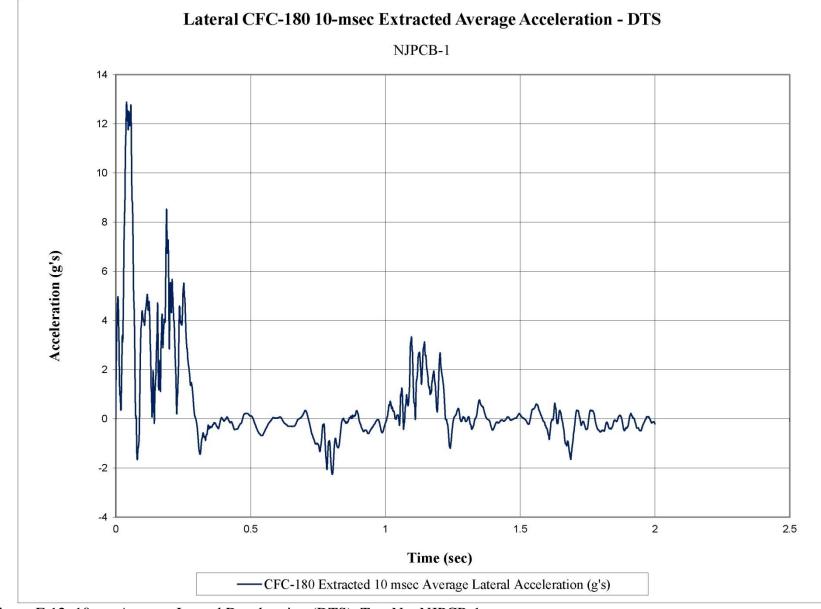


Figure F-12. 10-ms Average Lateral Deceleration (DTS), Test No. NJPCB-1

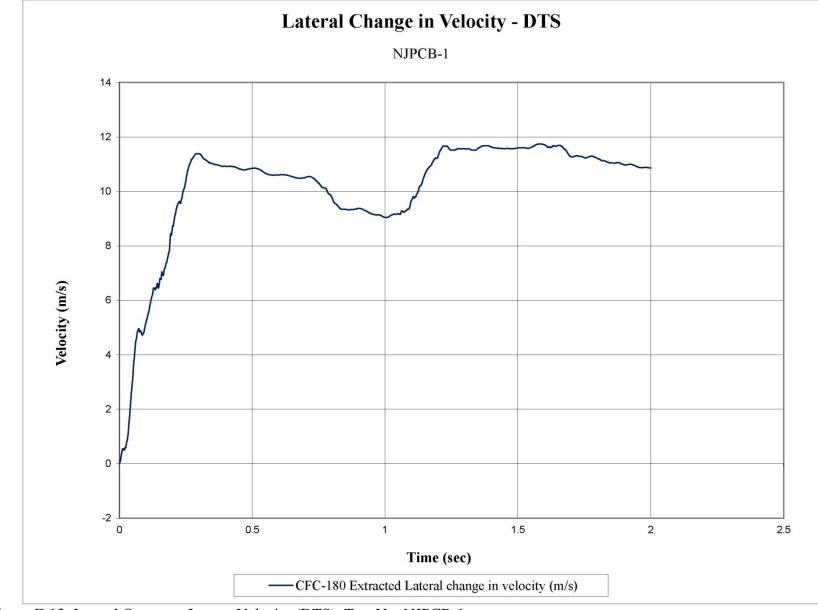


Figure F-13. Lateral Occupant Impact Velocity (DTS), Test No. NJPCB-1

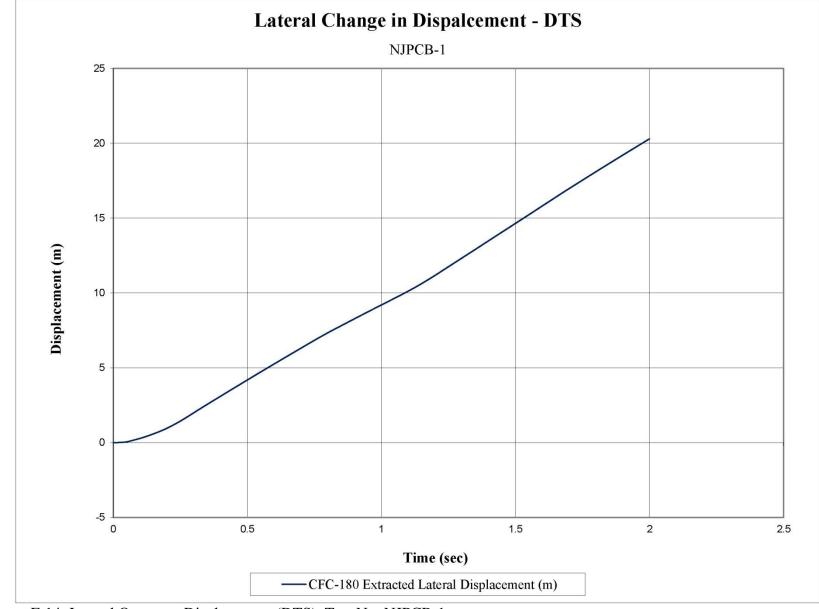


Figure F-14. Lateral Occupant Displacement (DTS), Test No. NJPCB-1

December 6, 2018 MwRSF Report No. TRP-03-338-18

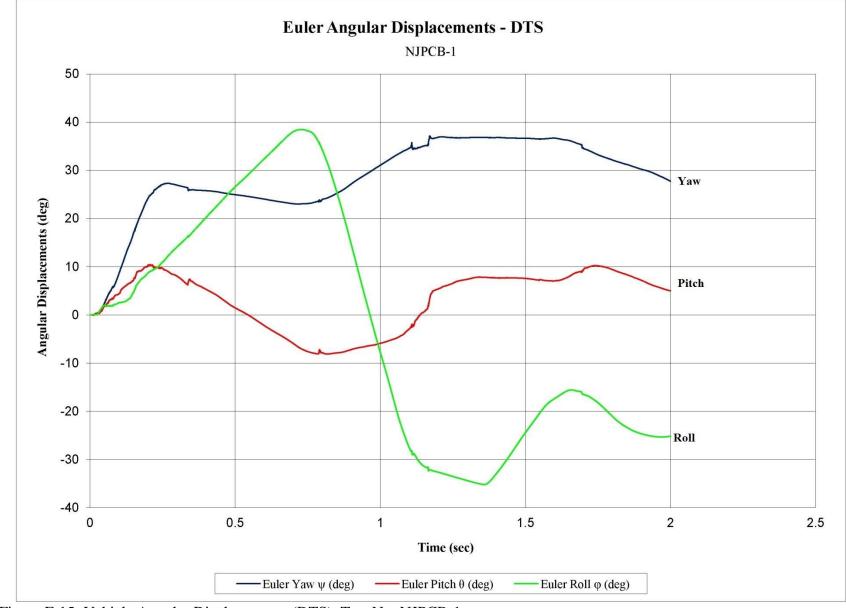


Figure F-15. Vehicle Angular Displacements (DTS), Test No. NJPCB-1

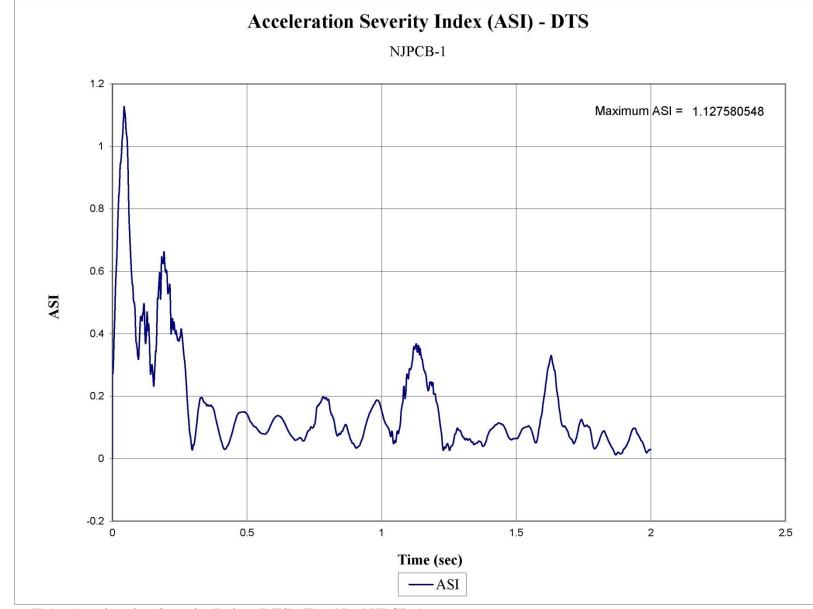


Figure F-16. Acceleration Severity Index (DTS), Test No. NJPCB-1

END OF DOCUMENT