

Research Project Number TPF-5(193), Supplemental #61

CABLE GUARDRAIL WITH STRONG J-BOLTS

Submitted by

Bradley J. Winkelbauer, B.S.C.E. Graduate Research Assistant

Ronald K. Faller, Ph.D., P.E. Research Assistant Professor MwRSF Director

> John D. Reid, Ph.D. Professor

Cody S. Stolle, Ph.D., E.I.T. Post-Doctoral Research Associate

Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Associate Engineer

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Associate Engineer

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln 130 Whittier Research Center 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

NEW YORK STATE DEPARTMENT OF TRANSPORTATION

50 Wolf Road Albany, New York 12232

MwRSF Research Report No. TRP-03-299-14

May 29, 2014

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-299-14	2.	3. Recipient's Accession No.			
4. Title and Subtitle Cable Guardrail with Strong	I-Bolts	5. Report Date May 29, 2014			
		6.			
^{7.} Author(s) Winkelbauer, B.J., Stolle, C.S Lechtenberg, K.A., Reid, J.D	S., Faller, R.K., ., and Bielenberg, R.W.	8. Performing Organization Report No. TRP-03-299-14			
9. Performing Organization Name and Adda Midwest Roadside Safety Fac	ess cility (MwRSF)	10. Project/Task/Work Unit No.			
Nebraska Transportation Cen University of Nebraska-Linco 130 Whittier Research Center 2200 Vine Street Lincoln, Nebraska 68583-08	ter bln 53	11. Contract © or Grant (G) No. TPF-5(193), Supplemental #61			
12. Sponsoring Organization Name and Add New York State Department	tress of Transportation	13. Type of Report and Period Covered Final Report: 2012 – 2014			
50 Wolf Road Albany, New York 12232		14. Sponsoring Agency Code TPF-5(193), Supplemental #61			
15. Supplementary Notes Prepared in cooperation with	U.S. Department of Transpo	rtation, Federal Highw	ay Administration.		
 16. Abstract (Limit: 200 words) The New York State Departm that eliminated cable compensator mm) diameter. Additionally, a new dynamic deflections as well as tend For this study, three Test Leve barrier with strong J-bolts accordin configured with center cable heigh surface. Braking tests were condu vehicle to underride the barrier. Th nos. NYJ-1 and NYJ-2. During test 	ent of Transportation (NYSDOT) s and increased the size of cable- v hanger end post was evaluated. lencies for underride, override, per el 3 (TL-3) full-scale crash tests w og to the <i>Manual For Assessing Sa</i> ts of 17 $^{1}/_{8}$ in. (435 mm), 23 $^{1}/_{8}$ in cted to determine the maximum ne modified barrier system was te st no. NYJ-1, the vehicle ruptured	evaluated a 3-cable, low-t to-post attachments from ⁴ These modifications were netration, and cable release. ere performed on the low-t <i>tfety Hardware</i> (MASH). T a. (587 mm), and 29 ¹ / ₈ in. pitch of the 1500A vehicle sted using a 1500A full-siz d the barrier, and therefore	ension, cable barrier system $\frac{5}{16}$ in. (8 mm) to $\frac{1}{2}$ in. (13 implemented to investigate ension, three-cable roadside the cable barrier system was (740 mm) above the ground e that would perpetuate the zed passenger sedan for test it did not meet the MASH		
impact safety standards. After cons cable slap contributed to excessiv standards. Test no. NYJ-3 utilized impact safety standards.	idering the causes of test failure, a ve windshield deformations, and a 2270P vehicle, which also ruptur	a retest was performed, test therefore it did not meet red the barrier, and therefor	no. NYJ-2. During this test, t the MASH impact safety re it did not meet the MASH		
17. Document Analysis/Descriptors Highway Safety, Crash Test, Compliance Test, MASH, Ca Three-cable, Median Barrier,	Roadside Appurtenances, ble Guardrail, J-bolt, Braking Tests	18. Availability Statement No restrictions. Docu National Technical Ir Springfield, Virginia	ment available from: formation Services, 22161		
19. Security Class (this report) Unclassified	20. Security Class (this page) Unclassified	21. No. of Pages4 286	22. Price		

DISCLAIMER STATEMENT

This report was completed with funding from the New York State Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New York State Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration. Test nos. VBT1 – VBT13 were non-certified investigative tests conducted for research and development purposes only and are outside the scope of the MwRSF's A2LA Accreditation.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Mr. Scott Rosenbaugh, Research Associate Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project:

(1) the New York State Department of Transportation for sponsoring this project and (2)

MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who made a contribution to

the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Test Site Manager
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Associate Engineer
J.D. Schmidt, Ph.D., P.E., Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Shop Manager
K.L. Krenk, B.S.M.A., Maintenance Mechanic
D.S. Charroin, Laboratory Mechanic
S.M. Tighe, Laboratory Mechanic
Undergraduate and Graduate Research Assistants

New York State Department of Transportation

Lyman L. Hale III, Senior Engineer Pratip Lahiri, P.E., Standards and Specifications Section Robert Lohse, Design Quality Assurance Bureau James Turley, Design Quality Assurance Bureau Gary Frederick, Director of Transportation Research & Development Bureau

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	. i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	/ii
LIST OF TABLES	cii
1 INTRODUCTION 1.1 Background 1.2 Research Objectives 1.3 Scope	1 1 2 2
2 VEHICLE BRAKING TESTS	4 4 4 5 6 6 7 8
3 TEST REQUIREMENTS AND EVALUATION CRITERIA	14 14 15 15
4 TEST CONDITIONS. 4.1 Test Facility 4.2 Vehicle Tow and Guidance System 4.3 Test Vehicles 4.4 Simulated Occupant 4.5 Data Acquisition Systems 4.5.1 Accelerometers	18 18 18 29 29 29
4.5.2 Rate Transducers 3 4.5.3 Load Cells 3	31 31

4.5.4 String Potentiometers	33
4.5.5 Retroreflective Optic Speed Trap	33
4.5.6 Digital Photography	35
5 PRELIMINARY DESIGN DETAILS	39
5.1 System Description	39
5.2 Cable Tension	40
	~ 1
6 FULL-SCALE CRASH TEST NO. NYJ-1	64
6.1 Static Soil Test	64
6.2 Test No. NYJ-1	64
6.3 Weather Conditions	64
6.4 Test Description	65
6.5 Barrier Damage	66
6.6 Vehicle Damage	67
6.7 Occupant Risk	69
6.8 Load Cell and String Potentiometer Results	70
6.9 Discussion	70
6.10 Analysis of Test No. NYJ-1 and Modifications for Retest	71
7 DESIGN DETAILS	88
9 EULL SCALE ODA SUITEST NO NVL 2	106
8 FULL-SCALE CRASH TEST NO. N IJ-2	100
8.1 Static Soli Test	100
8.2 Test NO. NYJ-2	. 100
8.3 Weather Conditions	. 106
8.4 Test Description	. 10/
8.5 Barrier Damage	. 108
8.6 Vehicle Damage	. 110
8.7 Occupant Risk	. 112
8.8 Load Cell and String Potentiometer Results	. 113
8.9 Discussion	. 114
8.10 Analysis of Test No. NYJ-2	. 114
	100
9 FULL-SCALE CRASH TEST NO. NYJ-3	. 132
9.1 Static Soil Test	. 132
9.2 Test No. NYJ-3	. 132
9.3 Weather Conditions	. 132
9.4 Test Description	. 133
9.5 Barrier Damage	. 134
9.6 Vehicle Damage	. 135
9.7 Occupant Risk	. 137
9.8 Load Cell and String Potentiometer Results	. 137
9.9 Discussion	. 138
9.10 Analysis of Test No. NYJ-3	. 138
10 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	. 155
10.1 Summary	. 155

10.2 Conclusions	159
10.3 Recommendations	160
11 REFERENCES	162
12 APPENDICES	164
Appendix A. Vehicle Braking Test Results	165
Appendix B. Vehicle Center of Gravity Determination	172
Appendix C. Material Specifications	176
Appendix D. Static Soil Tests	200
Appendix E. Vehicle Deformation Records	207
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NYJ-1	229
Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. NYJ-2	253
Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. NYJ-3	262

LIST OF FIGURES

Figure 1. Test Vehicle for Test Nos. VBT-1 through VBT-13	5
Figure 2. Sequential Images of Test No. VBT-1	9
Figure 3. Pitch Angle, 30-mph (48-km/h) Braking Tests on Concrete Tarmac	9
Figure 4. Pitch Angle, 60-mph (97-km/h) Braking Tests on Concrete Tarmac	10
Figure 5. Pitch Angle, 30-mph (48-km/h) Braking Tests on Soil	10
Figure 6. Test Vehicle, Test No. NYJ-1	20
Figure 7. Vehicle Dimensions, Test No. NYJ-1	21
Figure 8. Test Vehicle, Test No. NYJ-2	22
Figure 9. Vehicle Dimensions, Test No. NYJ-2	23
Figure 10. Test Vehicle, Test No. NYJ-3	24
Figure 11. Vehicle Dimensions, Test No. NYJ-3	25
Figure 12. Target Geometry, Test No. NYJ-1	26
Figure 13. Target Geometry, Test No. NYJ-2	27
Figure 14. Target Geometry, Test No. NYJ-3	28
Figure 15. Load Cell Setup, Test No. NYJ-1	32
Figure 16. String Potentiometer Setup, Test No. NYJ-1	34
Figure 17. Camera Locations, Speeds, and Lens Settings, Test No. NYJ-1	36
Figure 18. Camera Locations, Speeds, and Lens Settings, Test No. NYJ-2	37
Figure 19. Camera Locations, Speeds, and Lens Settings, Test No. NYJ-3	
Figure 20. Test Installation Layout, Test No. NYJ-1	42
Figure 21. Cable Splice Location, Test No. NYJ-1	43
Figure 22. Upstream Cable Terminal Detail, Test No. NYJ-1	44
Figure 23. End Post Detail, Test No. NYJ-1	45
Figure 24. Downstream Cable Terminal Detail, Test No. NYJ-1	46
Figure 25. Anchor Details, Test No. NYJ-1	47
Figure 26. S3x5.7 Post Assembly, Test No. NYJ-1	48
Figure 27. Anchor Stud and Cable Turnbuckle, Test No. NYJ-1	49
Figure 28. Welded Plate Anchor Angle Detail, Test No. NYJ-1	50
Figure 29. Welded Plate Anchor Angle Components, Test No. NYJ-1	51
Figure 30. Anchor Post Assembly, Test No. NYJ-1	52
Figure 31. Anchor Post Components, Test No. NYJ-1	53
Figure 32. J-Bolt and Brass Rod Details, Test No. NYJ-1	54
Figure 33. Line Post, Test No. NYJ-1	55
Figure 34. Bill of Materials, Test No. NYJ-1	56
Figure 35. Additional Notes, Test No. NYJ-1	57
Figure 36. System Photographs, Test No. NYJ-1	58
Figure 37. Additional System Photographs, Test No. NYJ-1	59
Figure 38. Load Cell Photographs, Test No. NYJ-1	60
Figure 39. Upstream Cable Terminal Photographs, Test No. NYJ-1	61
Figure 40. Downstream Cable Terminal Photographs, Test No. NYJ-1	62
Figure 41. Post Photographs, Test No. NYJ-1	63
Figure 42. Summary of Test Results and Sequential Photographs, Test No. NYJ-1	73
Figure 43. Sequential Photographs, Test No. NYJ-1	74
Figure 44. Additional Sequential Photographs, Test No. NYJ-1	75
Figure 45. Impact Location, Test No. NYJ-1	76

Figure 46.	Vehicle Final Position, Test No. NYJ-1	77
Figure 47.	Post Damage in Impact Region, Test No. NYJ-1	78
Figure 48.	Upstream Anchor Damage, Test No. NYJ-1	79
Figure 49.	Downstream Anchor Damage, Test No. NYJ-1	80
Figure 50.	Hardware Fractures and Frayed Cable, Test No. NYJ-1	81
Figure 51.	Cable Damage, Test No. NYJ-1	82
Figure 52.	Additional Cable Damage, Test No. NYJ-1	
Figure 53.	Vehicle Damage, Test No. NYJ-1	
Figure 54.	Vehicle Damage, Test No. NYJ-1	85
Figure 55.	Cable Tension vs. Time. Test No. NYJ-1	86
Figure 56.	Displacement-Time History Plot for Anchors, Test No. NYJ-1	
Figure 57.	Test Installation Layout, Test No. NYJ-2	
Figure 58.	Cable Splice Location. Test No. NYJ-2	
Figure 59.	Upstream Cable Terminal Detail. Test No. NYJ-2	
Figure 60.	End Post Detail. Test No. NYJ-2	
Figure 61.	Downstream Cable Terminal Detail, Test No. NYJ-2	
Figure 62	Anchor Details. Test No. NYI-2	94
Figure 63	S3x5 7 Post Assembly Test No NYI-2	95
Figure 64	Anchor Stud and Cable Turnbuckle, Test No. NYI-2	96
Figure 65	Welded Plate Anchor Angle Detail Test No NYI-?	97
Figure 66	Welded Plate Anchor Angle Components Test No NYI-2	98
Figure 67	Anchor Post Assembly Test No NYI-2	99
Figure 68	Anchor Post Components Test No NYI-2	100
Figure 69	I-Bolt and Brass Rod Details Test No NYI-2	101
Figure 70	I ine Post Test No NYL-2	102
Figure 71	Bill of Materials Test No NYI-2	103
Figure 72	Additional Notes Test No. NYI-2	104
Figure 73	Test Installation I avout Test No NYI-3	105
Figure 74	Summary of Test Results and Sequential Photographs Test No NYI-2	117
Figure 75	Sequential Photographs Test No NYI-2	118
Figure 76	Additional Sequential Photographs Test No NYL-2	119
Figure 77	Impact Location Test No NYI-2	120
Figure 78	Vehicle Final Position Test No NYL-2	120
Figure 70.	Unstream Anchor Damage Test No. NYL-2	122
Figure 80	Downstream Anchor Damage Test No. NYI-2	123
Figure 81	Post Damage in Impact Region Test No NYL-2	123
Figure 87	Post Damage for Post Nos 1 16 17 and 18 Test No. NYL-2	125
Figure 83	Post Damage for Post Nos 19 20 21 and 40 Test No NYL-2	125
Figure 84	I-Bolt Damage at Post Nos 18 and 19 Test No NYL-2	120
Figure 85	Vehicle Damage Test No. NVL-2	127
Figure 86	Vehicle Damage, Test No. NYL-2	120
Figure 87	Load Cell and String Pot Plots Test No. NVI-2	129
Figure 88	Ton Middle and Bottom Cable Barrier Termination Threaded Dods for Uni	stream
1 iguie 00.	and Downstream Anchors	121
Figure 80	Summary of Test Results and Sequential Photographs Test No. NVI 2	131 1/0
Figure 09.	Sequential Photographs Test No. NVL-3	140 1/1
Figure 01	Additional Sequential Photographs, Test No. NVI 2	141 1 <i>1</i> 7
rigule 91.	Automai Sequentiai i notographis, rest no. in 13-3	142

Figure 92. Impact Location, Test No. NYJ-3	143
Figure 93. Vehicle Final Position, Test No. NYJ-3	144
Figure 94. Upstream Anchor Damage, Test No. NYJ-3	145
Figure 95. Downstream Anchor Damage, Test No. NYJ-3	146
Figure 96. Post Damage in Impact Region, Test No. NYJ-3	147
Figure 97. Cable End Fitting Damage, Test No. NYJ-3	148
Figure 98. Vehicle Damage, Test No. NYJ-3	149
Figure 99. Vehicle Damage, Test No. NYJ-3	150
Figure 100. Load Cell and String Pot Plots, Test No. NYJ-3	151
Figure 101. Upstream Threaded Rod End Fittings Constrained by Anchor Block Anchorage.	152
Figure 102. Downstream Threaded Rod End Fittings Constrained by Anchor Block	
Anchorage	153
Figure 103. Effect of Constrained Cable Ends on Threaded Rod Deformation	154
Figure A-1. CFC180 Longitudinal Acceleration, 30-mph (48-km/h) Tests on Concrete	
Figure A-2. Vehicle Speed, 30-mph (48-km/h) Tests on Concrete	
Figure A-3. Vehicle Pitch Angle, 30-mph (48-km/h) Tests on Concrete	
Figure A-4. Pitch vs. Displacement, 30-mph (48-km/h) Tests on Concrete	
Figure A-5. CFC180 Longitudinal Acceleration. 30-mph (48-km/h) Tests on Soil	
Figure A-6. Vehicle Speed, 30-mph (48-km/h) Tests on Soil	
Figure A-7. Pitch Angle, 30-mph (48-km/h) Tests on Concrete	169
Figure A-8. Pitch vs. Displacement, 30-mph (48-km/h) Tests on Soil	
Figure A-9. CFC180 Longitudinal Acceleration, 60-mph (97-km/h) Tests on Concrete	170
Figure A-10. Vehicle Speed, 60-mph (97-km/h) Tests on Concrete	170
Figure A-11. Pitch Angle, 60-mph (97-km/h) Tests on Concrete	171
Figure A-12. Pitch vs. Displacement, 60-mph (97-km/h) Tests on Concrete	171
Figure B-1. Vehicle Mass Distribution, Test No. NYJ-1	173
Figure B-2. Vehicle Mass Distribution, Test No. NYJ-2	174
Figure B-3. Figure 104. Vehicle Mass Distribution. Test No. NYJ-3	175
Figure C-1. S3x5.7 (S76x8.5) Long Anchor and Line Posts, Test Nos. NYJ-1 through NYJ-3	.179
Figure C-2. ³ / ₄ -in. (19-mm) Dia. Hooked Anchor J-Bolt and Nut, Test Nos. NYJ-1 through	
NYJ-3	180
Figure C-3. Long Brass Rods and ³ / ₄ -in (19-mm) Dia. Round Washer, Test Nos. NYJ-1	
through NYJ-3	181
Figure C-4. W4x13 (W102x19.3) Anchor Post Stub, Test Nos. NYJ-1 through NYJ-3	182
Figure C-5. Slip Impact Base, Test Nos. NYJ-1 through NYJ-3	183
Figure C-6. ¹ / ₂ -in. (13-mm) Dia. Long Bolt and Nut, Test Nos. NYJ-1 through NYJ-3	184
Figure C-7. ¹ / ₂ -in. (13-mm) Dia. Narrow Washer, Test Nos. NYJ-1 through NYJ-3	185
Figure C-8. Anchor Post Cable Hanger, Test Nos. NYJ-1 through NYJ-3	186
Figure C-9. Anchor Post Base, Test Nos. NYJ-1 through NYJ-3	187
Figure C-10. Cable Anchor Plates and Gussets, Test Nos. NYJ-1 through NYJ-3	188
Figure C-11. Cable End Fitting, Test Nos. NYJ-1 through NYJ-3	189
Figure C-12. ¾-in. (19-mm) Plain Round Washer, Test Nos. NYJ-1 through NYJ-3	190
Figure C-13. Cable Turnbuckle, Test Nos. NYJ-1 through NYJ-3	191
Figure C-14. ¹ / ₂ -in. (13-mm) J-Bolt and Nut, Test Nos. NYJ-1 and NYJ-2	192
Figure C-15. ¹ / ₂ -in. (13-mm) J-Bolt and Nut, Test No. NYJ-3	193
Figure C-16. ¾-in. (19-mm) Dia. Cable, Test Nos. NYJ-1 through NYJ-3	194
Figure C-17. Soil Plate, Test Nos. NYJ-1 through NYJ-3	195
-	

Figure C-18. Cable Wedge, Test Nos. NYJ-1 and NYJ-3	196
Figure C-19. Cable Wedge, Test No. NYJ-2	197
Figure C-20. ³ / ₄ -in. (19-mm) Dia. Threaded Rod and Left-Handed Threaded Rod, Test Nos.	
NYJ-1 through NYJ-3	198
Figure C-21. ³ / ₄ -in. (19-mm) Cable Splice, Test Nos. NYJ-1 through NYJ-3	199
Figure D-1. Soil Strength, Initial Calibration Tests	201
Figure D-2. Static Soil Test 1, Test No. NYJ-1	202
Figure D-3. Static Soil Test 2, Test No. NYJ-1	203
Figure D-4. Static Soil Test 1, Test No. NYJ-2	204
Figure D-5. Static Soil Test 2, Test No. NYJ-2	205
Figure D-6. Static Soil Test, Test No. NYJ-3	206
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NYJ-1	208
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NYJ-1	209
Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NYJ-1	210
Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NYJ-1	211
Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NYJ-1	212
Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NYJ-1	213
Figure E-7. Windshield Crush, Test No. NYJ-1	214
Figure E-8. Floor Pan Deformation Data – Set 1, Test No. NYJ-2	215
Figure E-9. Floor Pan Deformation Data – Set 2, Test No. NYJ-2	216
Figure E-10. Occupant Compartment Deformation Data – Set 1, Test No. NYJ-2	217
Figure E-11. Occupant Compartment Deformation Data – Set 2, Test No. NYJ-2	218
Figure E-12. Exterior Vehicle Crush (NASS) - Front, Test No. NYJ-2	219
Figure E-13. Exterior Vehicle Crush (NASS) - Side, Test No. NYJ-2	220
Figure E-14. Windshield Crush, Test No. NYJ-2	221
Figure E-15. Roof Crush, Test No. NYJ-2	222
Figure E-16. Floor Pan Deformation Data – Set 1, Test No. NYJ-3	223
Figure E-17. Floor Pan Deformation Data – Set 2, Test No. NYJ-3	224
Figure E-18. Occupant Compartment Deformation Data – Set 1, Test No. NYJ-3	225
Figure E-19. Occupant Compartment Deformation Data – Set 2, Test No. NYJ-3	226
Figure E-20. Exterior Vehicle Crush (NASS) - Front, Test No. NYJ-3	227
Figure E-21. Exterior Vehicle Crush (NASS) - Side, Test No. NYJ-3	228
Figure F-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYJ-1	230
Figure F-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYJ-1	231
Figure F-3. Longitudinal Occupant Displacement (DTS), Test No. NYJ-1	232
Figure F-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYJ-1	233
Figure F-5. Lateral Occupant Impact Velocity (DTS), Test No. NYJ-1	234
Figure F-6. Lateral Occupant Displacement (DTS), Test No. NYJ-1	235
Figure F-7. Vehicle Angular Displacements (DTS), Test No. NYJ-1	236
Figure F-8. Acceleration Severity Index (D1S), 1est No. NYJ-1	237
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE), Test No. NYJ-1	238
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE), Test No. NYJ-1	239
Figure F-11. Longitudinal Occupant Displacement (SLICE), Test No. NYJ-1	240
Figure F-12. IU-IIIS Average Lateral Deceleration (SLICE), Test No. NYJ-1	241
Figure F-15. Lateral Occupant Impact velocity (SLICE), 1est No. NYJ-1	242
Figure F-14. Lateral Occupant Displacement (SLICE), 1est No. NYJ-1	243
Figure F-15. venicie Angular Displacements (SLICE), 1est No. NYJ-1	244

Figure F-16. Acceleration Severity Index (SLICE), Test No. NYJ-1	245
Figure F-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. NYJ-1	246
Figure F-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYJ-1	247
Figure F-19. Longitudinal Occupant Displacement (EDR-3), Test No. NYJ-1	248
Figure F-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYJ-1	249
Figure F-21. Lateral Occupant Impact Velocity (EDR-3), Test No. NYJ-1	250
Figure F-22. Lateral Occupant Displacement (EDR-3), Test No. NYJ-1	251
Figure F-23. Acceleration Severity Index (EDR-3), Test No. NYJ-1	252
Figure G-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYJ-2	254
Figure G-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYJ-2	255
Figure G-3. Longitudinal Occupant Displacement (DTS), Test No. NYJ-2	256
Figure G-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYJ-2	257
Figure G-5. Lateral Occupant Impact Velocity (DTS), Test No. NYJ-2	258
Figure G-6. Lateral Occupant Displacement (DTS), Test No. NYJ-2	259
Figure G-7. Vehicle Angular Displacements (DTS), Test No. NYJ-2	260
Figure G-8. Acceleration Severity Index (DTS), Test No. NYJ-2	261
Figure H-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYJ-3	263
Figure H-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYJ-3	264
Figure H-3. Longitudinal Occupant Displacement (DTS), Test No. NYJ-3	265
Figure H-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYJ-3	266
Figure H-5. Lateral Occupant Impact Velocity (DTS), Test No. NYJ-3	267
Figure H-6. Lateral Occupant Displacement (DTS), Test No. NYJ-3	268
Figure H-7. Vehicle Angular Displacements (DTS), Test No. NYJ-3	269
Figure H-8. Acceleration Severity Index (DTS), Test No. NYJ-3	270
Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE), Test No. NYJ-3	271
Figure H-10. Longitudinal Occupant Impact Velocity (SLICE), Test No. NYJ-3	272
Figure H-11. Longitudinal Occupant Displacement (SLICE), Test No. NYJ-3	273
Figure H-12. 10-ms Average Lateral Deceleration (SLICE), Test No. NYJ-3	274
Figure H-13. Lateral Occupant Impact Velocity (SLICE), Test No. NYJ-3	275
Figure H-14. Lateral Occupant Displacement (SLICE), Test No. NYJ-3	276
Figure H-15. Vehicle Angular Displacements (SLICE), Test No. NYJ-3	277
Figure H-16. Acceleration Severity Index (SLICE), Test No. NYJ-3	278
Figure H-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. NYJ-3	279
Figure H-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYJ-3	280
Figure H-19. Longitudinal Occupant Displacement (EDR-3), Test No. NYJ-3	281
Figure H-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYJ-3	282
Figure H-21. Lateral Occupant Impact Velocity (EDR-3), Test No. NYJ-3	283
Figure H-22. Lateral Occupant Displacement (EDR-3), Test No. NYJ-3	284
Figure H-23. Acceleration Severity Index (EDR-3), Test No. NYJ-3	285

LIST OF TABLES

Table 1. Summary of Braking Tests	7
Table 2. MASH TL-3 Crash Test Conditions	14
Table 3. MASH Evaluation Criteria for Longitudinal Barrier	17
Table 4. Estimated Cable Sag for Various Cable Tensions, 16-ft (4.9-m) Post Spacing	40
Table 5. Weather Conditions, Test No. NYJ-1	65
Table 6. Sequential Description of Impact Events, Test No. NYJ-1	65
Table 7. Maximum Occupant Compartment Deformations by Location	68
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYJ-1	69
Table 9. Load Cell Results, Test No. NYJ-1	70
Table 10. Weather Conditions, Test No. NYJ-2	107
Table 11. Sequential Description of Impact Events, Test No. NYJ-2	107
Table 12. Soil Gap Location, Test No. NYJ-2	110
Table 13. Maximum Occupant Compartment Deformations by Location	110
Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYJ-2	113
Table 15. Load Cell Results, Test No. NYJ-2	114
Table 16. Weather Conditions, Test No. NYJ-3	132
Table 17. Sequential Description of Impact Events, Test No. NYJ-3	133
Table 18. Maximum Occupant Compartment Deformations by Location	136
Table 19. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYJ-3	137
Table 20. Load Cell Results, Test No. NYJ-3	138
Table 21. Summary of Safety Performance Evaluation – Test Nos. NYJ-1 to NYJ-3	156
Table C-1. Bill of Materials for Test Nos. NYJ-1 through NYJ-3	177

1 INTRODUCTION

1.1 Background

Cable barriers are one of the most flexible barrier types used to shield roadside hazards. Large dynamic deflections and low occupant risk values have been observed in full-scale crash testing and have been correlated with low average crash severities [1]. Cable barriers are also the only barrier type approved for use with approach slopes and have captured or redirected semi tractor-trailers [2].

The New York State Department of Transportation (NYSDOT) commonly utilizes threecable, low-tension guardrail to shield roadside and median hazards. However, recent testing of low-tension cable barriers under the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH) impact safety standards [3] raised concerns regarding barrier override or underride depending on the cable heights [4]. Underride or override penetration crashes have been observed with cable barriers, particularly cable median barriers [5]. As such, the NYSDOT deemed it important to explore and investigate dynamic deflections as well as tendencies for underride, override, penetration, and cable release. The NYSDOT modified the design of a low-tension cable barrier by increasing the diameter of the J-bolts used for cable-to-post attachment from $\frac{5}{16}$ in. (8 mm) to $\frac{1}{2}$ in. (13 mm). Other modifications included the elimination of spring compensators and the use of a new hanger end post. Because the purpose of the compensators is to maintain tension during changes in temperature (and thus changes in total cable length), they are more compliant than the cables in general. Thus, shortly after impact, small increases in cable tension contribute to undesirable cable compliance until the compensators bottom out. It was hoped that, by eliminating this source of longitudinal compliance, the deflections could be reduced.

The NYSDOT also expressed concern that typically, full-scale crash-tested vehicles are free-wheeling prior to impact. Piloted vehicles in real-world crashes typically undergo braking before impact, resulting in some front-end reduction in top bumper height. The magnitude of the bumper height drop could contribute to some underrides which would otherwise not occur during full-scale crash testing. Unfortunately, there is little contemporary research indicating what effect vehicle braking has on front-end pitch, particularly for vehicles with older shocks and struts which may amplify displacement due to braking pitch. Thus, the NYSDOT sponsored an effort to quantify bumper drop during vehicle braking when located on concrete tarmac or soil.

1.2 Research Objectives

The objectives of the research project were to: (1) determine whether the use of stronger J-bolts can reduce dynamic deflections for NYSDOT's standard three-strand cable guide rail system; (2) determine whether the use of stronger J-bolts can increase the likelihood of capturing small car passenger vehicles with low-profile, aerodynamic front ends, particularly those that are braking; (3) determine whether the use of stronger J-bolts can reduce the propensity of barrier override for light truck passenger vehicles and/or increase vehicle decelerations with cables more firmly attached to the support posts; (4) verify that the proposed revisions to the cable barrier system do not result in any MASH TL-3 crash criteria failures or maintenance problems; (5) determine the maximum dynamic barrier deflection for the baseline three-strand cable barrier system with an overall system length in excess of 600 ft (183 m); (6) develop a stiffened stub design for the end posts that will limit damage to acceptable amounts; and (7) estimate the amount of bumper drop due to vehicular braking prior to impact.

1.3 Scope

The research objective was achieved through the completion of several tasks. First, thirteen investigative tests were conducted to identify vehicular pitch in relation to braking. A

cable guardrail system utilizing ½-in. (13-mm) diameter J-bolts was constructed. This system evaluated a new end post and eliminated cable compensators, which are common in low-tension cable systems. Two full-scale vehicle crash tests were performed according to modified 3-10 test conditions as described in MASH. The modified design was selected for crash testing using a 3,307-lb (1,500-kg) passenger car with the brakes applied at impact to maximize front-end dive into the system. The heavier car was determined to be more critical than the 2,420-lb (1,100-kg) passenger car. A third full-scale crash test was conducted according to test designation no. 3-11, as described in MASH. The target impact conditions for these tests were an impact speed and impact angle of 62 mph (100 km/h) and 25 degrees, respectively. The results of these tests were analyzed, evaluated, and documented. Conclusions and recommendations were made that pertain to the safety performance of the low-tension, three-cable guardrail with ½-in. (13-mm) diameter J-bolts.

2 VEHICLE BRAKING TESTS

2.1 Purpose

The NYSDOT wanted to investigate the effect of vehicle braking on front-end dive (i.e., forward pitch). Vehicles with worn shocks not designed with anti-dive suspension geometries may experience significant downward front-end pitch during hard braking or sliding. This front-end dive behavior could result in significant changes to the interaction of the front bumper with the cable barrier system.

Test vehicle accelerations were recorded in each test, and quasi-steady-state braking and rolling friction values were estimated. All dynamic tests were conducted at the MwRSF Proving Grounds in Lincoln, Nebraska.

2.2 Equipment and Instrumentation

Equipment and instrumentation utilized to collect and record data during the vehicle braking tests included a test vehicle, an accelerometer, retroreflective speed traps, high-speed and standard-speed digital video, and still cameras.

2.2.1 Test Vehicle

To evaluate the effectiveness of reducing vehicle penetration through the cable barrier system, a 3,313-lb (1,503-kg), 2006 Ford Taurus mid-size vehicle was selected in lieu of an 1100C small car for use in a modified test designation no. 3-10. The Ford Taurus was consistent with the optional MASH 1500A mid-size vehicle. The researchers believed that this vehicle would represent a practical worst-case impact condition for accentuating barrier underride or penetration through cable elements. In addition, Ford Taurus vehicles with model years between 1996 and 2007 had a higher percentage of crashes resulting in penetration than most other mid-size passenger cars [5], and thus presented a practical worst-case vehicle for use in full-scale crash testing. The test vehicle is shown in Figure 1.

Figure 1. Test Vehicle for Test Nos. VBT-1 through VBT-13

2.2.2 Accelerometers

The vehicle was instrumented with a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and eight sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

An angle rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensor was mounted on an aluminum block inside the test vehicle near

the center of gravity and recorded data at 10,000 Hz to the SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

2.2.3 Retroreflective Speed Trap

Two optical speed sensor arrays were utilized to measure the vehicle's speed. One sensor was located prior to the onset of braking, and one sensor was utilized after the brakes were applied. The spacing of the optical targets on the test vehicle was 18 in. (457 mm).

2.2.4 Digital Photography

One AOS X-PRI high-speed digital video camera and one JVC digital video camera were used to document each test. The AOS high-speed camera had a frame rate of 500 frames per second and the JVC digital video camera had a frame rate of 29.97 frames per second. A Nikon D50 digital still camera was also used to document pre- and post-test conditions for all tests.

2.3 Test Procedure

For each test, a live driver accelerated the vehicle up to the target speed, a constant test speed was maintained as the vehicle entered the testing area, and the brakes were applied. Each test was characterized by a combination of four conditions:

- 1. Braking: mechanical (actuated) or human-powered
- 2. Initial speed: 30 or 60 mph (48 or 97 km/h)
- 3. Surface: soil or concrete tarmac
- 4. Brake power assist and ABS: activated or deactivated

Mechanical braking was activated using a hydraulically-actuated, remotely-controlled piston to depress the brake pedal. Human-activated and mechanically-activated brake tests were

used to compare realistic run-off-road conditions with suddenly-applied brakes to typical test conditions.

2.4 Test Results

A total of 13 brake tests were conducted and are summarized in Table 1. Nine tests were conducted on concrete, and four were conducted on soil. The driver activated the brakes for five tests on concrete, and all other tests were mechanically actuated. Six tests on concrete and two tests on soil utilized brake power assist and ABS. Three tests on concrete tarmac and two tests on soil did not utilize either ABS or brake power assist. Nine tests were conducted at 30 mph (48 km/h), and four tests were conducted at 60 mph (97 km/h). Test results are summarized and shown in Appendix A.

				ABS &		Polling		Avg Non-
T N	Target Speed	Actual Speed	Ground Surface	Power-	Driver/Mech	Rolling	Braking	ABS
Test No.	mph (km/h)	mph (km/h)		Assisted	Braking	Coefficient		Braking
				Brakes?		Coefficient	Coefficient	Coefficient
VBT1	30 (48)	25.9 (41.7)	Concrete	Yes	Driver	0.005	0.734	-
VBT2	30 (48)	27.8 (44.8)	Concrete	Yes	Driver	0.031	0.962	-
VBT3	30 (48)	28.2 (45.4)	Concrete	Yes	Driver	0.013	0.809	-
VBT4	60 (97)	55.7 (89.6)	Concrete	Yes	Driver	0.035	0.929	-
VBT5	60 (97)	54.5 (87.7)	Concrete	Yes	Driver	0.065	0.784	-
VBT6	60 (97)	57.5 (92.6)	Concrete	Yes	Mechanical	0.047	0.928	-
VBT7	60 (97)	56.2 (90.4)	Concrete	No	Mechanical	0.078	-	0.710
VBT8	30 (48)	27.3 (43.9)	Concrete	No	Mechanical	0.014	-	0.650
VBT9	30 (48)	27.1 (43.5)	Concrete	No	Mechanical	0.037	-	0.672
VBT10	30 (48)	27.5 (44.3)	Soil	Yes	Mechanical	0.035	0.443	-
VBT11	30 (48)	27.8 (44.7)	Soil	Yes	Mechanical	0.055	0.439	-
VBT12	30 (48)	27.0 (43.5)	Soil	No	Mechanical	0.040	-	0.674
VBT13	30 (48)	27.4 (44.1)	Soil	No	Mechanical	0.050	-	0.638

 Table 1. Summary of Braking Tests

The average effective coefficient of braking friction of the vehicle was nearly independent of speed for both soil and concrete tests. The average effective braking coefficient on concrete was measured with power-assisted braking and ABS, and was determined to be 0.858. Non-power-assisted and non-ABS braking on concrete had an average effective coefficient of 0.677. Analysis of the high-speed video indicated that hydraulically-actuated, non-power-assisted and non-ABS braking did not cause wheel rotation to stop until the vehicle had come to a complete stop. It was believed that the hydraulically-actuated brake piston had either a limiting pressure that could be applied to the brake pedals or a limiting brake pedal displacement, which prevented the wheels from skidding and reduced the non-powered braking coefficient. This friction coefficient was associated with a brake force of approximately 2,450 lb (10.9 kN).

The braking coefficient of friction on soil was 0.441 with power-assisted brakes and ABS and 0.656 without power-assisted brakes or ABS. For tests with ABS activated, when the piston depressed the brakes, the wheels continued to rotate with only brief periods in which rotation was arrested. When the ABS was deactivated and the brakes were hydraulically-actuated, the wheels completely stopped rotating, and the vehicle skidded to a stop.

2.5 Vehicle Pitch

Angular rotations were recorded using the rate transducer and high-speed video analysis. Images of maximum pitch and the resting orientation of the vehicle, recorded during one test with high-speed digital video, are shown in Figure 2. The maximum and minimum pitch values were 2.4 and 1.5 degrees, respectively, as shown in Figures 3 through 5. Pitch angles were higher on concrete than soil. Tests without ABS experienced relatively constant pitch during braking, but tests with ABS enabled experienced more oscillations in pitch angle.

(a) 0.7 sec, at max. front-end dive Figure 2. Sequential Images of Test No. VBT-1

(b) 3.0 sec, at rest

Figure 3. Pitch Angle, 30-mph (48-km/h) Braking Tests on Concrete Tarmac

Figure 4. Pitch Angle, 60-mph (97-km/h) Braking Tests on Concrete Tarmac

Figure 5. Pitch Angle, 30-mph (48-km/h) Braking Tests on Soil

For tests on concrete, pitch angles were higher for tests with ABS and power-assisted braking. The opposite was true for tests on soil, in which large oscillations in pitch angle were associated with similar large oscillations in accelerations. Non-vegetative soil is a particulate material and yields in shear during braking. Since ABS utilizes a feedback loop to reduce tire slip, the average friction force developed during ABS braking on soil was less than the force developed when the ABS was disabled.

Pitch angles increased to a local maximum between 0.35 sec and 0.49 sec after the brakes were applied. The average location of the first peak was at 0.38 sec after braking on soil without power-assist or ABS and 0.45 sec after braking on concrete tarmac regardless of power-assisted or ABS brakes. The pitch angle oscillated for power-assisted, ABS-enabled braking tests on soil, but the initial peak occurred at approximately 0.32 sec after braking. High-speed digital video analysis and vehicle geometry were used to determine front-end drop. The total bumper drop due to braking was estimated to be between 1.7 to 2.0 in. (43 to 51 mm).

The time required to depress the brake pedal was approximately 0.25 sec for both the driver and mechanically-actuated hydraulic piston. Brake timing was identified by evaluating the acceleration traces, identifying the start of the event, and observing the time at which brake force became relatively constant. In each non-ABS, non-power-assisted braking test, brake force was notably constant. Oscillations about a constant brake force were observed for power-assisted, ABS-activated brake systems. No differences were observed between human-powered and piston-powered braking onset timing. The mechanical brake activation was therefore considered representative of a human driver suddenly applying full braking force during a run-off-road excursion.

11

2.6 Identification of Braking Conditions

To maximize front-end dive prior to impact with the barrier, brake activation timing, distance to impact, and pitch angles were analyzed. The maximum brake force was obtained approximately 0.25 sec after brakes were activated in each test. For tests in which the ABS and power-assisted braking were disabled, brake forces were relatively constant after the initial impulse. Therefore, vehicle kinetics analysis used a bilinear brake force curve, ramping the coefficient of braking friction from 0 to 0.6435 over 0.25 sec and then retaining a constant brake force thereafter, and incorporated uncertainties in initial speed and angle with the barrier.

For most MASH tests conducted at MwRSF, vehicle engines are turned off, and the transmission is set to neutral prior to conducting the full-scale crash test. As a result, the non-power-assisted, disabled-ABS tests on soil were the most pertinent to determining the appropriate braking conditions. The maximum pitch during 30-mph (48-km/h) tests on soil occurred at approximately 0.38 sec after the brakes were applied. Therefore, impact was targeted to occur 0.38 sec with a +/-10 percent error window (0.34 to 0.42 sec) after the onset of full braking.

Using the bilinear brake force curve, a nominal impact speed of 62 mph (100 km/h), and a 25-degree impact, the speed drop during the initial 0.38-sec of braking was approximately 3.6 mph (5.8 km/h). Therefore the targeted initial speed was 65.7 mph (105.8 km/h), and the braking distance was 35 ft – 6 in. (10.8 m) prior to impact. Tolerances for initial speed and pre-impact braking distance were calculated to ensure that impact occurred 0.35-0.40 sec after the onset of braking (i.e., maximum pitch). Acceptable variations in speed and braking distance were +3%/-2% and +/-1 ft (0.3 m), respectively.

It should be noted that although test conditions were identified to maximize test vehicle front-end bumper dive due to braking, the magnitude of the brake force, the pitch related to braking, and actual front-end bumper displacement may be different for different vehicle makes, models, and service levels. Older vehicles with worn shocks and struts may experience significantly more braking-related front-end dive, contributing to a higher probability of penetration. Further research may be necessary to quantify the magnitude of front-end dive for vehicles with older struts and shocks.

3 TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 Test Requirements

Longitudinal barriers, such as cable guardrails, must satisfy impact safety standards in order to be accepted by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH. According to TL-3 of MASH, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests. The two full-scale crash tests are noted below:

- 1. Test Designation No. 3-10 consists of a 2,425-lb (1,100-kg) passenger car impacting the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively.
- 2. Test Designation No. 3-11 consists of a 5,000-lb (2,268-kg) pickup truck impacting the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively.

The test conditions of TL-3 longitudinal barriers are summarized in Table 2.

	Test	Test Vehicle	Imp	act Condit	Evaluation Criteria ¹	
Test	Designation No.		Speed			Angle
Alucie			mph	km/h	(deg)	Cincina
Longitudinal	3-10	1100C	62	100	25	A,D,F,H,I
Barrier	3-11	2270P	62	100	25	A,D,F,H,I

Table 2. MASH TL-3 Crash Test Conditions

¹ Evaluation criteria explained in Table 3.

For the first two full-scale crash tests, a modified version of test designation no. 3-10 was considered. A modified test no. 3-10 was selected using a 3,307-lb (1,500-kg) passenger car, designated 1500A, instead of a 1100C passenger car, because the heavier vehicle was determined to be more critical for resulting in cable underride and/or penetration. The NYSDOT desired to reduce the dynamic deflection and the propensity for passenger car underride and penetration for

low-tension, 3-cable roadside barriers while still satisfying the MASH crash test criteria. Recent research has indicated that small cars are less susceptible to underride than larger, heavier passenger cars [5]. Ford Taurus cars with model years between 1996 and 2007 experienced vehicular penetration under or through cable barriers in 18 percent of crashes. The Ford Taurus had a sloped front-end profile, aerodynamic styling, and low hood, cowl, and roof heights relative to other mid-size cars.

3.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the guardrail system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 3 and defined in greater detail in MASH. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported on the test summary sheet. Additional discussion on PHD, THIV and ASI is provided in MASH.

3.3 Soil Strength Requirements

In order to limit the variation of soil strength among testing agencies, foundation soil must satisfy the recommended performance characteristics set forth in Chapter 4 and Appendix B of MASH. Testing facilities must first subject the designated soil to a dynamic post test to demonstrate a minimum dynamic load of 7.5 kips (33.4 kN) at deflections between 5 and 20 in. (127 and 508 mm). If satisfactory results are observed, a static test is conducted using an identical test installation. The results from this static test become the baseline requirement for soil strength in future full-scale crash testing in which the designated soil is used. An additional post installed near the impact point is statically tested on the day of full-scale crash test in the same manner as used in the baseline static test. The full-scale crash test can be conducted only if the static test results show a soil resistance equal to or greater than 90 percent of the baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Otherwise, the crash test must be postponed until the soil demonstrates adequate post-soil strength.

Table 3. MASH	Evaluation	Criteria f	for Lon	gitudinal	Barrier
10010 5. 1011 1511	L'uluulion	Cincina i	LOI LOI	Situaman	Durrer

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.					
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.					
	F. The vehicle should remain upright during and after comaximum roll and pitch angles are not to exceed 75 degr						
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:					
Risk		Occupant Impact Velocity Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)			
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:					
		Occupant Ridedown Acceleration Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			

4 TEST CONDITIONS

4.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [7] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. NYJ-1, a 2006 Ford Taurus was the test vehicle. This was chosen specifically because it has a high propensity for penetrating cable median barriers, based on accident data [5]. The curb, test inertial, and gross static vehicle weights were 3,179 lb (1,442 kg), 3,294 lb (1,494 kg), and 3,460 lb (1,569 kg), respectively. The test vehicle is shown in Figure 6, and vehicle dimensions are shown in Figure 7.

For test no. NYJ-2, a 2006 Ford Taurus was the test vehicle. The curb, test inertial, and gross static vehicle weights were 3,189 lb (1,447 kg), 3,254 lb (1,476 kg), and 3,419 lb (1,551 kg), respectively. The test vehicle is show in Figure 8, and vehicle dimensions are shown in Figure 9.

For test no. NYJ-3, a 2007 Dodge Ram 1500 was the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,016 lb (2,275 kg), 5,006 lb (2,271 kg), and 5,173 lb (2,346 kg), respectively. The test vehicle is shown in Figure 10, and vehicle dimensions are shown in Figure 11.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [8] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1500A vehicle was estimated based on historical c.g. height measurements. The location of the final c.g. is shown in Figures 7 and 12 for test no. NYJ-1, Figures 9 and 13 for test no. NYJ-2, and Figures 11 and 14 for test no. NYJ-3. Data used to calculate the location of the c.g. and ballast information are shown in Appendix A.

Square, black-and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 12, 13, and 14, respectively for test nos. NYJ-1, NYJ-2, and NYJ-3. Round, checkered targets were placed on the center of gravity on the left-side door, the right-side door, and the roof of the vehicles.

Figure 6. Test Vehicle, Test No. NYJ-1

Date:	6/18/2013	Test Numbe	er: <u>NYJ-1</u>	Model: 1500A
Make:	Ford Taurus	Vehicle I.D.	#: 1FAFP53U	66A147062
Tire Size:	216/60 R16	Yez	ar: 2006	Odometer: 77020
*(All Measuren	Tire Inflation Pressure: nents Refer to Impacting S	30 psi Side)		
				Vehicle Geometry in. (mm)
a m —			<u>Q</u> vehicle n t	a 67 1/4 (1708) b 57 (1448) c 197 1/2 (5017) d 47 3/4 (1213) e 108 1/2 (2756) f 41 1/4 (1048) g 39 3/4 (1010) h 40 1/8 (1019) i 10 i 22 (550)
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	f h	e d	-	Wheel Center Height Rear 12 1/4 (311)
	→ wfront	c ♥"rea	r -	Wheel Well Clearance (F) 28 (711)
Mass Distrib	ution lb (kg)			Wheel Well Clearance (R) <u>26 1/2 (673)</u>
Gross Static	LF 1107 (502)	RF <u>1071</u> (486)		Frame Height (F) <u>6 1/4 (159)</u>
	LR 638 (289)	RR 644 (292)		Frame Height (R) <u>16</u> (406)
Weights				Engine Type <u>6cyl Gas</u>
lb (kg)	Curb	Test Inertial	Gross Static	Engine Size <u>3.0L</u>
W-front	2104 (954)	2076 (942)	2178 (988)	Transmition Type:
W-rear	1075 (488)	1218 (552)	1282 (582)	Automatic Manual
W-total	3179 (1442)	3294 (1494)	3460 (1569)	FWD RWD 4WD
GVWR Ratings Dummy Data				
Front 2552			Type: Hybrid II	
	Rear	2132	Mass: 166lbs	
	Total	4684 Seat Position: Driver		
Note any damage prior to test:				

Figure 7. Vehicle Dimensions, Test No. NYJ-1

Figure 8. Test Vehicle, Test No. NYJ-2

Date:	7/26/2013	Test Numb	per: <u>NYJ-2</u>	Model: <u>Taurus</u>	
Make:	Ford	Vehicle I.I	0.#: <u> </u>	86a147063	
Tire Size:	P215/60R16	Ye	ear: 2006	Odometer: 77612	
*(All Measuren	Tire Inflation Pressure:	30 psi			
		Side)	~	Vehicle Geometry in. (mm)	
				a <u>69 (1753)</u> b <u>57 (1448)</u>	
a m —			vehicle n t	c <u>198 (5029)</u> d <u>48 (1219)</u>	
				e <u>108 1/4 (2750)</u> f <u>41 3/4 (1060)</u>	
<u> </u>				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
				$m \begin{array}{c} 601/4 \\ m \end{array} \begin{array}{c} (530) \\ m \end{array} \begin{array}{c} 124 \\ m \end{array} \begin{array}{c} (610) \\ m \end{array} \begin{array}{c} 613/4 \\ m \end{array} \begin{array}{c} (1568) \\ m \end{array}$	
				o 29 1/4 (743) p 4 1/2 (114)	
1			b b	q 25 (635) r 16 (406)	
o j i				s <u>10 1/2 (267)</u> t <u>69 (1753)</u>	
	f h	e d		Wheel Center Height Front 12 (305)	
	₩front	c Vred	 ar	Wheel Center Height Rear 12 1/2 (318)	
				Wheel Well Clearance (F) 28 (711)	
Mass Distrib	ution lb (kg)			Wheel Well Clearance (R) <u>26 3/4 (679)</u>	
Gross Static	LF 1094 (496)	RF 1058 (480)		Frame Height (F) <u>6 3/4 (171)</u>	
	LR 631 (286)	RR 636 (288)		Frame Height (R) <u>16</u> (406)	
Weights				Engine Type <u>6cyl. Gas</u>	
lb (kg)	Curb	Test Inertial	Gross Static	Engine Size 3.0L	
W-front	2098 (952)	2064 (936)	2152 (976)	Transmition Type:	
W-rear	1091 (495)	1190 (540)	1267 (575)	Automatic Manual	
W-total	3189 (1447)	3254 (1476)	3419 (1551)	FWD RWD 4WD	
GVWR Ratings					
Front 2552		Dummy L	Jala Tune: Hybrid II		
Rear 2132		туре: <u>пурла п</u> Маке: 162 lbe			
	Total	4684	Seat Position: Driver		
Note any damage prior to test: <u>None</u>					

Figure 9. Vehicle Dimensions, Test No. NYJ-2

Figure 10. Test Vehicle, Test No. NYJ-3

Date:	9/25/2013	Test Numbe	r: <u>NYJ-3</u>	Model: Ram 1500	
Make:	Dodge	Vehicle I.D.	#: <u>17J6</u>	01990	
Tire Size:	265/70 R17	Yea	r:2007	Odometer: 207534	
Т	ire Inflation Pressure:	35 psi.			
*(All Measuremen	ts Refer to Impacting	Side)			
				Vehicle Geometry in. (mm)	
t Wheel Track			Wheel a Track	a <u>78 (1981)</u> b <u>75 (1905)</u>	
				c 228 (5791) d 47 1/2 (1207)	
				e <u>140 1/2 (3569)</u> f <u>40 (1016)</u>	
Т	est Inertial C.M.—	\langle		g 28 1/7 (715) h 64 2/3 (1642)	
			TIRE DIA	i <u>16 (406)</u> j <u>29 (737)</u>	
Ī				k <u>21 (533)</u> l <u>28 (711)</u>	
	ĥ			m <u>67 3/8 (1711)</u> n <u>67 5/8 (1718)</u>	
				o <u>46 1/2 (1181)</u> p <u>3</u> (76)	
	s s		j	q <u>30 3/4</u> (781) r <u>18 1/2</u> (470)	
		h	t	s <u>151/4</u> (387) t <u>75</u> (1905)	
	d	ef	_	Wheel Center Height Front 14 5/8 (371)	
	Wrear	Wfront		Wheel Center Height Rear 14 7/8 (378)	
		c	- _	Wheel Well Clearance (F) 35 3/4 (908)	
Mass Distribution	on lb (kg)			Wheel Well Clearance (R) <u>37 1/2</u> (953)	
Gross Static L	F 1449 (657)	RF 1354 (614)		Frame Height (F) <u>18 7/8</u> (479)	
L	R <u>1181 (536)</u>	RR 1189 (539)		Frame Height (R) 24 1/4 (616)	
				Engine Type 6cyl Gas	
Weights lb (kg)	Curb	Test Inertial	Gross Static	Engine Size 3.7L	
W-front	2753 (1249)	2703 (1226)	2803 (1271)	Transmition Type:	
W-rear	2263 (1026)	2303 (1045)	2370 (1075)	Automatic Manual	
W-total	5016 (2275)	5006 (2271)	5173 (2346)	FWD RWD 4WD	
GVWR Rat	GVWR Ratings Dummy Data				
Front		3700	2	Type: Hybrid II	
	Rear	3900		Mass: 170 lbs	
Total		6700	Seat P	osition: Driver	
Note any damage prior to test: minor scrapes and dents (Previously used for test and repaired)					

Figure 11. Vehicle Dimensions, Test No. NYJ-3

Figure 12. Target Geometry, Test No. NYJ-1

Figure 13. Target Geometry, Test No. NYJ-2

Figure 14. Target Geometry, Test No. NYJ-3

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero so that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted on the left side of the vehicle's dash and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

4.4 Simulated Occupant

For test nos. NYJ-1 through NYJ-3, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had an approximate final weight of 170 lb (77 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Three environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. All of the accelerometers were mounted near the center of gravity of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [9].

The first accelerometer system was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample

rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and eight sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The second accelerometer system, SLICE 6DX, was a modular data acquisition system manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The acceleration sensors were mounted inside the body of the custom-built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ±500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The third system, Model EDR-3, was a triaxial piezoresistive accelerometer system manufactured by IST of Okemos, Michigan. The EDR-3 was configured with 256 kB of RAM, a range of ± 200 g's, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. The "DynaMax 1 (DM-1)" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

An angle rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensor was mounted on an aluminum block inside the test vehicle near the center of gravity and recorded data at 10,000 Hz to the SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

A second angle rate sensor system, the SLICE MICRO Triax ARS, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensors were mounted inside the body of the custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Load Cells

For test no. NYJ-1, six load cells were installed in-line within the system, one on each cable near the upstream end of the three-cable barrier system and one on each cable near the downstream end. The positioning and setup of the load cells are shown in Figure 15. For test nos. NYJ-2 and NYJ-3, three load cells were installed in-line within the system, one on each cable near the upstream end of the barrier system. The load cells were manufactured by Transducer Techniques and conformed to model no. TLL-50K with a load range up to 50,000 lb (222.4 kN). During testing, output voltage signals were sent from the load cells to a Keithly Metrabyte DAS-

Figure 15. Load Cell Setup, Test No. NYJ-1

1802HC data acquisition board, and acquired with TestPoint software. The data collection rate for the load cells was 10,000 samples per second (10,000 Hz).

4.5.4 String Potentiometers

For test no. NYJ-1, one linear displacement transducer, or string potentiometer, was installed at each of the upstream and downstream anchors and were used to monitor longitudinal anchor displacement. The positioning and setup of the string potentiometers are shown in Figure 16. For test nos. NYJ-2 and NYJ-3, one string potentiometer was installed at the upstream anchor only. The string potentiometers used were UniMeasure PA-50 with a range of 50 in. (1,270 mm). A Measurements Group Vishay Model 2310 signal conditioning amplifier was used to condition and amplify the low-level signals to high-level outputs for multichannel, simultaneous dynamic recording in the "LabView" software. The sample rate of the string potentiometer was 1,000 Hz.

4.5.5 Retroreflective Optic Speed Trap

For all tests, two sets of optic speed traps were used to determine pre-braking speed and impact speed. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as activated the External LED box. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

Figure 16. String Potentiometer Setup, Test No. NYJ-1

4.5.6 Digital Photography

Two AOS VITcam high-speed digital video cameras, three AOS X-PRI high-speed digital video cameras, one AOS S-VIT high-speed digital video camera, four JVC digital video cameras, one Canon digital video camera, and two GoPro Hero 3 digital video cameras were utilized to film test nos. NYJ-1 and NYJ-3. However, in test no. NYJ-3, video could not be obtained from the Canon digital video camera due to technical difficulties. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 17 and 19.

Two AOS VITcam high-speed digital video cameras, three AOS X-PRI high-speed digital video cameras, one AOS S-VIT high-speed digital video camera, four JVC digital video cameras, two Canon digital video cameras, and two GoPro Hero 3 digital video cameras were utilized to film test no. NYJ-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 18.

The high-speed videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon D50 digital still camera was also used to document pre- and post-test conditions for all tests.

v		
	GOPRO	#2

	No.	Type Operating Speed Lens		Lens Setting	
	1	AOS Vitcam CTM	500	Kowa 8 mm	Fixed
ed	2	AOS Vitcam CTM	500	Cosmicar 12.5 mm	Fixed
Spe leo	5	AOS X-PRI Gigabit	500	Fujinon 50 mm	Fixed
gh-fg Vic	6	AOS X-PRI Gigabit	500	Canon 17-102	50
Hig	7	AOS X-PRI Gigabit	500	Nikon Sigma 50 mm	Fixed
	8	AOS S-VIT 1531	500	Vivitar 75-205 mm	135
/ideo	1	JVC – GZ-MC500 (Everio)	29.97		
	2	JVC – GZ-MG27u (Everio)	29.97		
	3	JVC – GZ-MG27u (Everio)	29.97		
al V	4	JVC – GZ-MG27u (Everio)	29.97		
git	1	Canon ZR90	29.97		
Di	1	GoPro Hero 3	120		
	2	GoPro Hero 3	120		

Figure 17. Camera Locations, Speeds, and Lens Settings, Test No. NYJ-1

Figure 18. Camera Locations, Speeds, and Lens Settings, Test No. NYJ-2

	No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
eed	1	AOS Vitcam CTM	500	Kowa 8 mm	Fixed
	2	AOS Vitcam CTM	500	Cosmicar 12.5 mm	Fixed
Spe leo	5	AOS X-PRI Gigabit	500	Telesar 135 mm	Fixed
gh-, Vic	6	AOS X-PRI Gigabit	500	Vivitar 75-205	135
Ηiξ	7	AOS X-PRI Gigabit	500	Nikkor 28 mm	Fixed
	8	AOS S-VIT 1531	500	Nikkor 20 mm	Fixed
Video	1	JVC – GZ-MC500 (Everio)	29.97		
	2	JVC – GZ-MG27u (Everio)	29.97		
	3	JVC – GZ-MG27u (Everio)	29.97		
al '	4	JVC – GZ-MG27u (Everio)	29.97		
igit	1	Canon ZR90	29.97		
D	1	GoPro Hero 3	120		
	2	GoPro Hero 3	120		

Figure 19. Camera Locations, Speeds, and Lens Settings, Test No. NYJ-3

5 PRELIMINARY DESIGN DETAILS

5.1 System Description

The cable guardrail system was constructed according to a modified standard provided by NYSDOT [6]. Design details are shown in Figures 20 through 35. Photographs of the test installation are shown in Figures 36 through 41. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix C.

The total length of the cable barrier system was 602.7 ft (183.7 m). The test installation consisted of several distinct components: (1) wire ropes or cables; (2) steel support posts; (3) $\frac{1}{2}$ -in. (13-mm) diameter J-bolts; (4) cable splice hardware; (5) breakaway anchor post hardware; and (6) cable end fittings.

Three ³/₄-in. (19-mm) diameter, Class A galvanized 3x7 (pre-stretched) wire ropes were utilized for the cable rail elements. The cables were supported by 40 posts and anchored at the upstream and downstream ends, as shown in Figure 20. Post nos. 1 and 40 were configured to serve as the upstream and downstream end anchors, respectively. These locations included a cable anchor bracket and a slipbase S3x5.7 (S76x8.5) steel post embedded in a concrete foundation. Post nos. 2 through 39 were 65-in. (1,651-mm) long, S3x5.7 (S76x8.5) standard steel line posts embedded 33 in. (838 mm) in the soil, with soil plates. The spacing between post nos. 2 and 3 as well as post nos. 38 and 39 was 8 ft (2.4 m), and the spacing between post nos. 37 and 38 was 4 ft (1.2 m). The spacing for the remainder of the posts was 16 ft (4.9 m). For the standard line posts, the three cables were attached to the posts with ¹/₂-in. (13-mm) diameter J-bolts and centered at 17 ¹/₈ in. (435 mm), 23 ¹/₈ in. (587 mm), and 29 ¹/₈ in. (740 mm) above the ground line. All three cables were attached to the impact side of each post, as shown in Figure 26. Details for the J-bolt, mounting hardware, and locations are shown in Figures 26 and 32.

Cable splices were utilized between post nos. 18 through 21 according to MASH guidelines, as shown in Figure 21. At the ends of the cable barrier system, each cable was sloped down to the ground and anchored to the end terminal system, as shown in Figures 22 through 25 and Figures 28 and 29. Load cells were placed between posts nos. 3 and 4 on the upstream end of the system and between post nos. 36 and 37 on the downstream end of the system.

5.2 Cable Tension

Per the request of the New York State Department of Transportation, cable tension was varied between 100 and 900 lb (0.4 and 4.0 kN) to identify the relationship between cable sag and tension. Results indicated that cable sag followed an approximately linear relationship with tension between 100 and 700 lb (0.4 and 3.1 kN), such that the total sag was 1 in. (25 mm) at 138 lb (0.61 kN) tension, and 0.25 in. (6 mm) at 700 lb (3.1 kN)., as shown in Table 4.

Table 4. Estimated Cable Sag for Various Cable Tensions, 16-ft (4.9-m) Post Spacing

Tension	Cable Droop at Midspan
100 lb (445 N)	1 in. (25 mm)
300 lb (1,334 N)	3/4 in. (19 mm)
500 lb (2,224 N)	1/2 in. (13 mm)
700 lb (3,114 N)	1/4 in. (6 mm)
900 lb (4,003 N)	< 1/4 in. (6 mm)

Actual low-tension, cable barrier systems installed in the field may have sag between posts that exceeds 1 in. (25 mm). The tension in these systems may be less than 95 lb (0.4 kN) or 10 percent of the nominal tension at 70 deg F (21 deg C), which is approximately 950 lb (4.2 kN). It was determined that visible sag in cable barrier systems likely corresponds to little or no sustained cable tension.

In addition, cable friction and tension loss due to cable-to-post attachment friction were investigated. Load cells were spliced in-line for all three cables, with one load cell at the upstream end of the system and one load cell at the downstream end of the system. The cables were tensioned on the upstream end of the system, and the downstream load cells did not record an increase in tension until the upstream had reached 200 lb (0.89 kN) of tension. By subsequently increasing tension on the upstream end to 1,000 lb (4.4 kN), a constant tension difference between upstream and downstream ends was determined to be approximately 200 lb (0.89 kN).

Per MASH requirements, the tension in the cables at the time of the test should correspond to the design tension at 100 deg F (38 deg C). Typically, cable tension is specified in terms of spring deflection of spring compensators for low-tension systems. Although spring compensators were not intended for use in the modified New York DOT low-tension, 3-cable barrier system, the nominal tension was selected to be identical to the tension of similar systems which utilize cable compensators. Using a spring compensation rate of 450 lb/in. (79 N/mm) and a nominal deflection of 2 in. (51 mm) between 70 and 79 deg F (21 and 26 deg C) and 1.0 in. (25 mm) between 120 and 110 deg F (49 and 43 deg C), the test tension corresponding to 100 deg F (38 deg C) was determined to be approximately 500 lb (2.2 kN), which was selected for the nominal test conditions.

Figure 20. Test Installation Layout, Test No. NYJ-1

Figure 21. Cable Splice Location, Test No. NYJ-1

Figure 22. Upstream Cable Terminal Detail, Test No. NYJ-1

Figure 23. End Post Detail, Test No. NYJ-1

Figure 24. Downstream Cable Terminal Detail, Test No. NYJ-1

Figure 25. Anchor Details, Test No. NYJ-1

May 29, 2014 MwRSF Report No. TRP-03-299-14

Figure 26. S3x5.7 Post Assembly, Test No. NYJ-1

Figure 27. Anchor Stud and Cable Turnbuckle, Test No. NYJ-1

Figure 28. Welded Plate Anchor Angle Detail, Test No. NYJ-1

Figure 29. Welded Plate Anchor Angle Components, Test No. NYJ-1

Figure 30. Anchor Post Assembly, Test No. NYJ-1

Figure 31. Anchor Post Components, Test No. NYJ-1

Figure 32. J-Bolt and Brass Rod Details, Test No. NYJ-1

Figure 33. Line Post, Test No. NYJ-1

Item No.	QTY.	Description	Material Specification	Hardware Guide
a1	2	S3x5.7 [S76x8.5] 29 3/4" [756] Long Anchor Post	ASTM A36 Galv.	-
۵2	24	3/4" [19] Dia. UNC, Hooked Anchor J-Bolt and Nut	ASTM A307 Gr. C and ASTM A563 DH Galv.	FRH20a
a3	6	3/16" [5] Dia. 5 1/4" [133] Long Brass Rod	ASTM B16-00	-
a4	32	Ø3/4" Plain Round Washer-OD 1.5"	Grade 2 Galvanized	FWC20a
a5	2	W4x13 [W102x19.3] Anchor Post Stub	ASTM A36 Galv.	-
a6	4	7"x4 1/2"x3/8" [178x114x10] Slip Impact Base	ASTM A36 Galv.	
۵7	2	7"x4 1/2"x28 Gauge [178x144x0.38] Keeper Plate	ASTM A36 Galv.	-
a8	8	1/2" [13] Dia. UNC, 2" [51] Long Bolt and Nut	ASTM A307 Gr. A/ASTM F1554 Gr. 36/SAE Gr. 2 and ASTM A563 Gr. A	FBX14a
a9	24	1/2" [13] Dia. Narrow Washer (OD 1" [25])	ASTM 844/SAE Gr. 2	FWC12a
a10	2	18"x2"x3/4" [457x51x19] Anchor Post Cable Hanger	ASTM A707 Gr. 36 Galv.	-
a11	2	12"x12"x1/2" [305x305x13] Anchor Post Base	ASTM A709 Gr. 36 Galv.	-
b1	2	14"x9"x1/2" [356x229x13] Cable Anchor Base Plate	ASTM A709 Gr. 36 Galv.	-
b2	4	3 1/2"x3 1/2"x1/2" [89x89x13] Cable Anchor External Gusset	ASTM A709 Gr. 36 Galv.	-
b3	2	1/4" [6] Dia. 15" [381] Long Brass Rod	ASTM B16-00	
b4	4	2 3/4"x2 3/4"x1/4" [70x70x6] Cable Anchor Internal Gusset	ASTM A709 Gr. 36 Galv.	
b5	2	14"x1"x1/2" [356x25x13] Cable Anchor Front Plate	ASTM A709 Gr. 36 Galv.	-
b6	2	14"x4"x1/2" [356x102x13] Cable Anchor Top Plate	ASTM A709 Gr. 36 Galv.	-
c1	18	Cable End Fitting	ASTM A27 Galv.	RCE03
c2	4	3/4" [19] Plain Round Washer (OD 2" [51])	ASTM F844/SAE Gr. 2 Galv.	FWC20a
c3	3	Cable Turnbuckle	AASHTO M269/ASTM F1145	-
c4	38	S3x5.7 [S76x8.5] 65" [1651] Long Line Post	ASTM A36	-
c5	114	1/2" [13] J-Bolt and Nut	Bolt ASTM A36 and Nut ASTM A563DH Galv.	
c6	3	3/4" [19] Dia. Cable Approx. 600' [183 m]	AASHTO M30 Type 1 Class A Galv.	RCM01
c7	38	2'x8"x0.25" Soil Plate	ASTM A36 Galv.	-
c8	2	1" [25] Dia. Beveled Washer	ASTM A36	-
d1	2	Concrete Anchor Block	3000 psi [20.68 MPa] Compressive Strength	-
d2	12	32 1/2" [826] Long #3 [#10] Rebar	ASTM A36	
d3	12	44 1/2" [1130] Long #3 [#10] Rebar	ASTM A36	-
d4	16	30" [762] Long #3 [#10] Rebar	ASTM A36	
e1	24	Cable Wedge	ASTM A47 Gr. 32510	-
e2	6	50,000-lb Load Cell	N/A	-
e3	18	3/4" [19] Dia. UNC Threaded Rod	ASTM A449	-
e4	3	3/4" [19] Dia. UNC Left-Handed Threaded Rod	ASTM A449	-
e5	3	3/4" [19] Cable Splice	ASTM A536	
			Midwest Roadside Safety Facility	SHET: 15 of 16 DATE: 5/28/2014 DRAWN BY: JOP/CWP/ SDB SCALE: NONE REV. BY:
			NY-Cable-GR29_R13	UNITS: in.[mm] KAL/TH/

Figure 34. Bill of Materials, Test No. NYJ-1

- (1) All posts shall be S3x5.7 rolled steel section. The anchor post stub shall be W4x13.
- (2) 3/4" round wire cable shall consist of three strands (7 wires per strand) and have a minimum tensile strength of 25,000 lbf.
- (3) Cable ends shall be fabricated from malleable iron or cast steel. The cable splice and wedge shall be fabricated from malleable iron or ASTM A536 ductile iron 65-42-12.
- (4) All cable ends and splices shall be designed to use the wedge shown on sheet 11 and shall develop the full strength of the 3/4" round cable (25000 lb). The cables, ends, and splices shall be hot dipped galvanized as indicated in material specification for cable guide rail. The wedge shall not be galvanized.
- (5) Stagger cable splices. Provide a minimum of 20' between any pair. Provide a minimum of 100' between cable splices on the same cable.
- (6) Alternate designs for the steel turnbuckle cable end assembly or spring cable end assembly shall be submitted for approval.
- (7) Tension cable such that there is a total of 1" [25] cable sag at the midspan between two posts near the impact point.
- (8) The concrete anchor shall be set into the excavation as detailed. The bottom of the anchor shall have a full and even bearing on the surface under it. The top shall be back filled in accordance with the requirements of 203-3.15 "fill and back fill at structures, culverts, pipes, conduits, and direct burial cables."
- (9) Do not install cable guide railing on curves with a centerline radius of less than 440'.
- (10) Curbs greater than 3" high are not to be retained or placed if design, posted, or operating speed exceeds 35 mph. Rail mounting height is to be measured from pavement if offset between pavement and curb is less than or equal to 9" and from ground beneath rail if offset > 9".
- (11) Lifting devices, if embedded in concrete, shall be rated by their manufacturer as having a "safe working load" of four tons.
- (12) At all locations where the cable is connected to a cable socket with a wedge type connection, one wire of the wire rope shall be crimped over the base of the wedge to hold it firmly in place.

Ľ	л
-	_ 1
	-

	2			
M	RSF	NY Cable Guardrai New J—Bolt	I	SHEET: 16 of 16 DATE: 5/28/2014
Midwest	Roadside	Notes DWG. NAME	SCALE: NONE	DRAWN BY: JGP/CWP/ SDB REV. BY:
Surety	rucility	NY-Cable-GR29_R13	UNITS: in.[mm]	KAL/TH/ JCH

Figure 35. Additional Notes, Test No. NYJ-1

Figure 36. System Photographs, Test No. NYJ-1

Figure 37. Additional System Photographs, Test No. NYJ-1

Figure 38. Load Cell Photographs, Test No. NYJ-1

Figure 39. Upstream Cable Terminal Photographs, Test No. NYJ-1

Figure 40. Downstream Cable Terminal Photographs, Test No. NYJ-1

63

6 FULL-SCALE CRASH TEST NO. NYJ-1

6.1 Static Soil Test

Before full-scale crash test no. NYJ-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix D, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

6.2 Test No. NYJ-1

The 3,294-lb (1,494-kg) passenger car impacted the cable guardrail system at a speed of 62.7 mph (100.9 km/h) and at an angle of 25.5 degrees. A summary of the test results and sequential photographs are shown in Figure 42. Additional sequential photographs are shown in Figures 43 and 44.

Prior to impact with the system in test no. NYJ-1, the vehicle's initial pitch was estimated to be approximately 2.2 degrees. The tested pitch angle was slightly higher than what was observed during braking tests on concrete tarmac and in the soil pit. In addition, the pitch was maximized at approximately 0.33 sec, but the maximum pitch was sustained up to impact. The pre-impact coefficient of friction was not calculated in test no. NYJ-1.

6.3 Weather Conditions

Test no. NYJ-1 was conducted on June 18, 2013 at approximately 4:00 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Temperature	82°F
Humidity	41%
Wind Speed	6.9 mph
Wind Direction	Variable
Sky Conditions	Partly Cloudy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.01 in.
Previous 7-Day Precipitation	0.04 in.

Table 5. Weather Conditions, Test No. NYJ-1

6.4 Test Description

Initial vehicle impact was to occur 64 in. (1,625 mm) downstream from post no. 16, as shown in Figure 45, which was selected based on previous testing [10]. The actual point of impact was 65 in. (1,651 mm) downstream from post no. 16. A sequential description of the impact events is contained in Table 6. The vehicle came to rest 100 ft (30.5 m) downstream from impact and 30 ft – 8 in. (9.4 m) laterally behind the system. The vehicle trajectory and final position are shown in Figures 42 and 46.

Table 6. Sequential Description of Impact Events, Test No. NYJ-1

TIME (sec)	EVENT
0.000	The vehicle impacted system.
0.002	The vehicle's left-front bumper contacted bottom cable and began to deform.
0.010	The vehicle's left-front fender contacted middle cable.
0.028	The vehicle began to underride middle cable between post nos. 16 and 17.
0.034	Post no. 17 began to deflect backward.
0.058	The vehicle's left-side mirror contacted top cable between post nos. 16 and 17.
0.074	The vehicle's left-side mirror began to detach away from A-pillar.
0.086	Post no. 15 began to deflect backward.
0.090	The vehicle began to override post no. 17.
0.104	The middle cable disengaged from post no. 17.

TIME (sec)	EVENT
0.114	The bottom cable disengaged from post no. 17.
0.118	The bottom cable failed at the upstream end.
0.116	The top cable disengaged from post no. 17.
0.124	Post no. 18 began to deflect backward and downstream.
0.138	The middle cable failed at the upstream end.
0.164	The top cable failed at the upstream end.
0.180	The top cable began to slide up the A-pillar.
0.182	The vehicle's left-side mirror became disengaged.
0.204	The vehicle began to yaw away from barrier.
0.220	The vehicle's windshield began to crush due to contact with top cable.
0.292	The top cable became disengaged from vehicle, and middle cable began to slide over vehicle's roof.
0.328	The bottom cable made contact with left-rear wheel.
0.430	The middle cable disengaged away from vehicle.
0.500	The bottom cable contacted rear bumper.
0.536	The vehicle was parallel with the system and began to yaw.
1.224	The vehicle rotated such that the front was perpendicular with the system.
2.690	The vehicle came to rest, facing upstream and parallel with the system.

6.5 Barrier Damage

Damage to the barrier was severe, as shown in Figures 47 through 52. Barrier damage consisted of fractured J-bolts, deformed posts, and disengaged cables. The permanent set, dynamic deflection, and working width were not recorded due to release of the cables from end fittings on the upstream and downstream ends. The permanent displacements of the upstream and downstream and 0.29 in. (7 mm), respectively.

The bottom cable disengaged from the cable end fitting at the upstream anchor. At the downstream end of the upstream load cell, the bottom cable threaded rod fractured and the bottom cable disengaged from the downstream end of the cable end fitting. At the downstream

end of the upstream load cell, the middle cable disengaged from the downstream end of the cable end fitting. The top cable disengaged from the cable end fitting at the downstream anchor.

Post no. 1 deflected slightly downstream and the front flange cracked at the weld. Post nos. 3, 7, and 8 through 10 rotated downstream, and post nos. 4 through 6 bent and twisted downstream. Post no. 16 deflected backward, while post nos. 17 and 18 bent backward and downstream. Post nos. 19 and 38 rotated backward, post no. 36 rotated upstream, and post no. 40 bent upstream.

The top cable disengaged from post nos. 4, 17, 18, 19, and 40. The middle cable disengaged from post nos. 2, 4, 5, and 17. The bottom cable disengaged from post nos. 1 through 10 and post no. 18. The bottom J-bolt at post no. 4 fractured and localized gouging occurred at the location of the bottom J-bolt on the front, upstream flange of post nos. 7 and 8. On the front, upstream edge of the flange of post nos. 17 and 18, denting and gouging from the cable were observed. Contact marks were observed on the top of post no. 18. The bottom J-bolt of post no. 18 fractured.

6.6 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 53 and 54. The maximum occupant compartment deformations are listed in Table 7 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that the maximum deformation on the windshield location exceeded MASH established deformation limits. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	³ / ₈ (10)	≤ 9 (229)
Floor Pan & Transmission Tunnel	¹ ⁄ ₄ (6)	≤12 (305)
Side Front Panel (in Front of A-Pillar)	¹ ⁄ ₄ (6)	≤12 (305)
Side Door (Above Seat)	¹ / ₂ (13)	≤ 9 (229)
Side Door (Below Seat)	¹ ⁄ ₄ (6)	≤12 (305)
Roof	0	\leq 4 (102)
Windshield	6¼ (159)	≤ 3 (76)

Table 7. Maximum Occupant Compartment Deformations by Location

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. Gouging occurred along the top length of the left-front fender, and a 1-in. (25-mm) wide gap was found between the left-front fender and the hood. A 4-in. (102-mm) long dent occurred in the top of the left-front fender, and a 7-in. (178-mm) long gouge occurred on the left A-pillar. The left-side mirror was disengaged, and the antenna on the left-rear corner of the vehicle was bent.

A 22-in. (559-mm) long tear was found in the left-front bumper, approximately 21 in. (533 mm) above ground line due to the bottom cable. The entire length of the front bumper was gouged, also due to contact with the bottom cable. A 1-in. (25-mm) diameter hole was present on the left side of the bumper. Windshield penetration occurred in two areas: a 1¹/₄-in. (32-mm) diameter hole in the lower-left corner and a 5-in. (127 mm) diameter hole in the upper-middle of the windshield. The windshield crush was 43 in. (1,092 mm) long, from the lower-right corner to the upper-middle of the windshield. A ³/₄-in. (19-mm) wide gap occurred between the right-front fender and the hood.

Cable contact marks were observed on the roof, left headlight, left-front and left-rear wheel hub cap, and along the entire length of the left-side doors. A 52-in. (1,321-mm) long dent occurred from the middle of the front of the hood to the left-rear of the hood with cable contact marks on the top of the left-front fender. There was significant deformation in both the front and rear windshields. The left-front A-pillar and fender were deformed.

6.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 8. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 8. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 42. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria			MASH Limits			
		DTS SLICE EDR-3				
OIV	Longitudinal	-16.67 (-5.08)	-16.40 (-5.00)	-16.86 (-5.14)	≤ 40 (12.2)	
ft/s (m/s) Lateral		7.15 (2.18)	7.12 (2.17)	6.63 (2.02)	≤40 (12.2)	
ORA Longitudinal	-3.13	-3.19	-2.75	≤ 20.49		
g's Lateral		3.22	4.07	1.86	\leq 20.49	
THIV ft/s (m/s)		18.37 (5.60)	17.72 (5.40)	NA	not required	
PHD g's		3.43	3.32	NA	not required	
ASI		0.34	0.34	0.34	not required	

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYJ-1

6.8 Load Cell and String Potentiometer Results

Data was acquired by load cells near the upstream (US) and downstream (DS) anchors and later analyzed. The maximum loads measured by the transducers are summarized in Table 9. The individual cable loads were determined and are shown graphically in Figure 55.

Anchor displacement was also of primary concern in the evaluation of the three-cable guardrail system. The displacement-time histories of the downstream and upstream anchors are shown in Figure 56. The anchor on the downstream end of the barrier had a maximum displacement of 0.29 in. (7 mm). The anchor on the upstream end had a maximum displacement of 0.17 in. (4 mm).

		Maximum	Time After	
Cable Location	Sensor Location	kips	kN	Impact (sec)
Combined Cables	Upstream Anchor	19.54	86.92	0.144
Top Cable	Upstream End	5.82	25.89	0.116
Middle Cable	Upstream End	2.90	12.90	0.099
Bottom Cable	Upstream End	16.59	73.80	0.144
Combined Cables	Downstream Anchor	14.58	64.86	0.146
Top Cable	Downstream End	3.98	17.70	0.119
Middle Cable	Downstream End	2.42	10.76	0.139
Bottom Cable	Downstream End	12.35	54.94	0.146

Table 9. Load Cell Results, Test No. NYJ-1

6.9 Discussion

The analysis of the test results for test no. NYJ-1 showed that the cable guardrail with ¹/₂in. (13-mm) diameter J-bolts and redesigned anchor post stub did not adequately contain the 1500A vehicle. The cable rail elements disengaged from the cable end fittings in multiple locations, leading to complete loss of rail tension and cable disengagement from the vehicle and extensive test article damage. In addition, cables caused significant windshield crush and penetration, which exceeded allowable deformation specified in MASH. Therefore, test no. NYJ-1 was determined to be unacceptable according to the MASH safety performance criteria for the modified test designation no. 3-10.

6.10 Analysis of Test No. NYJ-1 and Modifications for Retest

High-speed digital video, transducer data, and test installation procedures used in test no. NYJ-1 were analyzed to determine what modifications, if any, would contribute to a successful retest of the modified three-cable guardrail system with ½-in. (13-mm) diameter, cable-to-post attachments. Several potential causes were identified, but three were believed to be more significant and are discussed below.

- 1. Cable end fittings are commonly used in combination with low-tension, cable barrier systems. Cable end fittings consist of a malleable cast iron, tapered and grooved wedge that is swaged between the cable strands due to a combination of cable tension, pressure against the end fitting bucket, and friction. One wire is often bent over the wedge to retain it and guard against long-term thermal and impact load cycling, which could cause the wedge to become disengaged. For testing purposes, bending one wire over the wedge has never previously been required; because, the system was not subjected to long-term thermal cycling, and the systems were inspected before and after each crash test for possible end termination wedge slip. Therefore, one wire was not bent over the wedges at cable end fittings per normal operating procedures for test no. NYJ-1.
- 2. The detailed cable tension investigation involved extensive load cycling with maximum loads not exceeding 1,000 lb (4.4 kN). Dynamic, low-load cycle tests included staff abruptly loading cable wire rope multiple times and in multiple

locations, as well as quasi-static tensioning of turnbuckles near the upstream end of the system. The load cycling may have contributed to partial loosening and/or disengagement of the wedges away from the cable ends and minor wedge slip. Although pre-test inspection did observe some wedge slip, it was not considered sufficient to cause cable release.

3. Cable-to-post attachments (i.e., J-bolts) were increased from ⁵/₁₆-in. (8-mm) to ¹/₂-in. (13-mm) diameter to potentially improve vehicle-to-barrier interaction. Cables are predominantly tension members, which transmit impact forces to posts and cable-to-post attachments via lateral and vertical displacements of the cable. The force transmitted to the attachments and posts is dependent on the deflection angle of the cable and cable tension. By increasing the size and strength of the cable-to-post attachment, the cable deflection required to disengage a cable away from a post or cable-to-post attachment increased significantly, and large-amplitude, high-frequency waves were propagated away from impact.

			K	ġ		19		er
0.000 sec	0.034 sec	0.084 se	ec	Reading and the cards of several and	0.180 sec		0.474	sec
3 4 5 6 7 8 9 10	11 12 13 14 15 16 12	100' [30.5 m]	21 22	30'-8' [9.3 m] 23 24 25 2	26 27 28 2	29 30 31 32	2 33 34 3	5 36 37 38
	25,5° 112% mg					. <u>.</u>		
Test Agency	MwRS	F		T			B	
Test Number	NYJ-	-1					5	
Date		3			1			
MASH Test Designation	Modified 3-1	0		29 1/	8° T	32*	a 5	
Test Article Cable Guardrail	with ¹ / ₂ -in. (13-mm) diameter J-Bolt	ts		(740	23 1/8"	[813]		
Total Length	602.7 ft (183.7 m	1)		1	[588]			
Key Component – Cable					[436]			
Size	3x7, 34-in. (19-mm) diameter	er						
Top Cable Height		1)		-	· · · / III			
Bottom Cable Height		1)	Manim	Gro				
Incremental Cable Spacing	6 in. (152 mm	n) •	Maxin	Democratic Article	Jenections			NTA
Number of Cables		3		Permanent Set				NA
Key Component - Post				Working Width				INA
Length	65 in. (1,651 mm	1)	М	working width.			<i>c</i> 1/ '	NA
Shape	S3x5.7 (S76x8.5) with soil plat	•	Maxin	num windshield I	Deformation			(159 mm)
Spacing		n) •	Maxin	num Angular Disp	blacements		1	0.00 .750
Embedment Depth		1)		Roll			1	$0.0^{\circ} < 75^{\circ}$
Soil Type	Grading B - AASHTO 147-6	5		Pitch				7.3° < 75°
Vehicle Make/Model		18	—	Yaw				
Curb		g) 🛉	Transc	lucer Data	1			
Test Inertial		g)	Evalua	ation Criteria	DTC	Transducer		MASH
Gross Static		g)		T	DIS	SLICE	EDR-3	Limit
Impact Conditions			OIV	Longitudinal	-16.67	-16.40	-16.86	≤ 40
Speed		1)	ft/s		(5.08)	(-5.00)	(-5.14)	(12.2)
Angle		g	(m/s)	Lateral	7.15	7.12	6.63	≤ 40
Impact Severity (IS)	80.2 kip-ft (108.7 k.	J)	07.1	x 1	(2.18)	(2.17)	(2.02)	(12.2)
Impact Location65 in. (1	,651 mm) downstream of post no. 1	6	ORA	Longitudinal	-3.13	-3.19	-2.75	≤ 20.49
Exit Box Criterion	N.	A	g´s	Lateral	3.22	4.07	1.86	≤ 20.49
Vehicle Stability	Satisfactor	у	THIV	V - ft/s (m/s)	18.37	17.72	NA	not
Vehicle Stopping Distance1	00 ft (30.5 m) downstream of impac	ct			(5.60)	(5.40)		required
3	0.7 ft (9.4 m) laterally behind system	n	PF	HD – g's	3 4 3	3.32	NA	not
Vehicle Damage	Moderat	te	11	8 -	2.15	0.02		required
VDS ^[11]		1		ASI	0.34	0.34	0.34	not
CDC ^[12]		-3		1 10/1	0.54	0.54	0.54	required
Test Article Damage	Sever	·e						

Figure 42. Summary of Test Results and Sequential Photographs, Test No. NYJ-1

0.000 sec

0.022 sec

0.070 sec

0.124 sec

0.430 sec

Figure 43. Sequential Photographs, Test No. NYJ-1

0.000 sec

0.010 sec

0.034

0.086 sec

0.182 sec

0.340 sec

0.000 sec

0.038 sec

0.114 sec

0.420 sec

0.946 sec

0.000 sec

0.058 sec

0.106 sec

0.412 sec

0.668 sec

Figure 44. Additional Sequential Photographs, Test No. NYJ-1

Figure 45. Impact Location, Test No. NYJ-1

Figure 46. Vehicle Final Position, Test No. NYJ-1

Figure 47. Post Damage in Impact Region, Test No. NYJ-1

Figure 48. Upstream Anchor Damage, Test No. NYJ-1

Figure 49. Downstream Anchor Damage, Test No. NYJ-1

Figure 50. Hardware Fractures and Frayed Cable, Test No. NYJ-1

Figure 51. Cable Damage, Test No. NYJ-1

Figure 52. Additional Cable Damage, Test No. NYJ-1

Figure 53. Vehicle Damage, Test No. NYJ-1

Figure 54. Vehicle Damage, Test No. NYJ-1

Figure 55. Cable Tension vs. Time, Test No. NYJ-1

Figure 56. Displacement-Time History Plot for Anchors, Test No. NYJ-1

7 DESIGN DETAILS

Since several causes could have contributed to the unsuccessful test no. NYJ-1, the system was retested with the same configuration as used in test no. NYJ-1 for test no. NYJ-2. However, prior to test no. NYJ-2, a chisel and sledge hammer were used to pound wedges into end fittings, and a wire was bent over each wedge. Cyclic loading of the cables prior to testing did not occur, and tensioning only occurred on test day. The downstream load cells were not installed to eliminate six downstream cable end fittings. These modifications were believed to minimize the risk associated with non-test factors and to evaluate the adequacy of the increased cable-to-post attachment strengths. Design details for test nos. NYJ-2 and NYJ-3 are shown in Figures 57 through 73.

Figure 57. Test Installation Layout, Test No. NYJ-2

Figure 58. Cable Splice Location, Test No. NYJ-2

May 29, 2014 MwRSF Report No. TRP-03-299-14

Figure 59. Upstream Cable Terminal Detail, Test No. NYJ-2

Figure 60. End Post Detail, Test No. NYJ-2

Figure 61. Downstream Cable Terminal Detail, Test No. NYJ-2

Figure 62. Anchor Details, Test No. NYJ-2

Figure 63. S3x5.7 Post Assembly, Test No. NYJ-2

Figure 64. Anchor Stud and Cable Turnbuckle, Test No. NYJ-2

Figure 65. Welded Plate Anchor Angle Detail, Test No. NYJ-2

Figure 66. Welded Plate Anchor Angle Components, Test No. NYJ-2

Figure 67. Anchor Post Assembly, Test No. NYJ-2

Figure 68. Anchor Post Components, Test No. NYJ-2

Figure 69. J-Bolt and Brass Rod Details, Test No. NYJ-2

Figure 70. Line Post, Test No. NYJ-2

Item No.	QTY.	Description	Material Specification	Hardware Guide
a1	2	S3x5.7 [S76x8.5] 29 3/4" [756] Long Anchor Post	ASTM A36 Galv.	-
a2	24	3/4" [19] Dia. UNC, Hooked Anchor J-Bolt and Nut	ASTM A307 Gr. C and ASTM A563 DH Galv.	FRH20a
a3	6	3/16" [5] Dia. 5 1/4" [133] Long Brass Rod	ASTM B16-00	-
a4	32	3/4" [19] Dia. Plain Round Washer (OD 1.5" [38])	ASTM F844/SAE Gr. 2	FWC20a
a5	2	W4x13 [W102x19.3] Anchor Post Stub	ASTM A36 Galv.	-
a6	4	7"x4 1/2"x3/8" [178x114x10] Slip Impact Base	ASTM A36 Galv.	-
۵7	2	7"x4 1/2"x28 Gauge [178x144x0.38] Keeper Plate	ASTM A36 Galv.	-
۵8	8	1/2" [13] Dia. UNC, 2" [51] Long Bolt and Nut	ASTM A307 Gr. A/ASTM F1554 Gr. 36/SAE Gr. 2 and ASTM A563 Gr. A	FBX14a
a9	24	1/2" [13] Dia. Narrow Washer (OD 1" [25])	ASTM 844/SAE Gr. 2	FWC12a
a10	2	18"x2"x3/4" [457x51x19] Anchor Post Cable Hanger	ASTM A707 Gr. 36 Galv.	-
a11	2	12"x12"x1/2" [305x305x13] Anchor Post Base	ASTM A709 Gr. 36 Galv.	
b1	2	14"x9"x1/2" [356x229x13] Cable Anchor Base Plate	ASTM A709 Gr. 36 Galv.	-
b2	4	3 1/2"x3 1/2"x1/2" [89x89x13] Cable Anchor External Gusset	ASTM A709 Gr. 36 Galv.	-
b3	2	1/4" [6] Dia. 16" [406] Long Brass Rod	ASTM B16-00	-
b4	4	2 3/4"x2 3/4"x1/4" [70x70x6] Cable Anchor Internal Gusset	ASTM A709 Gr. 36 Galv.	-
b5	2	14"x1"x1/2" [356x25x13] Cable Anchor Front Plate	ASTM A709 Gr. 36 Galv.	-
b6	2	14"x4"x1/2" [356x102x13] Cable Anchor Top Plate	ASTM A709 Gr. 36 Galv.	-
c1	12	Cable End Fitting	ASTM A27 Galv.	RCE03
c2	4	3/4" [19] Plain Round Washer (OD 2" [51])	ASTM F844/SAE Gr. 2 Galv.	FWC20a
c3	3	Cable Turnbuckle	AASHTO M269/ASTM F1145	-
c4	38	S3x5.7 [S76x8.5] 65" [1651] Long Line Post	ASTM A36	-
c5	114	1/2" [13] J—Bolt and Nut	Bolt ASTM A36 and Nut ASTM A563DH Galv.	-
c6	3	3/4" [19] Dia. Cable Approx. 600' [183 m]	AASHTO M30 Type 1 Class A Galv.	RCM01
c7	38	2'x8"x0.25" Soil Plate	ASTM A36 Galv.	-
c8	2	1" [25] Dia. Beveled Washer	ASTM A36	-
d1	2	Concrete Anchor Block	3000 psi [20.68 MPa] Compressive Strength	-
d2	12	32 1/2" [826] Long #3 [#10] Rebar	ASTM A36	-
d3	12	44 1/2" [1130] Long #3 [#10] Rebar	ASTM A36	-
d4	16	30" [762] Long #3 [#10] Rebar	ASTM A36	-
e1	18	Cable Wedge	ASTM A47 Gr. 32510	-
e2	3	50,000-lb Load Cell	N/A	-
e3	12	3/4" [19] Dia. UNC Threaded Rod	ASTM A449	-
e4	3	3/4" [19] Dia. UNC Left-Handed Threaded Rod	ASTM A449	-
e5	3	3/4" [19] Cable Splice	ASTM A536	-
			NY Cable Guardra New J-Bolt	SHEET: 15 of 16 DATE: 5/28/2014
			Midwest Roadside Safety Facility	SCALE: NONE REV. BY:
			NY-Cable-GR29_Retest_v6	UNITS: in.[mm] KAL/TH/ JCH

Figure 71. Bill of Materials, Test No. NYJ-2

- (1) All posts shall be S3x5.7 rolled steel section. The anchor post stub shall be W4x13.
- (2) 3/4" round wire cable shall consist of three strands (7 wires per strand) and have a minimum tensile strength of 25,000 lbf.
- (3) Cable ends shall be fabricated from malleable iron or cast steel. The cable splice and wedge shall be fabricated from malleable iron or ASTM A536 ductile iron 65-42-12.
- (4) All cable ends and splices shall be designed to use the wedge shown on sheet 11 and shall develop the full strength of the 3/4" round cable (25000 lb). The cables, ends, and splices shall be hot dipped galvanized as indicated in material specification for cable guide rail. The wedge shall not be galvanized.
- (5) Stagger cable splices. Provide a minimum of 20' between any pair. Provide a minimum of 100' between cable splices on the same cable.
- (6) Alternate designs for the steel turnbuckle cable end assembly or spring cable end assembly shall be submitted for approval.
- (7) Tension cable such that the upstream load cell records an initial tension of approximately 600 lb.
- (8) The concrete anchor shall be set into the excavation as detailed. The bottom of the anchor shall have a full and even bearing on the surface under it. The top shall be back filled in accordance with the requirements of 203-3.15 "fill and back fill at structures, culverts, pipes, conduits, and direct burial cables."
- (9) Do not install cable guide railing on curves with a centerline radius of less than 440'.
- (10) Curbs greater than 3" high are not to be retained or placed if design, posted, or operating speed exceeds 35 mph. Rail mounting height is to be measured from pavement if offset between pavement and curb is less than or equal to 9" and from ground beneath rail if offset > 9".
- (11) Lifting devices, if embedded in concrete, shall be rated by their manufacturer as having a "safe working load" of four tons.
- (12) At all locations where the cable is connected to a cable socket with a wedge type connection, one wire of the wire rope shall be crimped over the base of the wedge to hold it firmly in place. Per NY specs, Engineering Instruction El 07-026, "Place a splice end over a cable. Twist the cable to separate the three strands, insert the wedge into the center of the strands, leaving at least 1" of excess cable, and pull back until wedge is snug to the splice. Pound the wedge into the splice. Crimp at least one wire of the cable over the wedge. Repeat this procedure for the other cable. Connect the two splice ends together."
- (13) The threaded rods should be installed such that the end of the threaded rod is within 1/4" of the wedge prior to tensioning the cable.

	2			
	RSF	NY Cable Guardrai New J-Bolt	il	SHEET: 16 of 16 DATE: 5/28/2014
Midwes	t Roadside	Notes		DRAWN BY: ESG/SDB
Safety	/ Facility	DWG. NAME. NY-Cable-GR29_Retest_v6	SCALE: NONE UNITS: in.[mm]	REV. BY: KAL/TH/ JCH

Figure 72. Additional Notes, Test No. NYJ-2

Figure 73. Test Installation Layout, Test No. NYJ-3

8 FULL-SCALE CRASH TEST NO. NYJ-2

8.1 Static Soil Test

Before full-scale crash test no. NYJ-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix D, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

8.2 Test No. NYJ-2

The 3,254-lb (1,476-kg) passenger car impacted the cable guardrail system at a speed of 62.7 mph (100.9 km/h) and at an angle of 25.3 degrees. A summary of the test results and sequential photographs are shown in Figure 74. Additional sequential photographs are shown in Figures 75 and 76.

The vehicle pitch angle at impact with the cable barrier system was estimated to be 2.9 degrees, based on available rate gyro data collected before impact. The increased pitch angle during full-scale crash testing was surprising when compared to prior testing on the concrete tarmac and soil pit. Differences may have been attributable to two different 2006 Ford Taurus vehicles used for the crash tests versus the braking tests, with different dive stiffnesses and amounts of shock and strut wear. In addition, the braking coefficient of friction, estimated using longitudinal acceleration data recorded before impact, was approximately 0.78 prior to impact. This result was higher than the average friction value obtained from physical tests, equal to 0.64.

8.3 Weather Conditions

Test no. NYJ-2 was conducted on August 14, 2013 at approximately 4:00 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 10.

Temperature	77°F
Humidity	62%
Wind Speed	10 mph
Wind Direction	Variable
Sky Conditions	Overcast
Visibility	8 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.9 in.

Table 10. Weather Conditions, Test No. NYJ-2

8.4 Test Description

Initial vehicle impact was to occur 64 in. (1,626 mm) downstream from post no. 16, as shown in Figure 77, which was selected based on previous testing [10]. The actual point of impact was 65 in. (1,651 mm) downstream from post no. 16. A sequential description of the impact events is contained in Table 11. The vehicle came to rest 82 ft – 4 in. (25.1 m) downstream from impact and 22 in. (559 mm) laterally behind the system. The vehicle trajectory and final position are shown in Figures 74 and 78.

Table 11. Sequential Description of Impact Events, Test No. NYJ-2

TIME (sec)	EVENT
0.000	The vehicle impacted system.
0.008	The vehicle's left-front bumper contacted bottom cable and began to deform.
0.014	The vehicle's left fender contacted top cable between post nos. 16 and 17.
0.038	Post no. 16 began to deflect backward.
0.040	Post no. 17 began to deflect backward.
0.054	The top cable contacted left A-pillar and left-side mirror.
0.078	The middle cable contacted left-side mirror.
0.094	The vehicle's right-front bumper contacted post no. 17.
0.096	Post no. 18 began to deflect backward.
0.160	The vehicle's left-side mirror was detached.
0.190	The middle cable contacted vehicle's windshield.

TIME (sec)	EVENT
0.200	The vehicle's left-front window shattered.
0.204	The top cable contacted vehicle's left-front windshield.
0.232	The top cable contacted vehicle's roof, and roof began to deform.
0.270	Post no. 12 began to deflect backward.
0.272	The windshield was further crushed by cable slap from the top and middle cables.
0.282	Post no. 15 began to deflect backward.
0.340	The vehicle's right-front bumper contacted post no. 18.
0.404	The vehicle was parallel with the system.
0.440	The top cable lost contact with vehicle.
0.642	The vehicle was yawing toward the barrier.
0.946	The vehicle redirected into the back side of the cables and made second contact.
1.902	The vehicle was at rest.

8.5 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 79 through 84. Barrier damage consisted of fractured J-bolts, deformed posts, and cables disengaged from posts. Cables disengaged from multiple posts in the system. At post no. 1, all three cables disengaged from the cable hanger bracket. At post no. 16, the top cable disengaged, and the J-bolt fractured at the top cable location. At post nos. 17 through 21, all three cables disengaged from the posts. At post no. 20, the bottom J-bolt fractured. At the upstream cable anchor, all three threaded anchor rods were bent. At the downstream cable anchor, the bottom cable threaded anchor rod was bent. Also, the downstream end of the concrete anchor block deflected and partially lifted. A ⁵/₈-in. (16 mm) gap was observed on the downstream side of the downstream anchor block, and a ¹/₈-in. (3-mm) gap was observed on the back side of the block.

Separations at the cable splices were noted, but they were small. The bottom cable slipped $1/_{16}$ in. (2 mm) from the end fitting at the upstream anchor. The bottom cable slip measured at the upstream and downstream ends of the load cell between post nos. 3 and 4 was $\frac{3}{8}$

in. (10 mm) and ¹/₄ in. (6 mm), respectively. At the midspan between post nos. 20 and 21 and downstream of the splice, there was ¹/₂-in. (13-mm) of slip at the bottom cable end fitting. At the downstream anchor, the top cable slipped ¹/₈ in. (3 mm) from the end fitting, and the bottom cable slipped ¹/₁₆ in. (2 mm) from the end fitting. Contact marks and scrapes were observed on the cables beginning at impact and continuing until 115 in. (2,921 mm) upstream from post no. 22.

Post no. 1 bent and twisted backward and downstream. All three of the brass clips disengaged, and two of the three clips fractured. Post no. 16 deflected backward and upstream with gouges on the front flange at all three cable locations. Post no. 17 twisted backward and downstream, and bent to the groundline. Post no. 18 twisted downstream and bent backward and downstream at the groundline. Post nos. 19 and 20 bent backward and downstream at groundline. Post no. 21 twisted 180 degrees and bent downstream at groundline, underneath the vehicle. Post no. 40 deflected slightly upstream.

Soil gaps were also present in the system, as shown in Table 12. The maximum lateral dynamic barrier deflection was 82.0 in. (2,083 mm) at post no. 17, as determined from high-speed digital video analysis. The working width of the system was found to be 85.0 in. (2,159 mm), also determined from high-speed digital video analysis.

	Soil Gap Location					
Post Number	Upstream	Downstream	Front	Back		
-	in. (mm)	in. (mm)	in. (mm)	in. (mm)		
3			¹ ⁄ ₄ (6.4)			
6				1/8 (3.2)		
8			1/8 (3.2)			
15		¹ / ₈ (3.2)	1/8 (3.2)	¹ ⁄ ₄ (6.4)		
16			7/8 (22.2)	3 ⁄4 (19.1)		
22				¹∕₂ (12.7)		
38			3 ⁄4 (19.1)			

Table 12. Soil Gap Location, Test No. NYJ-2

8.6 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 85 and 86. The maximum occupant compartment deformations are listed in Table 13 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that the maximum deformation on the windshield location exceeded MASH established deformation limits. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

Table 13. Maximum Occupant Compartment Deformations by Location

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	1/2 (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1⁄4 (6)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	1⁄4 (6)	≤ 12 (305)
Side Door (Above Seat)	¹ /2 (13)	≤ 9 (229)
Side Door (Below Seat)	¹ ⁄ ₄ (6)	≤ 12 (305)
Roof	21/4 (57)	≤4 (102)
Windshield	41/2 (114)	≤ 3 (76)

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. Several 34-in. (864-mm) long striations occurred on the top of the left-front fender. Several 13-in. (330-mm) long striations occurred along the bottom of the A-pillar, and the left side mirror disengaged during impact. Cable contact marks were observed from the left-front wheel well to the left-rear wheel well. A 16-in. (406-mm) gouge was observed along the left side of the B-pillar, and 42-in. (1,067-mm) long striations were observed above the left-rear window and across the C-pillar. In addition, a 9-in. (229-mm) long dent occurred in the C-pillar.

Near the front of the car, contact marks extended from the left-side front wheel well to the front of the bumper. There was scraping and tearing along the left-front of the bumper, and a 28-in. (711-mm) long tear in the bumper was observed, extending from the front corner to the left side. There was a 6-in. (152-mm) long horizontal tear in the bumper below the left side of the headlight and a 4-in. (102-mm) long horizontal fracture in the left-front headlight. There was also 9 in. (229 mm) of horizontal scraping from the left wheel well toward the front of the bumper

On the front of the car, there was moderate damage to the hood, windshield, and roof. A 35-in. (889-mm) long crease extended from the left-rear of the hood to the center of the hood. Additional cable contact marks and striations were observed. A 35-in. (889-mm) long crease was observed in the windshield, which was the most severe of four distinctive cable impacts. Tears measuring 1 in. (25 mm) and 2 in. (51 mm) occurred in the windshield near the left-side A-pillar. Damage to the roof consisted of a 32-in. by 32-in. (813-mm by 813-mm) dent in the left-front section of the roof that was approximately 1½-in. (38-mm) deep.

On the right side of the vehicle, the right-rear hub cap and tire were scraped and gouged. Cable contact marks extended from the right-rear wheel well through to the right-front wheel well. Horizontal striations measuring 32-in. (813-mm) long were observed on the right A-pillar. A 1¹/₂-in. (38-mm) gouge was found in the right-front wheel well on the back side, and the right-front tire was deflated due to a 1¹/₂-in. (38-mm) tear.

The rear window fractured, and a 35-in. (889-mm) long scrape occurred in the left side of the rear bumper beginning at the wheel well. The left-front window also fractured. Inside the car, the left-front A-pillar housing was partially disengaged and protruding into the occupant compartment. The roof crush protruded 2¹/₄ in. (57 mm) into the occupant compartment.

8.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 14. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 14.

The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 74. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G. Due to technical difficulties, the SLICE and EDR-3 units did not collect acceleration data.

Evaluation Criteria		DTS	Mash Limit
OIV	Longitudinal	-15.98 (-4.87)	≤40 (12.2)
ft/s (m/s)	Lateral	-3.81 (1.16)	≤40 (12.2)
ORA	Longitudinal	-6.84	≤ 20.49
g's	Lateral	-10.91	\leq 20.49
THIV ft/s (m/s)		16.37 (4.99)	not required
PHD g's		9.08	not required
ASI		0.53	not required

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYJ-2

8.8 Load Cell and String Potentiometer Results

Tension load cell data was processed and analyzed. The maximum load values measured by the transducers are summarized in Table 15. The individual cable loads, along with the total combined cable load imparted to the upstream end anchor, were determined and are shown graphically in Figure 87.

Anchor displacement was also of primary concern in the evaluation of the three cable guardrail system. The displacement-time history of the upstream anchor is shown in Figure 87. The anchor on the upstream end had a maximum displacement of 0.54 in. (14 mm) at 0.294 sec after impact.

		Maximum	Cable Load	Time After	
Cable Location	Sensor Location	kips	kN	Impact (sec)	
Combined Cables	Upstream Anchor	26.98	120.01	0.224	
Top Cable	Upstream End	8.26	36.74	0.306	
Middle Cable	Upstream End	10.34	45.99	0.291	
Bottom Cable	Upstream End	18.63	82.87	0.199	

Table 15. Load Cell Results, Test No. NYJ-2

8.9 Discussion

The analysis of the test results for test no. NYJ-2 showed that the cable guardrail with ¹/₂in. (13-mm) diameter J-bolts and redesigned anchor post stub contained the 1500A vehicle. After impact, the vehicle remained engaged with cable guardrail and became trapped between the cables. The test vehicle did not underride, penetrate through, nor override the barrier but remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. However, cable slap contributed to significant windshield crush, which exceeded the maximum deformation allowed by MASH safety performance criteria. Therefore, test no. NYJ-2 was determined to be unacceptable according to the MASH safety performance criteria for the modified test designation no. 3-10.

8.10 Analysis of Test No. NYJ-2

Although the vehicle was captured during test no. NYJ-2, excessive occupant compartment deformations were observed. Those deformations were related to cable slap against the windshield and roof. Although similar deformations and cable slap were observed in test no. NYJ-1, it was uncertain whether that cable slap was related to cable release from upstream and downstream end fitters or if cable tension and cable-to-post attachment release was the primary contributor to cable slap.

In comparison with other low-tension, cable barrier full-scale crash tests, more highamplitude cable waves were observed during test nos. NYJ-1 and NYJ-2. It is believed that the increased wave amplitude may have occurred, in part, due to the large cable release loads from the S3x5.7 (S76x8.5) posts. The estimated vertical and horizontal release loads of the ½-in. (13mm) cable-to-post attachments were approximately 2,600 lb (11.6 kN) and 3,000 lb (13.3 kN), respectively, which was estimated by scaling results obtained from previous low-tension cableto-post attachment strengths for the increased bolt size [13]. Thus, vertical or horizontal loads had to exceed the estimated release loads before cables disengaged away from the posts. Those loads resulted from a combination of deflected cable geometries and increased cable tensions. Thus, high-amplitude bending oscillations were propagated between adjacent posts and the vehicle after cables released from the posts. Those bending waves contributed to the windshield crush in test no. NYJ-2.

Nonetheless, the bottom cable did not disengage away from the vehicle throughout impact, even though the middle and top cables slipped up the vehicle's hood and over the top of the vehicle. The 2006 Ford Taurus body style was associated with an elevated rate of penetrations as compared to other vehicles [5]. Thus, the continued engagement of the bottom cable throughout impact could help prevent cable barrier penetrations.

During test no. NYJ-2, the upstream hanger post buckled and bent toward impact. As a result, the angle between the cables and the cable anchor decreased from approximately 45 degrees to approximately 11 degrees. The change in cable approach angle to the anchor resulted in the threaded anchor rods bending at the cable anchor bracket bearing plate interface.

Significantly more anchor rod deformation occurred at the upstream anchor than the downstream anchor, as shown in Figure 88.

Test no. NYJ-2 was determined to be unsuccessful according to MASH due to occupant compartment deformations exceeding threshold limits. Nonetheless, the NYSDOT believed that if the system demonstrated potential to reduce passenger car underrides or through-cable penetrations, as well as pickup truck overrides, then the system warranted further consideration. It was believed that the system could be modified to improve impact performance with the passenger car, as long as the 2270P test successfully captured the vehicle. Therefore, the system was repaired, cable splices were re-set in cable end fittings, and test no. NYJ-3 was conducted with a 2270P vehicle in accordance with MASH test no. 3-11.

Test Agency. MwRSF Test Number NYJ-2 Date 8/14/2013 MASH Test Designation Modified 3-10 Test Article Cable Guardrail with ½-in. (13-mm) diameter J-Bolts Total Length 602.7 ft (183.7 m) Key Component – Cable 5ize Size 3x7, ¾-in. (19-mm) diameter Top Cable Height 17% in. (435 mm) Incremental Cable Spacing 6 in. (152 mm) Number of Cables		25.0' 17 18 19 M THE 1'-10" [0.6 m]	
Test Number	Test Agency		
Date	Test Number	NYJ-2	
MASH Test Designation.Modified 3-10Test ArticleCable Guardrail with ½-in. (13-mm) diameter J-BoltsTotal Length602.7 ft (183.7 m)Key Component – Cable37, ¾-in. (19-mm) diameterSize37, ¾-in. (19-mm) diameterTop Cable Height29/s in. (740 mm)Bottom Cable Height17/s in. (435 mm)Incremental Cable Spacing6 in. (152 mm)Number of Cables3Key Component - Post65 in. (1,651 mm)Length65 in. (1,651 mm)ShapeS3x5.7 (\$76x8.5) with soil plateSpacing16 ft (4.9 m)Soil TypeGrading B – AASHTO 147-65Vehicle Make/Model2006 Ford TaurusCurb3,189 lb (1,447 kg)Test Inertial3,254 lb (1,476 kg)Gross Static3,419 lb (1,551 kg)Impact Conditions51 m. (1651 mm) downstream of post no. 16Speed62.7 mph (100.9 km/h)Angle25.3 degImpact Severity (IS)78.0 kip-ft (105.8 kJ)Impact Severity (IS)Stayed in contact with systemVehicle StabilitySatisfactoryVehicle StabilitySatisfactoryVehicle DamageModerateVDS ¹¹¹ 11-FD-1CDC ¹¹²¹ 51-TTYYW-3st Article DeflectionsModeratewith With85.0 in. (2,159 mm)74. Summary of Test Results and Sequential Photographs, Test No. NY	Date		
Test Article Cable Guardrail with ½-in. (13-mm) diameter J-Bolts Total Length 602.7 ft (183.7 m) Key Component – Cable 3x7, ¾-in. (19-mm) diameter Top Cable Height 17% in. (435 mm) Incremental Cable Spacing 6 in. (152 mm) Number of Cables 3 Key Component - Post 65 in. (1,651 mm) Length 65 in. (1,651 mm) Shape S3x5.7 (S76x8.5) with soil plate Spacing 16 ft (4.9 m) Soil Type Grading B – AASHTO 147-65 Vehicle Make/Model 2006 Ford Taurus Curb 3,189 lb (1,447 kg) Test Inertial 3,254 lb (1,476 kg) Gross Static 3,419 lb (1,551 kg) Impact Conditions 5peed Speed .62.7 mph (100.9 km/h) Angle .25.3 deg Impact Severity (IS) .78.0 kip-ft (105.8 kJ) Impact Severity (IS) .82.3 ft (25.1 m) downstream of post no. 16 Exit Box Criterion Stayed in contact with system Vehicle Stability .82.3 ft (25.1 m) downstream of impact 22 in. (559 mm) laterally behind system Vehicle Damage .Moderate	MASH Test Designation.		
Total Length 602.7 ft (183.7 m) Key Component – Cable 3x7, ¾-in. (19-mm) diameter Top Cable Height 29% in. (740 mm) Bottom Cable Height 17% in. (435 mm) Incremental Cable Spacing 6 in. (152 mm) Number of Cables 3 Key Component - Post 65 in. (1,651 mm) Length 65 in. (1,651 mm) Shape S3x5.7 (S76x8.5) with soil plate Spacing 16 ft (4.9 m) Soil Type Grading B – AASHTO 147-65 Vehicle Make/Model 2006 Ford Taurus Curb 3,189 lb (1,447 kg) Test Inertial 3,254 lb (1,476 kg) Gross Static 3,419 lb (1,551 kg) Impact Conditions 25.3 deg Speed .62.7 mph (100.9 km/h) Angle .25.3 deg Impact Location .55 in. (1,651 mm) downstream of post no. 16 Exit Box Criterion Stayed in contact with system Vehicle Stability .22 in. (559 mm) laterally behind system Vehicle Damage .Moderate VDS ^[11] .11-FD-1 CDC ^[12] .51-TTYW-3 st Article Deflections	Test Article	Cable Guardrail with ¹ /2-in. (13-mm) diameter J-Bolts	
Key Component – Cable Size 3x7, ¾-in. (19-mm) diameter Top Cable Height	Total Length		
Size 3x7, ¾-in. (19-mm) diameter Top Cable Height 29% in. (740 mm) Bottom Cable Height 17% in. (435 mm) Incremental Cable Spacing 6 in. (152 mm) Number of Cables 3 Key Component - Post .65 in. (1,651 mm) Length .65 in. (1,651 mm) Shape .3x5.7 (S76x8.5) with soil plate Spacing .16 ft (4.9 m) Soil Type Grading B – AASHTO 147-65 Vehicle Make/Model .2006 Ford Taruus Curb 3189 lb (1,474 kg) Test Inertial 3,254 lb (1,476 kg) Gross Static 3419 lb (1,551 kg) Impact Conditions	Key Component – Cable		
Top Cable Height 29% in. (740 mm) Bottom Cable Height 17% in. (435 mm) Incremental Cable Spacing 6 in. (152 mm) Number of Cables 3 Key Component - Post 65 in. (1,651 mm) Length 65 in. (1,651 mm) Shape 53x5.7 (S76x8.5) with soil plate Spacing 16 ft (4.9 m) Soil Type Grading B – AASHTO 147-65 Vehicle Make/Model 2006 Ford Taurus Curb 3,189 lb (1,447 kg) Test Inertial 3,254 lb (1,476 kg) Gross Static 3,419 lb (1,551 kg) Impact Conditions 62.7 mph (100.9 km/h) Angle 25.3 deg Impact Location 65 in. (1,651 mm) downstream of post no. 16 Exit Box Criterion Stayed in contact with system Vehicle Stability Satisfactory Vehicle Damage Moderate VDS ¹¹¹ Cl-TYYW-3 st Article Damage Moderate uximum Test Article Deflections 82.0 in. (2,083 mm) Permanent Set NA Dynamic 82.0 in. (2,198 mm) Working Width 85.0 in. (2,159 mm)	Size		
Bortom Cable Height 17% in. (435 mm) Incremental Cable Spacing 6 in. (152 mm) Number of Cables 3 Key Component - Post 65 in. (1,651 mm) Length 65 in. (1,651 mm) Shape S3x5.7 (S76x8.5) with soil plate Spacing 16 ft (4.9 m) Soil Type Grading B – AASHTO 147-65 Vehicle Make/Model 2006 Ford Taurus Curb 3,189 lb (1,447 kg) Test Inertial 3,254 lb (1,476 kg) Gross Static 3,419 lb (1,551 kg) Impact Conditions 78.0 kip-ft (105.8 kJ) Speed 62.7 mph (100.9 km/h) Angle 25.3 deg Impact Severity (IS) 78.0 kip-ft (105.8 kJ) Impact Location Stayed in contact with system Vehicle Stability Satisfactory Vehicle Stopping Distance 82.3 ft (25.1 m) downstream of impact 22 in. (559 mm) laterally behind system Vehicle Damage Moderate VDS ^[11] 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Daflections 82.0 in. (2,083 mm) Permanent Set NA <tr< td=""><td>Top Cable Height.</td><td></td><td></td></tr<>	Top Cable Height.		
Incremental Cable Spacing	Bottom Cable Hei	ght	
Number of Cables 3 Key Component - Post	Incremental Cable	Spacing	
Key Component - Post Length	Number of Cables		
Length	Key Component - Post		
Shape	Length		
Spacing 16 ft (4.9 m) Soil Type Grading B – AASHTO 147-65 Vehicle Make/Model 2006 Ford Taurus Curb 3,189 lb (1,447 kg) Test Inertial 3,254 lb (1,476 kg) Gross Static 3,419 lb (1,551 kg) Impact Conditions 62.7 mph (100.9 km/h) Angle 25.3 deg Impact Severity (IS) 78.0 kip-ft (105.8 kJ) Impact Location 65 in. (1,651 mm) downstream of post no. 16 Exit Box Criterion Stayed in contact with system Vehicle Stability Satisfactory Vehicle Damage Moderate VDS ^[11] 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Damage Moderate vDS ^[11] Moderate vDS ^[11] Moderate vDS ^[11] 51-TYYW-3 st Article Deflections Moderate Permanent Set NA Dynamic 82.0 in. (2,083 mm) Working Width 85.0 in. (2,159 mm) 74. Summary of Test Results and Sequential Photographs, Test No. NY	Shape		
Soil Type Grading B – AASHTO 147-65 Maxin Vehicle Make/Model 2006 Ford Taurus Maxin Curb 3,189 lb (1,447 kg) Maxin Test Inertial 3,254 lb (1,476 kg) Maxin Gross Static 3,419 lb (1,551 kg) Maxin Impact Conditions 62.7 mph (100.9 km/h) Transc Angle 25.3 deg Transc Impact Severity (IS) 78.0 kip-ft (105.8 kJ) Transc Impact Location 65 in. (1,651 mm) downstream of post no. 16 Exit Box Criterion Satisfactory Vehicle Stability Satisfactory Vehicle Stability Moderate V2 in. (559 mm) laterally behind system Vehicle Damage Moderate VDS ^{[111} 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Deflections 82.0 in. (2,083 mm) Moderate vorting Width 85.0 in. (2,159 mm) 74. Summary of Test Results and Sequential Photographs, Test No. NY	Spacing		
Vehicle Make/Model 2006 Ford Taurus Curb 3,189 lb (1,447 kg) Test Inertial 3,254 lb (1,476 kg) Gross Static 3,419 lb (1,551 kg) Impact Conditions 52.7 mph (100.9 km/h) Angle 25.3 deg Impact Severity (IS) 78.0 kip-ft (105.8 kJ) Impact Location 65 in. (1,651 mm) downstream of post no. 16 Exit Box Criterion Stayed in contact with system Vehicle Stability 82.3 ft (25.1 m) downstream of impact 22 in. (559 mm) laterally behind system Vehicle Damage Moderate VDS ^[11] 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Damage Moderate ximum Test Article Deflections Moderate Permanent Set NA Dynamic 82.0 in. (2,083 mm) Working Width 85.0 in. (2,159 mm) 74. Summary of Test Results and Sequential Photographs, Test No. NY	Soil Type	Grading B – AASHTO 147-65	Movim
Curb 3,189 lb (1,447 kg) Test Inertial 3,254 lb (1,476 kg) Gross Static 3,419 lb (1,551 kg) Impact Conditions 5,27 mph (100.9 km/h) Angle 25.3 deg Impact Severity (IS) 78.0 kip-ft (105.8 kJ) Impact Location 65 in. (1,651 mm) downstream of post no. 16 Exit Box Criterion Stayed in contact with system Vehicle Stability 82.3 ft (25.1 m) downstream of impact 22 in. (559 mm) laterally behind system Vehicle Damage Moderate VDS ^[11] 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Damage Moderate ximum Test Article Deflections 82.0 in. (2,083 mm) Permanent Set NA Dynamic 85.0 in. (2,159 mm) 74. Summary of Test Results and Sequential Photographs, Test No. NY	Vehicle Make/Model		• Maxim
Test Inertial 3,254 lb (1,476 kg) Gross Static 3,419 lb (1,551 kg) Impact Conditions 527 mph (100.9 km/h) Angle 25.3 deg Impact Severity (IS) 78.0 kip-ft (105.8 kJ) Impact Location 65 in. (1,651 mm) downstream of post no. 16 Exit Box Criterion Stayed in contact with system Vehicle Stability Satisfactory Vehicle Stopping Distance 82.3 ft (25.1 m) downstream of impact 22 in. (559 mm) laterally behind system Vehicle Damage Moderate VDS ^[111] 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Damage Moderate ximum Test Article Deflections Moderate Permanent Set NA Dynamic 82.0 in. (2,083 mm) Working Width 85.0 in. (2,159 mm) 74. Summary of Test Results and Sequential Photographs, Test No. NY	Curb		• Maxim
Gross Static	Test Inertial		1 1
Impact Conditions Speed	Gross Static		1
Speed	Impact Conditions		• Tronadu
Angle 25.3 deg Impact Severity (IS) 78.0 kip-ft (105.8 kJ) Impact Location 65 in. (1,651 mm) downstream of post no. 16 Exit Box Criterion Stayed in contact with system Vehicle Stability Satisfactory Vehicle Stopping Distance 82.3 ft (25.1 m) downstream of impact 22 in. (559 mm) laterally behind system Vehicle Damage Moderate VDS ^[11] 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Damage Moderate uximum Test Article Deflections Moderate Permanent Set NA Dynamic 82.0 in. (2,083 mm) Working Width 85.0 in. (2,159 mm) 74. Summary of Test Results and Sequential Photographs, Test No. NY	Speed		• Transuu
Impact Severity (IS)	Angle		
Impact Location	Impact Severity (I	S)78.0 kip-ft (105.8 kJ)	
Exit Box Criterion	Impact Location		
Vehicle Stability Satisfactory Vehicle Stopping Distance 82.3 ft (25.1 m) downstream of impact 22 in. (559 mm) laterally behind system Vehicle Damage Moderate VDS ^[11] 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Damage Moderate uximum Test Article Deflections NA Permanent Set NA Dynamic 82.0 in. (2,083 mm) Working Width 85.0 in. (2,159 mm) 74. Summary of Test Results and Sequential Photographs, Test No. NY	Exit Box Criterion	Stayed in contact with system	
Vehicle Stopping Distance	Vehicle Stability	Satisfactory	
Vehicle Damage Moderate VDS ^[11] 11-FD-1 CDC ^[12] 51-TYYW-3 st Article Damage Moderate aximum Test Article Deflections NA Permanent Set NA Dynamic 82.0 in. (2,083 mm) Working Width 85.0 in. (2,159 mm) 74. Summary of Test Results and Sequential Photographs, Test No. NY	Vehicle Stopping Distance	ce	
VDS ^[11]	Vehicle Damage		
CDC ^[12]	VDS ^[11]		
st Article DamageModerate aximum Test Article Deflections Permanent SetNA DynamicNA Working Width	CDC ^[12]		
Aximum Test Article Deflections Permanent SetNA DynamicNA Working Width	st Article Damage		
Permanent SetNA DynamicNA Working Width	aximum Test Article Defle	ctions	
Dynamic	Permanent Set	NA	
Working Width	Dynamic		
74. Summary of Test Results and Sequential Photographs, Test No. NY	Working Width		
	74. Summary of	Test Results and Sequential Photogra	phs, Test No. NY

33" [838] DETAIL H SECTION

- - Maximum Angular Displacements

Pitch	 -2.9° < 1	75°
Yaw	 	3.1°

Transducer Data

Evaluation Criteria		DTS	Mash Limit
OIV	Longitudinal	-15.98 (-4.87)	≤ 40 (12.2)
(m/s)	Lateral	-3.81 (1.16)	≤ 40 (12.2)
ORA	Longitudinal	-6.84	≤ 20.49
g's	Lateral	-10.91	\leq 20.49
THIV	THIV – ft/s (m/s)		not required
PI	HD – g's	9.08	not required
	ASI	0.53	not required

May 29, 2014 MwRSF Report No. TRP-03-299-14

0.060 sec

0.102 sec

0.210 sec

0.288 sec

0.000 sec

0.058 sec

0.118 sec

0.174 sec

0.254 sec

0.386 sec

Figure 75. Sequential Photographs, Test No. NYJ-2

Figure 76. Additional Sequential Photographs, Test No. NYJ-2

Figure 77. Impact Location, Test No. NYJ-2

Figure 78. Vehicle Final Position, Test No. NYJ-2

Figure 79. Upstream Anchor Damage, Test No. NYJ-2

Figure 80. Downstream Anchor Damage, Test No. NYJ-2

Figure 81. Post Damage in Impact Region, Test No. NYJ-2

Figure 82. Post Damage for Post Nos. 1, 16, 17, and 18, Test No. NYJ-2

Figure 83. Post Damage for Post Nos. 19, 20, 21, and 40, Test No. NYJ-2

Figure 84. J-Bolt Damage at Post Nos. 18 and 19, Test No. NYJ-2

Figure 85. Vehicle Damage, Test No. NYJ-2

Figure 86. Vehicle Damage, Test No. NYJ-2

Figure 87. Load Cell and String Pot Plots, Test No. NYJ-2

Figure 88. Top, Middle, and Bottom Cable Barrier Termination Threaded Rods for Upstream and Downstream Anchors
9 FULL-SCALE CRASH TEST NO. NYJ-3

9.1 Static Soil Test

Before full-scale crash test no. NYJ-3 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix D, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

9.2 Test No. NYJ-3

The 5,173-lb (2,346-kg) pickup truck impacted the cable guardrail system at a speed of 62.9 mph (101.2 km/h) and at an angle of 26.9 degrees. A summary of the test results and sequential photographs are shown in Figure 89. Additional sequential photographs are shown in Figures 90 and 91.

9.3 Weather Conditions

Test no. NYJ-3 was conducted on September 25, 2013 at approximately 12:00 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 16.

Temperature	76°F
Humidity	56%
Wind Speed	11 mph
Wind Direction	Variable
Sky Conditions	Clear
Visibility	8 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.25 in.

Table 16. Weather Conditions, Test No. NYJ-3

9.4 Test Description

Initial vehicle impact was to occur 12 in. (305 mm) upstream from post no. 17, as shown in Figure 92, which was selected based on MASH recommendations. The actual point of impact was at the targeted impact point. A sequential description of the impact events is contained in Table 17. The vehicle came to rest 142 ft – 1 in. (43.3 m) downstream from impact and 40 ft – 1 in. (12.2 m) laterally behind the system. The vehicle trajectory and final position are shown in Figures 89 and 93.

TIME (sec)	EVENT
0.000	The vehicle impacted system.
0.020	The vehicle's left-front bumper contacted post no. 17 and deformed.
0.024	Post no. 17 deflected backward and twisted downstream.
0.028	Vehicle's left-front tire deflated due to contact with upstream front flange of post no. 17.
0.032	The top and middle cables disengaged from post no. 17.
0.058	Post nos. 16 and 18 began to deflect backward.
0.098	The vehicle's left headlight disengaged.
0.140	The top and middle cables disengaged from J-bolt on post no. 18.
0.152	Post no. 15 deflected backward.
0.156	Post no. 19 deflected and rotated backward.
0.170	Post no. 14 deflected backward.
0.176	The vehicle overrode post no. 18.
0.184	The top and middle cables disengaged from post no. 19.
0.200	Post no. 20 rotated backward.
0.226	Post no. 21 deflected backward.
0.268	The vehicle began to roll toward the barrier.
0.274	The vehicle began to yaw away from the barrier.
0.308	The middle cable disengaged from post no. 20.
0.336	The top and bottom cables disengaged from post no. 20.
0.372	The middle cable failed.

Table 17. Sequential Description of Impact Events, Test No. NYJ-3

TIME (sec)	EVENT		
0.436	The top cable failed.		
0.438	The bottom cable disengaged from post no. 19.		
0.466	The middle and bottom cables disengaged from post no. 16.		
0.468	The vehicle was parallel with the system.		
0.482	The bottom cable wrapped around the right-rear tire and caused it to become airborne.		
0.486	The vehicle's left headlight disengaged.		
0.678	The top cable began sliding over roof of vehicle.		
0.698	The top and bottom cables disengaged from post no. 21.		
0.700	The end fitting fractured, causing the bottom cable to release.		
0.706	The top cable contacted the roof of vehicle.		
0.734	The vehicle began to yaw toward the barrier.		
1.174	The top and middle cables disengaged at post no. 22		
1.396	All three cables disengaged from post no. 23.		

9.5 Barrier Damage

Damage to the barrier was severe, as shown in Figures 94 through 97. Barrier damage consisted of fractured J-bolts, deformed posts, and disengaged cables. The permanent set, dynamic deflection, and working width were not recorded due to failure of the cable guardrail system. The permanent displacement of the upstream anchors was 0.15 in. (4 mm).

The top cable disengaged from the upstream and downstream anchors, post nos. 1, 17 through 26, 39, and 40. The middle cable disengaged from post nos. 17 through 26, 38 through 40, and the downstream anchor. The bottom cable disengaged from post nos. 1, 4 through 6, 17 through 21, and 40. J-bolts fractured at the middle cable of post no. 19, the middle cable of post no. 20, the top cable of post no. 23, and the middle cable of post no. 24.

The top cable anchor rod fractured at the upstream anchor. Also, the bottom and middle cable anchor rods bent at the upstream anchor. The anchor rods for the top and middle cables fractured at the downstream anchor. The bottom anchor rod bent at the downstream anchor.

The cables slipped in several cable splices. The largest cable movement occurred in the bottom cable. The bottom cable experienced a 1-in. (25-mm) end fitting slip at the upstream load cells between post nos. 3 and 4. The bottom cable also slipped 1/16 in. (2 mm) at the end fittings located at the upstream anchor, at the splice between post nos. 20 and 21, and at the downstream anchor. Middle cable end fitting slip was 3/16 in. (5 mm) at the upstream anchor, 1/16 in. (2 mm) at the upstream load cells, and 1/4 in. (6 mm) and 1/8 in. (3 mm) on the upstream and downstream end fittings of the splice between post nos. 20 and 21. Top cable end fitting slip was 1/16 in. (2 mm) at both the splice between post nos. 20 and 21 and at the downstream anchor.

Post no. 1 bent at the post base and twisted downstream, and buckling occurred at the bottom of the post. Post nos. 4, 6, and 10 bent and twisted downstream. Post nos. 15 through 17 bent and twisted upstream. Post nos. 18 through 25 and 28 bent backward and downstream. Post nos. 35 and 37 through 40 bent and twisted upstream.

9.6 Vehicle Damage

The damage to the vehicle was minimal, as shown in Figures 98 and 99. The maximum occupant compartment deformations are listed in Table 18 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the maximum deformation values exceeded MASH established deformation limits. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	¹ /2 (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	¹ ⁄ ₄ (6)	≤12 (305)
Side Front Panel (in Front of A-Pillar)	0 (0)	≤12 (305)
Side Door (Above Seat)	¹ ⁄ ₄ (6)	≤ 9 (229)
Side Door (Below Seat)	0 (0)	≤12 (305)
Roof	0 (0)	\leq 4 (102)
Windshield	0 (0)	≤ 3 (76)

Table 18. Maximum Occupant Compartment Deformations by Location

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. The left-front headlight was broken, and cable striations occurred along the left side of the vehicle. The left-front tire was deflated, and a 12-in. (305-mm) long gouge was observed near the bottom of the left-rear door. A ¹/₄-in. (6-mm) gap was observed at the top of the front left-side door. A gouge was also observed near the front of the front door.

Both front headlights were disengaged and striations, dents, and a gouge were observed on the left-front bumper. A 4-in. (102-mm) crack occurred in the lower-center of the grill, and striations were observed along the top of the grill from the top cable. The right-front fender was dented and gouged from the cables as well.

A large dent occurred in the right-front door, extending the length of the door at the bottom. Cable striations occurred on the right-rear door, and a ¹/₂-in. (13-mm) gap was found at the top of the right-front door. The right-rear tire was deflated.

9.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 19. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 19. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 89. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix H.

Evaluation Criteria		Transducer			MASH	
		DTS	SLICE	EDR-3	Limits	
OIV	Longitudinal	-9.21 (-2.81)	-10.54 (-3.21)	-10.97 (-3.34)	≤ 40 (12.2)	
ft/s (m/s)	Lateral	9.03 (2.75)	9.62 (2.93)	8.06 (2.46)	≤40 (12.2)	
ORA	Longitudinal	-5.94	-6.07	4.93	≤20.49	
g's	Lateral	4.03	3.96	-3.37	\leq 20.49	
T ft/s	THIV 12.73 13.32 ft/s (m/s) (3.88) (4.06)		THIV ft/s (m/s)		NA	not required
PHD g's		5.94	6.07	NA	not required	
ASI		0.29	0.30	0.34	not required	

Table 19. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYJ-3

9.8 Load Cell and String Potentiometer Results

Tension load cells were installed within the cables at the upstream end of the system in order to monitor the total load transferred to the anchor. The maximum load values measured by the transducers are summarized in Table 20. The individual cable loads, along with the total combined cable load imparted to the upstream end anchor, are shown graphically in Figure 100.

Upstream anchor displacement was also tracked using a string potentiometer. The displacement-time history of the upstream anchor is also shown in Figure 100. The anchor on the upstream end had a maximum displacement of 0.15 in. (4 mm).

		Maximum	Time After		
Cable Location	Sensor Location	kips	kN	Impact (sec)	
Combined Cables	Upstream Anchor	32.42	144.21	0.310	
Top Cable	Upstream End	12.91	57.43	0.312	
Middle Cable	Upstream End	17.64	78.47	0.309	
Bottom Cable	Upstream End	18.11	80.56	0.676	

Table 20. Load Cell Results, Test No. NYJ-3

9.9 Discussion

The cable guardrail with ½-in. (13-mm) diameter J-bolts and redesigned anchor post stub did not adequately contain the 2270P vehicle in test no. NYJ-3. The cable system ruptured after the vehicle impacted the system and several threaded end termination rods fractured. The test vehicle remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix H, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. Therefore, test no. NYJ-3 was determined to be unacceptable according to the MASH safety performance criteria for the test designation no. 3-11.

9.10 Analysis of Test No. NYJ-3

Test results from test no. NYJ-3 were analyzed to determine what modifications, if any, could be made leading to successful performance of the low-tension, three-cable roadside barrier.

Two factors were determined to contribute to the failure of test no. NYJ-3: (1) the upstream and downstream cable hanger posts bent toward impact and released the cables and (2) the threaded rods at the end terminations were partially constrained against rotation by the tops of the threaded J-hooks and nuts that are used to attach the cable anchor bracket to the concrete block.

After the hanger posts buckled and bent downstream, the angle formed between the cables and the anchor bracket was reduced. The top, middle, and bottom cable pre-test approach angles transitioned from 43, 36, and 26 degrees, to 7, 5, and 3 degrees, respectively, after the hanger post buckled and released the cables. The top, middle, and bottom cables therefore experienced 36, 31, and 23 degrees changes in approach angles, respectively. The anchor rods were bent due to the contributions of the cable tension, angled cable anchor plate, and partial constraint against rotation due to the presence of the vertical J-hooks and nuts. The threaded anchor rods are shown in Figure 101 and Figure 102. Figure 103 provides a schematic representation of the forces acting on the threaded anchor rods and indicates how the interference with the J-hook anchor bolts can significantly increase the bending stresses.

Several threaded end termination rods fractured due to the cable ends being constrained by the threaded J-hooks in the concrete anchor block. It was believed that if the height of the Jhooks in the end anchorage were reduced, and if the hanger post had not bent toward impact, the cable ends may not have fractured. The cable threaded ends may have been constrained against rotation during test nos. NYJ-1 and NYJ-2 as well. Recall, 4 of 6 anchor rods were bent in test no. NYJ-2. Cable tensions never reached maximum levels during test no. NYJ-1 due to failure of the end fittings and splices.

Figure 89. Summary of Test Results and Sequential Photographs, Test No. NYJ-3

140

May 29, 2014 MwRSF Report No. TRP-03-299-14

Figure 90. Sequential Photographs, Test No. NYJ-3

Figure 91. Additional Sequential Photographs, Test No. NYJ-3

Figure 92. Impact Location, Test No. NYJ-3

Figure 93. Vehicle Final Position, Test No. NYJ-3

Figure 94. Upstream Anchor Damage, Test No. NYJ-3

Figure 95. Downstream Anchor Damage, Test No. NYJ-3

Figure 96. Post Damage in Impact Region, Test No. NYJ-3

Figure 97. Cable End Fitting Damage, Test No. NYJ-3

Figure 98. Vehicle Damage, Test No. NYJ-3

Figure 99. Vehicle Damage, Test No. NYJ-3

May 29, 2014 MwRSF Report No. TRP-03-299-14

Figure 100. Load Cell and String Pot Plots, Test No. NYJ-3

(a) Before Impact

(b) After Impact

(a) Before Impact

(b) After Impact

Figure 103. Effect of Constrained Cable Ends on Threaded Rod Deformation

10 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

10.1 Summary

The objectives of the research project were to: (1) determine whether the use of stronger J-bolts can reduce dynamic deflections for NYSDOT's standard, three-strand, cable guide rail system; (2) determine whether the use of stronger J-bolts can increase the likelihood of capturing small car passenger vehicles with low-profile, aerodynamic front ends, particularly those that are braking; (3) determine whether the use of stronger J-bolts can decrease the propensity of barrier override for light truck passenger vehicles and/or increase vehicle decelerations with cables more firmly attached to the support posts; (4) verify that the proposed revisions to the cable barrier system do not result in any MASH TL-3 crash criteria failures or maintenance problems; (5) determine the maximum dynamic barrier deflection for the baseline, three-strand, cable barrier system with an overall system length in excess of 600 ft (183 m); (6) develop a stiffened stub design for the end posts that will limit damage to acceptable amounts; and (7) estimate the amount of bumper drop due to vehicular braking prior to impact.

The New York State Department of Transportation three-cable guardrail system was constructed and modified to use $\frac{1}{2}$ -in. (13-mm) diameter cable-to-post attachment bolts (i.e., J-bolts) in lieu of the standard $\frac{5}{16}$ -in. (8-mm) diameter J-bolts. It was evaluated according to MASH TL-3 requirements using three full-scale crash tests, two modified test designation no. 3-10 using a fully-braked 1500A test vehicle in lieu of a standard free-wheeling 1100C small car vehicle and one test designation no. 3-11. The Ford Taurus 1500A mid-size vehicle was selected due to its sharp-nosed profile, increased mass, and its involvement in a high percentage of cable barrier penetration crashes [5]. The guardrail system also utilized a modified cable hanger post stub that was capable of being re-used after an impact event. A summary of the safety performance evaluations is shown in Table 21.

|--|

Evaluation Factors	Evaluation Criteria			Test No. NYJ-1	Test No. NYJ-2	Test No. NYJ-3	
Structural Adequacy	А.	Test article should contain and controlled stop; the vehicle sh installation although controlled la	U	S	U		
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.			U	U	S
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				S	S
Occupant Risk	Н.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:					
		Occupant Impact Velocity Limits				S	S
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)			
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:					
		Occupant F	S	S	S		
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			
MASH Test Designation				Modified 3-10	Modified 3-10	Modified 3-11	
Pass/Fail				Fail	Fail	Fail	
S – Satisfactory U – Unsatisfactory NA - Not Applicable						<u> </u>	

156

May 29, 2014 MwRSF Report No. TRP-03-299-14 Vehicle braking during test nos. NYJ-1 and NYJ-2 were intended to evaluate the probability of vehicle penetration by maximizing forward pitch just before impact. In preparation for the full-scale crash tests, thirteen vehicle braking tests were performed with a 2006 Ford Taurus. Onboard accelerometers and a rate gyro were used to record frontal pitch, and high-speed digital video was also collected to back up rate transducer data. On the concrete tarmac, the average power-assisted, ABS-enabled brake coefficient was 0.858, but the hydraulically-actuated, remotely-controlled piston which depressed the brake pedal of non-power assisted, non-ABS only developed a coefficient of 0.677. The braking coefficient of friction on soil was 0.441 with power-assisted brakes and ABS enabled, and 0.656 without power-assisted brakes or ABS. The quasi-equilibrium vehicle pitch at maximum brake force was approximately 2 degrees when the vehicle was fully braked, and the corresponding front-end dive was between 1.7 and 2.0 in. (43 and 51 mm). In each test, the brake force ramped up for approximately 0.25 sec, and then remained approximately static. The initial peak pitch angle occurred between 0.30 and 0.48 sec, and occurred later for tests occurring on concrete than soil.

In test no. NYJ-1, a 3,294-lb (1,494-kg) passenger car impacted the cable guardrail system at a speed of 62.7 mph (100.9 km/h) and at an angle of 25.5 degrees. Prior to impact, the brakes on the vehicle were activated, and the front end pitched downward. The approximate vehicle pitch at impact was 2.2 degrees. During test no. NYJ-1, all cables released from various wedge-end fittings throughout the system. As a result, the vehicle was not captured or redirected and came to rest behind the system. An analysis of data collected in the test indicated that the cable end fittings likely released due to three factors, or combinations thereof: (1) wires were not bent over the wedges in the end fittings; (2) multiple cycles of low-load tensioning between 0 and 1,000 lb (0 and 4.4 kN) occurred prior to testing and as part of other evaluation processes and likely loosened the wedges; and (3) cable release loads away from the posts were amplified

due to stronger cable-to-post attachments. Test installation methods were altered to alleviate wedge disengagement while still evaluating the performance of the ¹/₂-in. (13-mm) diameter cable-to-post attachments.

Prior to test no. NYJ-2, a chisel and sledge hammer were used to pound wedges into the cable ends, wires were bent over the wedges, and the number of cable end fittings in the system were reduced. In test no. NYJ-2, a retest of test no. NYJ-1, a 3,419-lb (1,551-kg) passenger car impacted the cable guardrail system at a speed of 62.7 mph (100.9 km/h) and at an angle of 25.3 degrees, and was fully-braked before impact. The downward pitch was approximately 2.9 degrees at impact. The vehicle was successfully captured and came to rest within the system. Windshield crush of 4½ in. (114 mm) was found to exceed MASH limits of 4 in. (102 mm), and failed to minimize adverse risk to impacting vehicles. However, the bottom cable was engaged with the car throughout the impact event.

In test no. NYJ-3, a 5,173-lb (2,346-kg) pickup truck impacted the cable guardrail system at a speed of 62.9 mph (101.2 km/h) and at an angle of 26.9 degrees. Shortly after impact, hanger post nos. 1 and 39 bent toward impact. At the upstream terminal, the top cable threaded rod fractured, and the middle and bottom cable threaded rods bent. At the downstream terminal, the top and middle cable threaded rods fractured, and the bottom cable threaded rod bent. The bottom cable was released when the wedge end fitting just downstream of the load cell fractured. Therefore, the cables did not remain engaged with the pickup truck, and the pickup truck came to rest behind the system.

Because the pickup truck was not redirected during test no. NYJ-3, the maximum dynamic deflections of the modified system could not be determined. As a result, the capacity of the cable barrier system with J-bolts to redirect a pickup truck and reduce deflections were inconclusive. The middle and top cables both engaged the bumper of the pickup truck and

remained engaged until the cable anchor rods fractured. Even though the middle cable was significantly below the top bumper height, the cables maintained their height and seated into the pliable bumper cover. However, due to the unsuccessful performance of the strong J-bolt cable system, NYSDOT decided to forego evaluating the standard three-cable system according to MASH.

The modified hanger post stub was not damaged in test nos. NYJ-1 through NYJ-3. The hanger posts plastically yielded and bent over in each test. After each test, the stub was examined for cracking in the weld, plastic deformation or bending, and/or other damage, but no damage was observed after each crash test.

10.2 Conclusions

Based on test results, the threaded cable anchor rod failures were determined to be caused by two factors: (1) the upstream and downstream cable hanger posts bent downward toward impact and released the cables and (2) the threaded cable anchor rods were restrained against rotation by the threaded J-hook ends and nuts extending from the concrete anchor block. The deformation of the hanger post and tension in the cables contributed to plastic bending and large tensile strains on the top surface of the threaded cable anchor rods. It is possible that the anchor rods may not have fractured if the threaded ends were free to rotate instead of being constrained by the threaded J-hook ends and nuts.

Based on high-speed video analysis, test results suggested that if the threaded cable anchor rods had not fractured and released from the anchor plate in test no. NYJ-3, it is likely that the pickup would have been satisfactorily redirected. Increased lateral cable release loads may improve vehicle capture in future applications.

In comparison to prior full-scale tests with low-tension, cable barriers, more highfrequency cable tension waves were observed during test nos. NYJ-1 through NYJ-3. It is believed that the increased tension may have occurred, in part, due to large cable release loads away from the S3x5.7 (S76x8.5) posts. The estimated vertical and horizontal release loads of the ½-in. (13-mm) diameter cable-to-post attachments were approximately 2,600 lb (11.6 kN) and 3,000 lb (13.3 kN), respectively, based on results from previous low-tension cable-to-post attachment testing [13]. Those loads resulted from a combination of deflected cable geometries and increased cable tensions. After the cables released from the posts, high-amplitude bending waves were propagated between adjacent posts and the vehicle and contributed to the windshield crush in test no. NYJ-2.

Despite an adverse reaction from large cable-to-post attachment release loads for the upper and middle cables, the increased cable-to-post attachment release loads allowed the bottom cable to engage the vehicle below the headlight and remain engaged with the vehicle throughout test no. NYJ-2. In addition, during test no. NYJ-3, the middle cable engaged the pickup truck's bumper and remained engaged until the cable anchor rod fractured. Therefore, increased cable-to-post attachment strength of lower cables may be beneficial for decreasing cable barrier penetrations. Varied cable-to-post attachment strength for each cable has the potential to improve the performance of low-tension cable barrier systems [5]. Nonetheless, the modified three-cable, low-tension cable barrier system with ½-in. (13-mm) diameter cable-to-post attachments was determined to be unsuccessful according to MASH TL-3 safety performance criteria.

10.3 Recommendations

Several solutions were evaluated which could reduce or eliminate some issues observed with the performance of the cable end anchorage. First, the J-hook studs used to secure the cable anchor bracket to the concrete anchor could be modified to not conflict with the threaded cable end terminations. Second, the location of the cable hanger post could be shifted downstream to decrease the effective angle change in the cables between the bracket and the first terminal post. MwRSF successfully tested a low-tension cable guardrail terminal design, with a hanger post spaced approximately 5 ft (1.5 m) from the anchor, without observing hanger post failure [14]. Lastly, testing is recommended on a modified NYSDOT cable guardrail system which utilizes $\frac{1}{2}$ -in. (13-mm) diameter cable-to-post attachments only with the bottom cable. Both middle and top cables should utilize $\frac{5}{16}$ -in. (8-mm) diameter attachments.

11 REFERENCES

- 1. Ray, M.H. and Weir, J.A., In-Service Performance Evaluation of Post-And-Beam Guardrails in Connecticut, Iowa, and North Carolina, Worcester Polytechnic Institute, February 28, 1999.
- 2. Chandler, B., *Eliminating Cross-Median Fatalities*, Transportation Research News, Issue 248, January-February 2007, pp. 29-31.
- 3. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 4. Schmidt, T.L., Meyer, C.L., Bielenberg, R.W., Lechtenberg, K.A., Faller, R.K., Reid, J.D., and Sicking, D.L., *Evaluation of the New York Low-Tension Three-Cable Barrier on Curved Alignment*, Final Report to the New York State Department of Transportation, Transportation Research Report No. TRP-03-263-12, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, February 19, 2013.
- 5. Stolle, C.S., <u>Cable Median Barrier Failure Analysis and Remediation</u>, Doctoral Dissertation, University of Nebraska-Lincoln, Lincoln, Nebraska, December 2012.
- 6. "Cable Guard Railing," Drawing No. 606-01, State of New York Department of Transportation, September 6, 2012.
- 7. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 8. *Center of Gravity Test Code SAE J874 March 1981,* SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 9. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- Kampschneider, L.R., Lechtenberg, K.A., Bielenberg, R.W., Reid, J.D., Homan, D.M., Faller, R.K., Sicking, D.L., and Rosenbaugh, S.K., *Evaluation of a Non-Proprietary, High-Tension, Four-Cable Median Barrier on Level Terrain*, Final Report to the Midwest States Regional Pooled Fund Program, Transportation Research Report No. TRP-03-258-12, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, November 29, 2012.
- 11. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 12. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

- 13. Reid, J.D., and Coon, B.A., *Finite Element Modeling of Hook Bolts*, <u>7th International LS-</u> <u>DYNA Users Conference</u>, Dearborn, MI, May 19-21, 2002.
- Hitz, R.A., Molacek, K.J., Stolle, C.S., Polivka, K.A., Faller, R.K., Rohde, J.R., Sicking, D.L., Reid, J.D., and Bielenberg, R.W., *Design and Evaluation of a Low-Tension Cable Guardrail End Terminal System*, Final Report to the Midwest States Regional Pooled Fund Program, MwRSF Report No. TRP-03-131-08, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, July 2008.

12 APPENDICES

Appendix A. Vehicle Braking Test Results

Figure A-1. CFC180 Longitudinal Acceleration, 30-mph (48-km/h) Tests on Concrete

Figure A-2. Vehicle Speed, 30-mph (48-km/h) Tests on Concrete

Pitch Angle

Figure A-3. Vehicle Pitch Angle, 30-mph (48-km/h) Tests on Concrete

Figure A-4. Pitch vs. Displacement, 30-mph (48-km/h) Tests on Concrete

Figure A-5. CFC180 Longitudinal Acceleration, 30-mph (48-km/h) Tests on Soil

Figure A-6. Vehicle Speed, 30-mph (48-km/h) Tests on Soil

Figure A-7. Pitch Angle, 30-mph (48-km/h) Tests on Concrete

Figure A-8. Pitch vs. Displacement, 30-mph (48-km/h) Tests on Soil

Figure A-9. CFC180 Longitudinal Acceleration, 60-mph (97-km/h) Tests on Concrete

Figure A-10. Vehicle Speed, 60-mph (97-km/h) Tests on Concrete

Figure A-11. Pitch Angle, 60-mph (97-km/h) Tests on Concrete

Figure A-12. Pitch vs. Displacement, 60-mph (97-km/h) Tests on Concrete

Appendix B. Vehicle Center of Gravity Determination

Test: NYJ-1	Vehicle: Taurus			
	Vehicle CG Determination Weight			
VEHICLE	Equipment	(lb)		
+	Unbalasted Car (curb)	3179		
+	Brake receivers/wires	9		
+	Brake Frame	11		
+	Brake Cylinder	22		
+	Strobe Battery	7		
+	Hub	20		
+	CG Plate (EDRs)	10		
+	DTS	17		
-	Battery	-31		
-	Oil	-5		
-	Interior	-27		
-	Fuel	0		
-	Coolant	-18		
-	Washer fluid	-4		
BALLAST	Water	106		
	Misc.			
	Misc.			

Estimated Total Weight

3296 lb

wheel base	108.5	in.		
MASH targets			Test Inertial	Difference
Test Inertial Wt (lb)		3300 (+/-)220	3296	-4.0
Long CG (in.)		N/A	40.12	NA
Lateral CG (in.)		N/A	-0.07468	NA

Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)]
	Left		Right	
Front		1051	1053	3
Rear		537	538	3
FRONT		2104	lb	
REAR		1075	lb	
TOTAL		3179	lb	

Dummy = 166lbs.						
TEST INERTIAL WEIGHT (Ib)						
(from scales)						
Left Right						
Front		1042		1034		
Rear		609		609		
FRONT		2076	lb			
REAR		1218	lb			
TOTAL		3294	lb			

Figure B-1. Vehicle Mass Distribution, Test No. NYJ-1

Test: NYJ-2	Vehicle: Taurus		
	Vehicle C	G Determination	
		Weight	
VEHICLE	Equipment	(lb)	
+	Unbalasted Car (curb)	3189	
+	Brake receivers/wires	9	
+	Brake Frame	11	
+	Brake Cylinder	28	
+	Strobe Battery	5	
+	Hub	20	
+	CG Plate (EDRs)	10	
+	DTS	17	
-	Battery	-32	
-	Oil	-6	
-	Interior	-57	
-	Fuel	0	
-	Coolant	-19	
-	Washer fluid	-4	
BALLAST	Water	77	
	Misc.		
	Misc.		

Estimated Total Weight

3248 lb

wheel base	108.75	in.		
MASH targets			Test Inertial	Difference
Test Inertial Wt (lb)		3300 (+/-)220	3248	-52.0
Long CG (in.)		N/A	39.77	NA
Lateral CG (in.)		N/A	0.412415	NA

Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)					
	Left		Right		
Front		1054		1044	
Rear		533		558	
FRONT		2098	lb		
REAR		1091	lb		
TOTAL		3189	lb		

Dummy = 162lbs.						
TEST INE	TEST INERTIAL WEIGHT (Ib)					
(from scales)						
	Left		Right	:		
Front		1020		1044		
Rear		585		605		
			_			
FRONT		2064	lb			
REAR		1190	lb			
TOTAL		3254	lb			

Figure B-2. Vehicle Mass Distribution, Test No. NYJ-2

Test:	NYJ-3	Vehicle:	Ram 1500		
		Vehicle CG Determination			
			Weight	Vert CG	Vert M
	VEHICLE	Equipment	(lb)	(in.)	(lb-in.)
	+	Unbalasted Truck (Curb)	5016	28.30313	141968.5
	+	Brake receivers/wires	6	52	312
	+	Brake Frame	9	26	234
	+	Brake Cylinder (Nitrogen)	28	27.5	770
	+	Strobe/Brake Battery	6	32	192
	+	Hub	27	15	405
	+	Data recorders	8	33.5	268
	-	Battery	-42	41.5	-1743
	-	Oil	-5	15.5	-77.5
	-	Interior	-64	24	-1536
	-	Fuel	-152	18	-2736
	-	Coolant	-13	36	-468
	-	Washer fluid	-2	40	-80
	BALLAST	Water	181	18	3258
		Misc.			0
		Misc.			0
					140767

Estimated Total Weight (lb) 5003 Vertical CG Location (in.) 28.13652

wheel base (in.)	140.5		
MASH Targets	Targets	Test Inertial	Difference
Test Inertial Weight (lb)	5000 ± 110	5006	6.0
Long CG (in.)	63 ± 4	64.64	1.63674
Lat CG (in.)	NA	0.080903	NA
Vert CG (in.) ≥	28	28.14	0.13652

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)			
	Left	Rig	ht
Front		1437	1316
Rear		1144	1119
FRONT		2753 lb	
REAR		2263 lb	
TOTAL		5016 lb	

TEST INERTIAL WEIGHT (Ib)						
(from scales)						
	Left		Right			
Front		1361	1342			
Rear		1136	1167			
FRONT		2703	lb			
REAR		2303	lb			
TOTAL		5006	lb			

Figure B-3. Figure 104. Vehicle Mass Distribution, Test No. NYJ-3

Appendix C. Material Specifications

Item No.	Description	Material Spec	Reference	Test
a1	S3x5.7 [S76x8.5] 29 3/4" [756] Long Anchor Post	ASTM A36 Galv.	H#23898	NYJ-1 thru 3
a2	3/4" [19] Dia. UNC, Hooked Anchor J-Bolt and Nut	ASTM A307 Gr. C and ASTM A563 DH Galv.	LOT#170277	NYJ-1 thru 3
a3	3/16" [5] Dia. 5 1/4" [133] Long Brass Rod	ASTM B16-00	COC#1175759108	NYJ-1 thru 3
a4	3/4" [19] Dia. Plain Round Washer (OD 1.5" [38])	ASTM F844/SAE Gr. 2	COC#1175759108	NYJ-1 thru 3
a5	W4x13 [W102x19.3] Anchor Post Stub	ASTM A36 Galv.	H#22479840	NYJ-1 thru 3
a6	7"x4 1/2"x3/8" [178x114x10] Slip Impact Base	ASTM A36 Galv.	H#B300976	NYJ-1 thru 3
a7	7"x4 1/2"x28 Gauge [178x144x0.38] Keeper Plate	ASTM A36 Galv.	NO CERTS	NYJ-1 thru 3
a8	1/2" [13] Dia. UNC, 2" [51] Long Bolt and Nut	ASTM A307 Gr. A/ASTM F1554 Gr. 36/SAE Gr. 2 and ASTM A563 Gr. A	LOT#1N1070407	NYJ-1 thru 3
a9	1/2" [13] Dia. Narrow Washer (OD 1" [25])	ASTM 844/SAE Gr. 2	LOT#504612	NYJ-1 thru 3
a10	18"x2"x3/4" [457x51x19] Anchor Post Cable Hanger	ASTM A707 Gr. 36 Galv.	H#2506111	NYJ-1 thru 3
a11	12"x12"x1/2" [305x305x13] Anchor Post Base	ASTM A709 Gr. 36 Galv.	H#F5-5531	NYJ-1 thru 3
b1	14"x9"x1/2" [356x229x13] Cable Anchor Base Plate	ASTM A709 Gr. 36 Galv.	H#G107094	NYJ-1 thru 3
b2	3 1/2"x3 1/2"x1/2" [89x89x13] Cable Anchor External Gusset	ASTM A709 Gr. 36 Galv.	H#G107094	NYJ-1 thru 3
b3	1/4" [6] Dia. 16" [406] Long Brass Rod	ASTM B16-00	COC#1175759108	NYJ-1 thru 3
b4	2 3/4"x2 3/4"x1/4" [70x70x6] Cable Anchor Internal Gusset	ASTM A709 Gr. 36 Galv.	H#G107118	NYJ-1 thru 3
b5	14"x1"x1/2" [356x25x13] Cable Anchor Front Plate	ASTM A709 Gr. 36 Galv.	H#G107094	NYJ-1 thru 3
b6	14"x4"x1/2" [356x102x13] Cable Anchor Top Plate	ASTM A709 Gr. 36 Galv.	H#G107094	NYJ-1 thru 3
c1	Cable End Fitting	ASTM A27 Galv.	H#BU1	NYJ-1 thru 3
c2	3/4" [19] Plain Round Washer (OD 2" [51])	ASTM F844/SAE Gr. 2 Galv.	H#2408593	NYJ-1 thru 3
c3	Cable Turnbuckle	AASHTO M269/ASTM F1145	LOT#M21549	NYJ-1 thru 3
c4	S3x5.7 [S76x8.5] 65" [1651] Long Line Post	ASTM A36	H#23898	NYJ-1 thru 3
-5	1/2" [12] I Dolt and Nut	Bolt ASTM A36 and Nut	H#AU12102983 and H#5078089	NYJ-1 and 2
05	1/2 [15] J-DOIT and Nut	ASTM A563DH Galv.	H#AU12102983 and H#5170424	NYJ-3
c6	3/4" [19] Dia. Cable Approx. 600' [183 m]	AASHTO M30 Type 1 Class A Galv.	H#59586/87 AND H#61926/27	NYJ-1 thru 3
c7	2'x8"x0.25" Soil Plate	ASTM A36 Galv.	H#A63816	NYJ-1 thru 3
c8	1" [25] Dia. Beveled Washer	ASTM A36	NO CERTS	NYJ-1 thru 3
d1	Concrete Anchor Block	3000 psi [20.68 MPa] Compressive Strength	RM Mix Code: 23033000	NYJ-1 thru 3
d2	32 1/2" [826] Long #3 [#10] Rebar	ASTM A36	H#11898510	NYJ-1 thru 3
d3	44 1/2" [1130] Long #3 [#10] Rebar	ASTM A36	H#11898510	NYJ-1 thru 3
d4	30" [762] Long #3 [#10] Rebar	ASTM A36	H#11898510	NYJ-1 thru 3

Table C-1. Bill of Materials for Test Nos. NYJ-1 through NYJ-3

o1	Cable Wedge	ble Wedge ASTM A47 Gr. 32510		NYJ-2
eı	Cable wedge	ASTM A47 01. 52510	H#1S7	NYJ-1 and 3
e2	50,000-lb Load Cell	N/A	NO CERTS	NYJ-1 thru 3
e3	3/4" [19] Dia. UNC Threaded Rod	ASTM A449	H#B9049 and H#T7958	NYJ-1 thru 3
e4	3/4" [19] Dia. UNC Left-Handed Threaded Rod	ASTM A449	H#B9049	NYJ-1 thru 3
e5	3/4" [19] Cable Splice	ASTM A536	LOT#73501	NYJ-1 thru 3

m Stave Ficher 3046988730 To Di	Dale: 10/12/2012 Time: 1	1:13:22 Dec. 4 of 4
m: Steve Fisher SU40906230 10; DI	Date; 10/12/2012 11me: 1	1:13.22 Page 01
STEEL OF	WEST VIRGINIA ST VIRGINIA 25726-2	547
DATE: Oct	ober 12, 2012	
SOLD TO: D I Hwy Sign Corp P.O. Box 123 New York Mills, NY	SHIP TO: 1 13417	DI-Highway Sign Corp. CSXT Utica New York NYSW STCC 33125XX New York Mills, NY 13502
USTOMER ORDER: 29560	SWV ORDER:	68472
3" X 5.7 lb/ft I LENGTH: 42'. Melted an	-Beam. SWV Sect GRADE: ASTM A36-0 d Manufactured in th	ion 2658. 8. e U.S.A.
Yield Tensile Elon Heat psi psi % 8" C	Mn P S Si	Cu Cr Ni Mo V Cb
23898 43000 66000 24.3 .11	0.68 .015 .021 .22 .	24 .14 .09 .02 .005 .002
23898 44000 66000 25.2 .11	0.68 .015 .021 .22 .	24 .14 .09 .02 .005 .002
17392 45000 66000 22.2 .14	0.71 .011 .014 .22 .	23 .10 .08 .02 .002 .001
17392 44000 66000 23.6 .14	0.71 .011 .014 .22 .	23 .10 .08 .02 .002 .001
17393 43000 64000 25.2 .12	0.67 .013 .032 .22 .	26 .11 .08 .02 .003 .001
17393 43000 64000 24.5 .12	0.67 .013 .032 .22 .	26 .11 .08 .02 .003 .001
17394 42000 65000 23.1 .12	0.66 .011 .020 .23 .	24 .09 .08 .02 .002 .001
17394 42000 65000 24.3 .12	0.66 .011 .020 .23 .	24 .09 .08 .02 .002 .001
7395 42000 66000 23.6 .13	0.69 .014 .020 .20 .	26 .13 .08 .02 .002 .002
17395 42000 66000 23.5 13	0.69.014.020.20.	26 .13 .08 .02 .002 .002
This is to certify that the a true and correct report in the records of this co	above 1s as contained mpany.	Steve Fisher Metallurgist 304-696-8200
	÷	

Figure C-1. S3x5.7 (S76x8.5) Long Anchor and Line Posts, Test Nos. NYJ-1 through NYJ-3

T

. .

1

P. 05

TEST CERTIFICATE
Purubaser : HAMAI MERCO A BAC F)
Order NO : PON P170277 Inspection date: 9/18/2005
S/C NO : PIN 050594-T37 Insue date: 9/18/2005
LOT NO : SVQ
Size: %-10 ASTM A563 Grade DH Heavy Hex Nuts - Hot Dip Galvanized O/8: 0.50MM
Marked "DH" + Makers Sign + "01GO"
Quantity : 54,000PCS 180CTNS
Vessel Name: APL THAILANO / 089E

Material : C-CH40ACR

Heat NO.	Size	C	Mn	P	S	Si
	Diameter	100%	100%	1000%	1000%	100%
1F543	28.00mm	43	81	20	10	5

Dimensional Inspections Specification: ANSI B18.2.2-1987

		•	UN	Tinch
Characteristic	Specification	Actual Result	Ac.	R¢.
Visual appearance.	ASTM F812-2002	OK	32	0
Width across flats	1.250~1.212	1.233-1.224	32	0
Width across corners	1.443~1.382	1.405-1.395	-32	0
Nuts thickness	0.758-0.710	0.736-0.721	32	0
Hele diameter	0.683-0.662	0.679-0.670	32	0
Thread	ASME B1.1-2002	OK	32	0

Mechanical Properties Specification: ASTM A563-04a

Characteristic	Requirement	Result	Ac.	Re.
Hardness	HRC 24~38	HRC30.9-33.0	8	0
Proof Load	Min 50100Lbf	58960Lbf	8	0

Signatory Y.M. WANG/Q.C.MANAGI

Figure C-2. ³/₄-in. (19-mm) Dia. Hooked Anchor J-Bolt and Nut, Test Nos. NYJ-1 through NYJ-3

W.W. Grainger, Inc. 100 Grainger Parkway Lake Forest, IL. 60045-5201

February 21 2013

KENNETH L KRENK KENNETH L KRENK 29 WSEC LINCOLN, NE, 68588-0000 Attn:

Fax #

1175759108 Grainger Sales Order #: E000047553 Customer PO #:

Dear KENNETH L KRENK

As you requested, we are providing you with the following information. We certify that, to the best of Grainger's actual knowledge, the products described below conform to the respective manufacturer's specifications as described and approved by the manufacturer.

Item #	Description	Vendor Part #	Catalog Page #
4FGT3	Threaded Rod, Gr2, Zinc, 3/4-10x10Ft, RH, UNC	4FGT3	3296
4FGP5	Threaded Rod, Gr 2, Zinc, 3/4-10x6Ft, RH, UNC	4FGP5	3296
1AY84	Hex Nut,Heavy,3/4-10,1 1/8 In,PK20	1AY84	3166
1JY84	Flat Washer, SAE, Zinc, Fits 3/4 In, Pk 20	1JY84	3185
2ABL8	Rod,Brass,360,1/4 Dia x 6 Ft L	CURD00527	3384
5LE25	Battery,AAA,Alkaline,PK 24	PC2400BKD	0000

for M.T-

Greg Tower Process Management Analyst Compliance Team Grainger Industrial Supply Q

Certificate of Compliance for New York J-Bolt Materials/ February 22, 2013 SMT

Figure C-3. Long Brass Rods and 3/4-in (19-mm) Dia. Round Washer, Test Nos. NYJ-1 through NYJ-3

Figure C-4. W4x13 (W102x19.3) Anchor Post Stub, Test Nos. NYJ-1 through NYJ-3

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

S	17962
0	Metals USA - Port City
D	3101 Charles Page Blvd. #102
т	Tulsa OK 74127
0	

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 03/18/2013 TIME 12:40:09 USER GIANGRER

S 17962 H Metals USA - Port City 3101 Charles Page Blvd. #102 T Ulsa OK 74127

Order	Material No.	Description	Quantity	Weight	Customer Part	Customer PO	Ship Date
1512531-0010	701260120TM	3/8 X 60 X 120 A36/SA36 TEMPER PASS				86605	03/18/2013

							Chemical Ar	nalysis							
Heat No.	B300976	Vendor SEVER	RSTAL COL	UMBUS	DOMEST	IC Mill SE	EVERSTAL COLL	MBUS	Melted and	Manufactured	in the USA				
Batch 00	02273988	26 EA	19,910	6 LB											
Carbon	Manganese	Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.2100	0.2300	0.0100	0.0030	0.0300	0.0300	0.0400	0.0100	0.0001	0.0900	0.0250	0.0010	0.0010	0.0010	0.0072	0.0040
						Mech	anical/ Physic	al Prope	rties						

Mill Coil No. B3009	76-03								
Tensile	Yield	Bong	Rckwl	Grain	Charpy	Charpy Dr	Charpy Sz	Temperature	Olser
65100.000	43000.000	28.50	0	0.000	0	NA			
59000.000	39200.000	28.50	0	0.000	0	NA			

3/8" Lower Slip Base H#B300976 R#13-0344 White Paint

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION.

Figure C-5. Slip Impact Base, Test Nos. NYJ-1 through NYJ-3

1

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

TESTING CERT 1292-01 MECHANICAL TESTING

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2010/10/19

PACKING NO : GEM100921008

PART NO: 00200-2800-401 SAMPLING PLAN : ASME B18.18.2

HEAT NO: 331002644

MATERIAL : 1015A FINISH: TRIVALENT ZINC

INVOICE NO: GEM/PFC-101017 LA

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER : PORTEOUS FASTENER COMPANY. PO. NUMBER: 10052401C3 COMMODITY : FINISHED HEX NUT ASTM A563 GR-A SIZE : 1/2-13 NC LOT NO: 1N1070407 SHIP QUANTITY: 40,800 PCS HEADMARKS :

PERCENTAGE COMPOSITION OF CHEMISTRY :

Chemistry	Al%	C%	Mn%	P%	S%	Si%
Spec.: MIN.	0.0200	0.1300	0.3000			
MAX.		0.1800	0.6000	0.0300	0.0350	0.1000
Test Value	0.0610	0.1500	0.4000	0.0120	0.0090	0.0400

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME/ANSI B18.2.2

TEST DATE: 2010/09/20		SAMPLED BY : RE	INMINGL	SAMPLING DATE: 2010)/09/20)
INSPECTIONS ITEM	SAMPLE	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	16PCS	MIL-STD-120	21.340-22.000 MM	21.610-21.660 MM	16	0
THICKNESS	16PCS	MIL-STD-120	10.850-11.380 MM	11.030-11.060 MM	16	0
WIDTH ACROSS FLATS	64 PCS	MIL-STD-120	18.690-19.050 MM	18.880-18.900 MM	64	0
SURFACE DISCONTINUITIES	200 PCS	ASTM F812		PASSED	200	0
THREAD	16PCS	MIL-STD-120	2B	PASSED	16	0

MECHANICAL PROPERTIES : ACCORDING TO

TEST DATE: 2010/09/29		SAMPLED BY : GA	O MINGHUA	SAMPLING DATE: 201	0/09/26	
INSPECTIONS ITEM	SAMPLE	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	29PCS	ASTM F606/F606M	68-107 HRB	84 HRB	29	0
PROOF LOAD	15PCS	ASTM F606/F606M	Min. 12,800 LBF	OK	15	0

ALL TESTS ARE IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM/SAE/ASME/MIL-STD-120 SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

THIS CERTIFIED MATERIAL TEST REPORT APPLIES TO THE SAMPLES TESTED AND IT CANNOT BE REPRODUCED EXCEPT IN FULL.

SIGNATURE :

page 1 of 1

Figure C-6. ¹/₂-in. (13-mm) Dia. Long Bolt and Nut, Test Nos. NYJ-1 through NYJ-3

SUPERIOR WASHER AND GASKET CORP. 170 Adams Avenue Hauppauge, New York 11788 Phone: (631) 273-8282 Fax: (631) 273-8088 E-Mail: swg@superiorwasher.com Web: superiorwasher.com (In the East) SUPERIOR WASHER AND GASKET CORP. 662 Bryant Blvd. Rock Hill, South Carolina 29732 Phone: (803) 366-3250 Fax: (803) 366-3511 E-Mail: swg@superiorwasher.com Web: superiorwasher.com (In the South)

ACCURATE MANUFACTURE GROUP P.O. BOX 7232 - DEPT, 168

INDIANAPOLIS , IN 46206

Customer F	Purchase Order Number	Superior Order Number	Superior Lot Number	Tracer No.
9454		504612-1	504612 - 1	SC31483 -3 /21153114
Date	Production Card	Part Number		Quantity
04-02-13	175383	WASB12NZ		15,000
Drawing		Dual Cert No.		
P/N S-1/2	TYBNZ A			<u>0</u>

We hereby certify that all materials and processes conform to the required drawing specifications and that the parts have been manufactured in the U.S.A. All parts are manufactured in a Mercury-free environment

Material

1008 LOW CARBON STEEL No. 5

ZINC TRIVALENT CHROMIUM

	Chemical Ana	ysis
С	CARBON	.0700
Mn	MANGANESE	.3300
P	PHOSPHORUS	.0080
S	SULPHUR	.0070
Si	SILICON	.0100
Cr	CHROMIUM	.0200
Ni	NICKEL	.0100
Mo	MOLYBDENUM	.0100
Cu	COPPER	.0200
Fe	IRON	
Ti	TITANIUM	
Co	COBALT	
N	NITROGEN	
Cb	COLUMBIUM	
Al	ALUMINUM	.0430
Sn	TIN	
Mg	MAGNESIUM	
Zn	ZINC	
Pb	LEAD	
Va	VANADIUM	

Chamical Analysia

Mechanical Properties

Yield Tensile Elongation Hardness Heat Magnetic Permeability

B 49.0 4179170

Bend Test

SUPERIOR WASHER & GASKET CORP.

By Sichard anderso Richard Anderson, Jr.

Quality Control Manager

Figure C-7. ¹/₂-in. (13-mm) Dia. Narrow Washer, Test Nos. NYJ-1 through NYJ-3

Figure C-8. Anchor Post Cable Hanger, Test Nos. NYJ-1 through NYJ-3

186

Figure C-9. Anchor Post Base, Test Nos. NYJ-1 through NYJ-3

Page 4 of 6

Chemical and Physical Test Report Made and Melted In USA

G-167153

SHIP TO	INVOICE TO	SHIP DATE	
SIOUX CITY FOUNDRY INC	SIOUX CITY FOUNDRY INC	01/08/11	
801 DIVISION STREET	ACCTS PAYABLE		
800-831-0874	PO BOX 3067	CUST. ACCOUNT NO	
SIOUX CITY, IA 51102	SIOUX CITY, IA 51102	60044062	

PRODUCED IN: CARTERSVILLE

SHAPE + SIZE		GRAD)E	SPEC	FICATIO	N													SA	LES OF	DER	CL	JST P.C	NUMB	ER
F1/2 X 8		AG6		ASTM	A36~08	. ASTM	A529 G	R 50-05	SA-36	08,AST	M A709	GR36-0	I9A						108	88504-0)3	13	0767W-	-03	
HEAT I.D.	C	Mri	P	S	SI	Cu	Ni	Cr	Mo	V	No	В	N	Sn	AI	Ti	Ca	Zn	C Eqv		1		1	1	
G107094	.16	88	014	.027	19	.28	.10	.06	.024	.016	.001	0003	.0090	.011	.000	.00100	.00020	.00320	.38					T	

Mechanical Test: Yield 52200 PSI, 359.91 MPA Tensile, 73400 PSI, 506 08 MPA °oEl: 22.5/8in, 22.5/200MM

Customer Requirements CASTING, STRAND CAST

Comment NO WELD REPAIRMENT PERFORMED STEEL NOT EXPOSED TO MERCURY.

Mechanical Test. Yield 51000 PSI. 351.63 MPA Tensile: 71900 PSI. 495.73 MPA %EI. 22.0/8in, 22.0/200MM

Customer Requirements CASTING: STRAND CAST

Comment NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY.

PRODUCED IN: CARTERSVILLE

SHAPE + SIZE	1	GRAD	E	SPECI	FICATIO	NC													SA	LES OF	IDER	CL	JST P.C	D. NUME	ER
F1/4 X 8		AGE		ASTM	A36-08	ASTM	A529 GI	R50-05	SA-36	08.AST	M A709 (GR36-0	9A						10	88504-0)1	13	0767W	-01	
HEATT.D.	C	Mo	Ρ	S	Si	Cu	Ni	Cr	Mo	V	No	В	N	Sn	AI	Ti	Ca	Zn	C Equ	1				1	1
G107118	14	.95	014	.030	.23	.33	.09	.07	.030	.016	< 008	.0002	.0119	.012	.001	.00100	00070	.00360	.38					1	

Mechanical Test: Yield 54800 PSI. 377.83 MPA Tensile. 74900 PSI, 516.42 MPA %EI: 22.4/8in, 22.4/200MM

Customer Requirements CASTING, STRAND CAST

Comment NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY.

Mechanical Test: Yield 54500 PSI, 375 76 MPA Tensile: 75300 PSI, 519.18 MPA %EI. 21.6/8in, 21.6/200MM

Customer Requirements CASTING: STRAND CAST

Markon

Comment NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY.

Customer Notes

188

NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY.

All manufacturing processes including melt and cast, occurred in USA, MTR compiles with EN10204-3-16

Briaskai Yalamanchili Quality Director Gercau Ameristeei

PERMANENT RECORDS OF COMPANY. man Metallurgical Services Manager

THE ABOVE FIGURES ARE CERTIFIED CHEMICAL AND PHYSICAL TEST RECORDS AS CONTAINED IN THE

CARTERSVILLE STEEL MILL

Seller warrants in at all material turnshed shall comply with specifications subject to standard published manufacturing variations. NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, ARE MADE BY THE SELLER, AND SPECIFICALLY EXCLUDED ARE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

In no event shall seller be lable to induced, consequential or punitive damages arising out of or related to the materials furnished by seller

Any claim to: damages to: materials that do not conform to specifications must be made from buyer to seller immediately after delivery of same in order to allow the seller the opportunity to inspect the material in guestion

Figure C-10. Cable Anchor Plates and Gussets, Test Nos. NYJ-1 through NYJ-3

and a set	BUCK COMPANY, INC.
	897 Lancaster Pike, Quarryville, PA 17566-9738
C.	Phone (717) 284-4114 Fax (717) 284-4321
ww	w.buckcompany.com greatcastings@buckcompany.com
MA	TERIAL CERTIFICATION
Date 12/26/12	Form# CERT-7A Rev C 4-21-06
CUSTOMER Bennet	+ BoH-
ORDER NUMBER	010442
PATTERN NUMBER	BBWT REV.
Type Material:	Malleable, Iron
Type Material: Specifications: Grade or Class:	Malleable Iron ASTM-A220 50005
Type Material: Specifications: Grade or Class: Heat Number:	Malleable Iron ASTM-A220 50005 BW
Type Material: Specifications: Grade or Class: Heat Number: MECHANICAL PROPERTIES Tensile Str. PSI 72, 152	Malleable Iron ASTM - A220 50005 BUU CHEMICAL ANALYSIS Total Carbon 2.60
Type Material: Specifications: Grade or Class: Heat Number: MECHANICAL PROPERTIES Tensile Str. PSI Yield Str. PSI 56962_	Malleable Iron ASTM - A220 50005 BUU CHEMICAL ANALYSIS Total Carbon 2.60 Silicon 1.98 Manganese 1.08
Type Material: Specifications: Grade or Class: Heat Number: MECHANICAL PROPERTIES Tensile Str. PSI 152 Yield Str. PSI 5(6,962 Elongation 11	Malleable Iron ASTM - A220 50005 BUU 60005 CHEMICAL ANALYSIS 7000 Total Carbon 2.600 Silicon 1.48 Manganese 1.08 Sulfur 0.48 Phosphorus 0.14
Type Material: Specifications: Grade or Class: Heat Number: MECHANICAL PROPERTIES Tensile Str. PSI T2, 152 Yield Str. PSI Stelongation 11 PHYSICAL PROPERTIES	Malleable Iron ASTM - A220 50005 BUU 60005 CHEMICAL ANALYSIS 7000 Total Carbon 2.600 Silicon 1.48 Manganese 1.08 Sulfur 0.48 Phosphorus 0.14 Chrome 0.40 Magnesium 0.02
Type Material: Specifications: Grade or Class: Heat Number: MECHANICAL PROPERTIES Tensile Str. PSI 72,152 Yield Str. PSI 56,962 Elongation H PHYSICAL PROPERTIES Brinell Hardness 179	Malleable Iron ASTM - A220 50005 BUU CHEMICAL ANALYSIS Total Carbon 2.60 Silicon 1.48 Manganese 1.08 Sulfur 0.48 Phosphorus 0.14 Chrome 0.40 Magnesium 0.01 Copper 4.18
Type Material: Specifications: Grade or Class: Heat Number: MECHANICAL PROPERTIES Tensile Str. PSI 72,152 Yield Str. PSI 56,962 Elongation H PHYSICAL PROPERTIES Brinell Hardness PCS SHIPPED 530	Malleable Iron ASTM - A220 50005 BUU CHEMICAL ANALYSIS Total Carbon 2.60 Silicon 1.48 Manganese 1.08 Sulfur .048 Phosphorus 016 Chrome .040 Mangesium .001 Copper .418
Type Material: Specifications: Grade or Class: Heat Number: MECHANICAL PROPERTIES Tensile Str. PSI T2, 152 Yield Str. PSI Str. PSI 5(e, 962 Elongation H PHYSICAL PROPERTIES Brinell Hardness PCS SHIPPED 530	Malleable_from ASTM - A220 BO005 BUU CHEMICAL ANALYSIS Total Carbon 2 60 Silicon 1.48 Manganese 1.08 Sulfur 0.98 Phosphorus 0.16 Chrome 0.40 Magnesium 0.01 Copper 4.18 DATE SHIPPED 12/26/12- Dutta Large Quality Assurance Representative

Figure C-11. Cable End Fitting, Test Nos. NYJ-1 through NYJ-3

r ago i vi i

18:35 06/05/2004 TO:17783684228 FROM: NUCOR STEEL - HUGER PAGE 004 of 004 METALLURGICAL TEST REPORT P.O. Box 2259 Nucor Steel - Berkeley Phone: 843-336-6000 Mt. Pleasant, SC 29465 a division of NUCOR corporation Sales Fax: 843-336-6150 Sold RYERSON TULL PROCUREMENT CORP. Ship TULL (J.M. TULL) Ship Date 6/05/04 To: P.O.BOX 4725 VENDOR \$0004680 To: J.M. TULL Bill of Lading # 386072 4400 PEACHTREE IND. BLVD. 1305 SOUTH STEEL CIRCLE Vehicle # NSBX000203 NORCROSS, GA 30091 HUGER, SC 29450 P/G # M2205040 Gauge x Width .1775 MIN X 48.0000 MIN Mill Order # 126006-1 HR Description FOR ASTM A36 Test made in compliance with FOR A36/SA36 CONVERSION a-36 equivalent material must level to commercial flatness must be free of coilbreaks end use; stock material <u>Mn P. S. Si Cu Ni Cr Mo Sn Al V Nb N</u> .80 .012 .008 .01 .10 .03 .04 .01 .007 .027 .003 .006 .006 Heat 2408593 .06 .003 .000 .002 VIELD STRENGTH (ksi) TENSILE STRENGTH (ksi) ELONGATION(7 IN 2") HARDNESS Heat/Coil# long. trans. long. trans. long. trans. (Rockwell B) 2408593-1 69.0 48.5 .0 71.0 25 2408593-6 - 0 44.1 .0 60.8 35 71 Coil Numbers 2408593-1 All material is sold subject to the description, specifications and terms and conditions set forth on the face and reverse side of Nucor Steel - Berkeley's sales order acknowledgment. Tensile Testing is performed in accordance with ASTM A-370 specifications. Specimen is machined to standard rectangular test configuration (Figure 3 of ASTM A-370) with a 2" gage length. Yield Strength is determined at 0.2% offset. This material has been produced in compliance with the chemistry and established rolling practices of the ordered specification. If material is ordered to a chemical composition only and if physical testing is not a requirement of the customer's order, testing is not performed by the producer.

We hereby certify the above information is correct as contained in the records of the corporation. Randall C Krause ** 100% MELTED AND MANUFACTURED IN THE USA ** Hot Mill Metallurgist

Figure C-12. ¾-in. (19-mm) Plain Round Washer, Test Nos. NYJ-1 through NYJ-3

X 18'24' 'NO.	contained in the records of this o	Atta:		
			Mac Steel	
			ONE JACKSON S SUITE 500 JACKSON, MICHI	GAN 49201
	CERTIFIED MATERIAL	TEST REPORT		ALT.
99257		M21549	200742 102 8/1	6/06
REPORT TO		1000 TC	0	
KREHER STEEL		KREHER STEEL		
1550 N. 25TH AVE		1550 N. 25TH	AVE.	
MELROSE PARK , IL	60160	MELROSE PARK	, IL 60160	
	ORDERE	0		
1030/1035	1 3/16" H		0 1	
ASTM A576-908 ASTM	A29/A29M-05	A170H8		
	CHEMICAL ANALYSIS - (AR AVERAGE)	-	
	S 91 N1	Cr Mo	cu sn	
0.33 0.84 0.00	0.019 0.24 0.05	0.15 0.04	0.10 0.005 0	.003
V ND				
0.033 0.001				
GRAIN SIZE SI	ECIFICATION ASTM E112	FINE GRAIN	5-8	
REDUCTION RATIO				
RATIO= 32.5 TO 1.	0			
MADE AND MANUFACTURED	IN USA			
ARC FURNACE A	MELTED AND MANUPACTURE ND CONTINUOUS CASTING	D IN THE U.S.A. METHOD. THE P	BY THE ELECTRIC RODUCT HAS NOT	
TO MERCURY OR	BY WELDING AND THIS TO ANY OTHER METAL A	MATERIAL HAS L	NOT BEEN EXPOSED	
TEMPERATURES D	URING PROCESSING OR WH	ILE IN OUR POSS	SSION. **	
PAGE 1 OF 1				
MACSTEEL	MACSTEEL-JACKSON	ified requirements.	11	
3000 East Front Street Monroe, MI 48161	MACSTEEL-FT SMITH	Chan Change	s laster	-

Figure C-13. Cable Turnbuckle, Test Nos. NYJ-1 through NYJ-3

Telefast Industries, Inc. 777 West Bagley Road Berea, Ohio 44017-2901 440/826-0011 • FAX 440/826-3785

MATERIAL CERTIFICATION

Customer:		Date:03/08/2012
BENNETT BOLT WORKS INC.	Customer P.O. Number: 6009105	
P. O. Box 922	Customer Part Number: 50CNFH0H	
12 Elbridge Street	Invoice Number: 174057	
Jordan, NY 13080	Lot Number: R22186-8113	34
Description:	Ship Quantity: 323,400	Ship Date: 03/08/12
NUT FIN 1/2-13 A563 GRA HDG .021	Material: 1026	Heat Number: 5078089
Specifications:		

Chemical Analysis

NACTOR C AND	Mn	P	S S	Si	Ni	Cr	Mo	AL S
0.260	0.690	0.009	0.005	0.220	0.090		0.030	0.032

Mechanical Properties

Hardness	A57.1 Average	
y galaxia da da serie de series		
Proof Load	5 Samples Pass	
Plating	HOT DIP GALVANIZED /PASS	

We hereby certify that to our actual knowledge the information contained herein is correct. We also certify that all parts substantially conform to SAE, ASTM, or customer specifications as agreed upon. The product has been manufactured and tested in accordance with our Quality Assurance manual. The above data accurately represents values provided by our suppliers or values generated in the TELEFAST INDUSTRIES laboratory. Statistical process control data is on file. All manufacturing processes for these parts occured in the United States of America.

This document may only be reproduced without alteration and only for the purpose of certifying the same or lesser quantity of the product specified here

Dean Smith Manager of Quality Assurance

Figure C-14. ¹/₂-in. (13-mm) J-Bolt and Nut, Test Nos. NYJ-1 and NYJ-2

Sep. 3. 2013 10:55AM

No. 4348 P. 3

Telefast Industries, Inc. 777 West Bagley Road Beren, Ohio 44017-2901 440/826-0011 • FAX 440/826-3785

MATERIAL CERTIFICATION

Customer:			Date:02/11/2013		
BENNETT BOLT WORKS INC.	Customer P.O. Number: 6010357				
12 Elbridge Street Jordan, NY 13080	Customer Part Number: 31CNHH0M				
	Involce Number: 178451	and manifester			
	Lot Number: 023906-	84256			
Description:	Ship Quantity: 174,480	Ship Date:	02/11/13		
NUT HVH 5/16-18 A563 GRA MGL .016	Material: 1018	Heat Number	5170424		
Specifications:					

Chemical Analysis

1 C. 1	Min	P	8	S 1	Ni	Cr	Mo	AL
0,170	0.740	0.005	0,004	0.090	0.040		0.020	0.045

Mechanical Properties

Hardness	A60.4 Average	
Maria da Car		
91 (1897), 1-5 (
Proof Load	5 Samples Pass	
Plating	MECH GALV /PASS	

We hereby certify thet to our actual knowledge the information contained herein is correct. We also certify that all parts substantially conform to SAE, ASTM, or customer specifications as agreed upon. The product has been manufactured and leasted in accordance with our Quality Assurance manuet. The above data accurately represents values provided by our suppliers or values generated in the TELEFAST INDUSTRIES televatory. Statistical process control date is on file. All manufacturing processes for these parts occurred in the United States of America.

1 1778

This document may only be reproduced without alteration and only for the purpose of certifying the same or lesser quantity of the product specified here

Dean Smith Managor of Quality Assurance

Figure C-15. ¹/₂-in. (13-mm) J-Bolt and Nut, Test No. NYJ-3

<u>0</u> 7/30/	2012 13:5	59 47947	746033		BEKAERT-V	в	PAGE	01/03
Certifica	ate of Qua	lity		50		Date: 07/30/2012		
BEKAE 1881 BER VAN BUI TEL(479) TELEFAI	RT CORF (AERT DRIV REN, AR 72 474-5211 (537439	ORATION VE 1956 FAX(479)4	Van Bur 74-9075	en, Ark	ansa3			
Customer Final Cust Customer Customer Customer	omer Order No Part No. Specification	: Colorga : Midwes : 12-070 : <mark>: ASTM</mark>	uard Rail Proc st Machinery & 3-3 <mark>A 741</mark>	lucts & Supply Co	Our Order No mpany Product No QTY MFG SMP No	 4060198815 / 000010 AST3043SE10S02000 3 12000.000 FT AST3043SE10S02000 	i/4 GUIDER	AIL 3X7 200
Heat#	%C 0.73	%Mn 0.53	%P 0.009	%S 0.016	%SI 0.19			
59587	0.74	0.52	0.012	0.014	0,19			
Tag#	Heat#	Lay Length	Brea Strea	king ngth	Adherence Appearance of wires	Steel Ductility		
		3.00 7.50	2500	0				
98691835	59586 59587	6.40	3900	0	Pass	Pass		¥
98691836	59586 59587	6.26	3900	ю	Pass	Pass		
98691843	59586 59587	6.26	3900	0	Pass	Pass		
98691845	_ 59586 59587	6.26	3900	0	Pass	Pass		
98691851	59586 59587	6.30	3900	0	Pass	Pass		
98691868	59586 59587	6.30	3900	0	Pass	Pass		

Made & Melted in USA.

The undersigned certifics that the results are actual results and conform to the standards as contained in the records of this Corporation.

Da

Gary A. Boss Technical Quality Manager

Notary Public

.

1 of 1

Commission Expires

Figure C-16. ³/₄-in. (19-mm) Dia. Cable, Test Nos. NYJ-1 through NYJ-3

CERTIFICATE OF CONFORMANCE 12/13/12 MET CON STEEL INC. 9950 RITTMAN ROAD WADSWORTH, OH 44282 Page# 1 330-334-3296 SHIP TO: TO: DI HIGHWAY SIGN STRUCTURE DI HIGHWAY SIGN STRUCTURE CORP P.O. BOX 123 NEW YORK MILLS, NY 13417 40 GREENMAN AVE. NEW YORK MILLS, NY 13417 SIZE: .250 X GRADE: SHEETS HOT ROLLED 24.00 8.00 x A36 Bill/Ladng# 001143 B/L Date 12/13/12 Sales Ordr: 800932 01 Cust. P/O#: 29855 Tag# 50134612 01 Heat# A63816 MasterTag# C40105384 01 Mn: 1.18 P : .009 S : .008 Al: .021 Si: .30 C : .24 Cu: .06 Tens: 63200 Yld: 51150 Elng: 24% Tag# 50134613 01 Heat# A63816 MasterTag# C40105384 01 C : .24 Mn: 1.18 P : .009 S : .008 Al: .021 Si: .30 Cu: .06 Tens: 63200 Yld: 51150 Elnq: 24% Tag# 50134614 01 Heat# A63816 MasterTag# C40105384 01 Al: .021 C : .24 Mn: 1.18 P : .009 S : .008 S1: .30 Cu: .06 Tens: 63200 Yld: 51150 Elng: 24% Tag# 50134615 01 Heat# A63816 MasterTag# C40105384 01 C : .24 Mn: 1.18 P : .009 S : .008 Al: .021 Si: .30 Cu: .06 Tens: 63200 Yld: 51150 Elng: 24% MasterTag# C40105376 Tag# 50136201 01 Heat# A63816 01 P : .009 Si: .30 C : .24 Mn: 1.18 S : .008 Al: .021 Cu: .06 Yld: 51150 Tens: 63200 Elng: 24% Heat# A63816 Tag# 50136202 01 MasterTag# C40105376 01 C : .24 Mn: 1.18 P : .009 S : .008 Al: .021 Si: .30 Cu: .06 Tens: 63200 Yld: 51150 Elng: 24% MasterTag# C40105376 01 Tag# 50136203 01 Heat# A63816 S : .008 C : .24 Mn: 1.18 P : .009 Al: .021 Si: .30 Cu: .06 Tens: 63200 Yld: 51150 Elng: 24% Continued... ¥

Figure C-17. Soil Plate, Test Nos. NYJ-1 through NYJ-3

.

.`

..

No. 3356 P. 8

2	
K J	BUCK COMPANY, INC.
	897 Lancaster Pike, Quarryville, PA 17566-9738
	Phone (717) 784-4114 Fax (717) 284-4321
dia.	www.buckcompany.com
*	9
M	ATERIAL CERTIFICATION
2 (1 00	
Date 5-11-08	Form# CERT-7A Rev C 4-21-06
CUSTOMER Bennett	Bolt Works
ORDER NUMBER_ LOO	03373
PATTERN NUMBER	LWedge REVE Orig
This is to certify that the cas with the drawing or ordered requirequirements and / or supplement data is on file and available upon	tings listed conform to the following specification and comply in all respects irrements. All Quality Assurings provide and for Quality Assurance tary Quality Assurance provisions have been completed and accepted. SPC request.
Type Material:	Malleable: Jordan
Specifications:	ASTM AHY
Grade or Class:	32510
Heat Number:	187
MECHANICAL PROPERTIE Tensile Str. PSI 58, 40	S CHEMICAL ANALYSIS Total Carbon 1 2.16.7
Yield Str. PSI 37,028	Mangariéle 3
Elongation16	Philoporus + 1026
PHYSICAL PROPERTIES	Magnesiana M OC
Brinell Hardness	Copper_ <u>Law</u>
PCS SHUPPED	ATE SHOPPED 3-11-08
l_ofl	Quality Assurance Representative

Quality Castings ISO 9001: 2000 CERTIFIED Ferritic and Pearlist Malicable Iron, Gray and Ducille Iron, Brass, Aluminum

Figure C-18. Cable Wedge, Test Nos. NYJ-1 and NYJ-3

Apr. 9. 2013 12:13PM

A longe	Phone (717) 284-4114	Fax (717) 284-4321
The second se	www.buckcompany.com	greatcastings@buckcompany.com

MATERIAL CERTIFICATION

Date 12 4 12	Form#CERT-7A Rev C 4-21-06
CUSTOMER Bennett Bol-	.
ORDER NUMBER 6010328	
PATTERN NUMBER W2 Wedg	e REV. Orig

This is to certify that the castings listed conform to the following specifications and comply in all respects with the drawing or ordered requirements. All Quality Assurance provisions and / or Quality Assurance requirements and / or supplementary Quality Assurance provisions have been completed and accepted. SPC data is on file and available upon request.

Type Material:	Malleable Iron
Specifications:	ASTM- A41
Grade or Class:	32510
Heat Number:	BRI
MECHANICAL PROPERTIES Tensile Str. PSI 51,300	CHEMICAL ANALYSIS Total Carbon 2.02
Yield Str. PSI 35, 200	Silicon 1.69 Manganese
Elongation 1	Phosphorus
PHYSICAL PROPERTIES	Magnesium
Brinell Hardness 126	Copper
PCS SHIPPED 5, 123	DATE SHIPPED 1231
of	Louita Lopo

Quality Assurance Representative

Quality Castings ISO 9001: 2008 CERTIFIED Ferritic and Pearlitic Malleable Iron, Gray and Ductile Iron, Brass, Aluminum

Figure C-19. Cable Wedge, Test No. NYJ-2

L RESULTS % BENI ELONG PIN. 0 18.7 .0	5 .320 D %	.0900	080	.031 CHARP	015	.003	.0000	
L RESULTS % BENI ELONG PIN. I 18.7 .0	DIA R.A.		TEMP. F	CHARP	Y IMPAC			
% BENI % BENI ELONG PIN. I 18.7 .0	D % DIA R.A.		TEMP. F	CHARP		-		I CERTIEV THESE RECEINTS TO B
% BEN ELONG PIN. I 18.7 .0	D % DIA R.A.		TEMP, F	and the second second		TEST		CORRECT AS CONTAINED IN TI
ELONG PIN. 0	DIA R.A.			FT./LB.	SUBSIZE	SPECIMEN	SAMPLE	RECORDS OF THE COMPANY.
18.7 .0								
	.0							
17.5 .0	.0							JIM BIERNAT, METALLURGIS
% BEN	D	1						STATE OF NEW YORK
ELONG PIN, C								COUNTY OF CAYUGA
		•			0.5	0		Jim Biernat
ion Ratio	As Rolled Ha	rdness .		and a state of the	<u></u>			(print)
XXX	XXX		XXX		.681	XX	×	(princ)
NY END-QUEN	CH HARDE	NABILITY	RESULT	S (HRC)				AFTER BEING DULY SWORN BY DECLARES THAT: THESE RESUL
_J4J5	J6	J7	J8	J9	J10	J11	J12	ARE CORRECT AS CONTAINED II RECORDS OF NUCOR STEEL AUE
								Any A Minut
J16 J1	B J20	J22	J24	J26	J28	J30	J32	
								(sign)
								SUBSCRIBED AND SHOWN BEF
1	ELONG PIN, C tion_Ratio_ XXX INY END-QUEN J4 J5 J4 J5	ELONG PIN, DIA R.A. tion Ratio As Rolled Ha XXX XXX INY END-QUENCH HARDE J4 J5 J4 J5 J16 J18	ELONG PIN, DIA R.A. tion Ratio As Rolled Hardness XXX XXX INY END-QUENCH HARDENABILITY J4 J5 J6 J7 J16 J18 J20 J22	ELONG PIN, DIA R.A. tion Ratio As Rolled Hardness D.I. XXX XXX XXX INY END-QUENCH HARDENABILITY RESULT J4 J5 J6 J7 J8 J4 J5 J6 J7 J8 J16 J18 J20 J22 J24	ELONG PIN, DIA R.A. tion Ratio As Rolled Hardness D.I. XXX XXX XXX INY END-QUENCH HARDENABILITY RESULTS (HRC) J4 J5 J6 J7 J8 J9 J16 J18 J20 J22 J24 J26	ELONG PIN. DIA R.A. tion Ratio As Rolled Hardness D.I. C.E. XXX XXX XXX .681 INY END-QUENCH HARDENABILITY RESULTS (HRC) J4 J5 J6 J7 J8 J9 J10 J4 J5 J6 J7 J8 J9 J10 J16 J18 J20 J22 J24 J26 J28	ELONG PIN, DIA R.A. tion Ratio As Rolled Hardness D.I. C.E. C XXX XXX XXX .681 XXX INY END-QUENCH HARDENABILITY RESULTS (HRC) J10 J11 J4 J5 J6 J7 J8 J9 J10 J11 J16 J18 J20 J22 J24 J26 J28 J30	ELONG PIN, DIA R.A. tion Ratio As Rolled Hardness D.L. C.E. C.L. XXX XXX XXX .681 XXX INY END-QUENCH HARDENABILITY RESULTS (HRC) J10 J11 J12 J4 J5 J6 J7 J8 J9 J10 J11 J12 J16 J18 J20 J22 J24 J26 J28 J30 J32

CERTIFIED TEST REPORT

Figure C-20. ¾-in. (19-mm) Dia. Threaded Rod and Left-Handed Threaded Rod, Test Nos. NYJ-1 through NYJ-3

503 pcs. = 15088

Apr. 9. 2013 12:14PM		No.3356 P. 10
V&S PHE GALVAN 25E0 Eas Philadelp (215) Fax (21	LADELPHIA IIZING LLC t Hagen Street hia, FA 19125 759-8911 (5) 834-0791	· · · ·
	, ·	
QUALITY ASSURA		DATION
Ben Nett Bit	SHOP ORDER NO .:	3/24/11
USTOMER ORDER NO.: PROJECT	DATE INSPECTED:	
LOT #73501 PO # 6008109 2142 PCS CABLE SPLICE CG1241-H		* *
This is to certify that the material on the shop ord recommended practices outlined in the ASTM Stands and that this material has been inspected and does n the ASTM Standards. Applicable Specifications;	er no. noted above was g uds for the type material de neet the minimum standar V&S Philadelphia G	alvanized in scoordance v scribed in ourshipping dor de for acceptance as deecr talvanizing LLC
ASTM A123/153	Soles i	thereas of
· · · · · · · · · · · · · · · · · · ·		

Figure C-21. ¾-in. (19-mm) Cable Splice, Test Nos. NYJ-1 through NYJ-3

Appendix D. Static Soil Tests

Figure D-1. Soil Strength, Initial Calibration Tests

Figure D-2. Static Soil Test 1, Test No. NYJ-1

Figure D-3. Static Soil Test 2, Test No. NYJ-1

Figure D-4. Static Soil Test 1, Test No. NYJ-2

Figure D-5. Static Soil Test 2, Test No. NYJ-2

Figure D-6. Static Soil Test, Test No. NYJ-3

Appendix E. Vehicle Deformation Records

Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NYJ-1

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NYJ-1

Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NYJ-1

Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NYJ-1

Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NYJ-1

Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NYJ-1

Windshield crush measurements

Test: NYJ-1

Date Measured: 7/9/2013

Crush measurments:

Reference location from the top passenger side roof corner of windshield Lateral (X) Longitudin: Pre test Post test Crush 15.75 15.25 10.25 6.25 Point A 4 Point B 21.5 10 4.125 8.75 4.625 Point C 9.75 22.5 4 9.75 5.75 23.5 3.125 Point D 5.875 19.75 9 Max Crush 15.75 15.25 10.25 6.25 4

Figure E-7. Windshield Crush, Test No. NYJ-1

Figure E-8. Floor Pan Deformation Data – Set 1, Test No. NYJ-2

Figure E-9. Floor Pan Deformation Data – Set 2, Test No. NYJ-2

Figure E-10. Occupant Compartment Deformation Data – Set 1, Test No. NYJ-2

Figure E-11. Occupant Compartment Deformation Data – Set 2, Test No. NYJ-2

Figure E-12. Exterior Vehicle Crush (NASS) - Front, Test No. NYJ-2

Figure E-13. Exterior Vehicle Crush (NASS) - Side, Test No. NYJ-2

Windshield crush measurements

Test: NYJ-2

Date Measured: 8/20/2013

Crush measurments:

Reference location from the top passenger side roof corner of windshield

	Lateral (X)	Longitudinal (Y)	Pre test	Post test	Crush
Point A	35	11	4.25	8	3.75
Point B	34.25	21	3.25	7.75	4.5
Point C	41.5	18.5	4.625	8.25	3.625
Point D	37.75	25.25	3.5	7.125	3.625
Max Crush	34.25	21	3.25	7.75	4.5

Figure E-14. Windshield Crush, Test No. NYJ-2

Roof crush measurements

Test: NYJ-2

Date Measured: 8/20/2013

Crush measurments:

Reference location from the top passenger side roof corner of windshield

	Lateral (X)	Longitudinal (Y)	Pre test	Post test	Crush
Point A	19.5	19.5	4.875	7	2.125
Point B	29.5	19	5.25	7.5	2.25
Point C	33.5	23.75	5.375	7.25	1.875
Point D	30.5	11	5.25	6.75	1.5
Max Crush	29.5	19	5.25	7.5	2.25

Figure E-15. Roof Crush, Test No. NYJ-2

Figure E-16. Floor Pan Deformation Data – Set 1, Test No. NYJ-3

Figure E-17. Floor Pan Deformation Data – Set 2, Test No. NYJ-3

Figure E-18. Occupant Compartment Deformation Data – Set 1, Test No. NYJ-3

Figure E-19. Occupant Compartment Deformation Data – Set 2, Test No. NYJ-3

Figure E-21. Exterior Vehicle Crush (NASS) - Side, Test No. NYJ-3

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NYJ-1

Figure F-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYJ-1

Figure F-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYJ-1

Figure F-3. Longitudinal Occupant Displacement (DTS), Test No. NYJ-1

Figure F-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYJ-1

Figure F-5. Lateral Occupant Impact Velocity (DTS), Test No. NYJ-1

Figure F-6. Lateral Occupant Displacement (DTS), Test No. NYJ-1

Figure F-7. Vehicle Angular Displacements (DTS), Test No. NYJ-1

Figure F-8. Acceleration Severity Index (DTS), Test No. NYJ-1

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE), Test No. NYJ-1

Figure F-10. Longitudinal Occupant Impact Velocity (SLICE), Test No. NYJ-1

Figure F-11. Longitudinal Occupant Displacement (SLICE), Test No. NYJ-1

Figure F-12. 10-ms Average Lateral Deceleration (SLICE), Test No. NYJ-1

Figure F-13. Lateral Occupant Impact Velocity (SLICE), Test No. NYJ-1

Figure F-14. Lateral Occupant Displacement (SLICE), Test No. NYJ-1

Figure F-15. Vehicle Angular Displacements (SLICE), Test No. NYJ-1

Figure F-16. Acceleration Severity Index (SLICE), Test No. NYJ-1

Figure F-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. NYJ-1

Figure F-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYJ-1

Figure F-19. Longitudinal Occupant Displacement (EDR-3), Test No. NYJ-1

Figure F-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYJ-1

May 29, 2014 MwRSF Report No. TRP-03-299-14

Figure F-21. Lateral Occupant Impact Velocity (EDR-3), Test No. NYJ-1

Figure F-22. Lateral Occupant Displacement (EDR-3), Test No. NYJ-1

Figure F-23. Acceleration Severity Index (EDR-3), Test No. NYJ-1

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. NYJ-2

Figure G-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYJ-2

Figure G-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYJ-2

Figure G-3. Longitudinal Occupant Displacement (DTS), Test No. NYJ-2

Figure G-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYJ-2

Figure G-5. Lateral Occupant Impact Velocity (DTS), Test No. NYJ-2

Figure G-6. Lateral Occupant Displacement (DTS), Test No. NYJ-2

May 29, 2014 MwRSF Report No. TRP-03-299-14

Figure G-8. Acceleration Severity Index (DTS), Test No. NYJ-2

Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. NYJ-3

Figure H-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYJ-3

Figure H-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYJ-3

Figure H-3. Longitudinal Occupant Displacement (DTS), Test No. NYJ-3

Figure H-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYJ-3

Figure H-5. Lateral Occupant Impact Velocity (DTS), Test No. NYJ-3

Figure H-6. Lateral Occupant Displacement (DTS), Test No. NYJ-3

Figure H-7. Vehicle Angular Displacements (DTS), Test No. NYJ-3

Figure H-8. Acceleration Severity Index (DTS), Test No. NYJ-3

Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE), Test No. NYJ-3

Figure H-10. Longitudinal Occupant Impact Velocity (SLICE), Test No. NYJ-3

Figure H-11. Longitudinal Occupant Displacement (SLICE), Test No. NYJ-3

Figure H-12. 10-ms Average Lateral Deceleration (SLICE), Test No. NYJ-3

Figure H-13. Lateral Occupant Impact Velocity (SLICE), Test No. NYJ-3

Figure H-14. Lateral Occupant Displacement (SLICE), Test No. NYJ-3

Figure H-15. Vehicle Angular Displacements (SLICE), Test No. NYJ-3

Figure H-16. Acceleration Severity Index (SLICE), Test No. NYJ-3

Figure H-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. NYJ-3

Figure H-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYJ-3

May 29, 2014 MwRSF Report No. TRP-03-299-14

280

Figure H-19. Longitudinal Occupant Displacement (EDR-3), Test No. NYJ-3

Figure H-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYJ-3

Figure H-21. Lateral Occupant Impact Velocity (EDR-3), Test No. NYJ-3

Figure H-22. Lateral Occupant Displacement (EDR-3), Test No. NYJ-3

Figure H-23. Acceleration Severity Index (EDR-3), Test No. NYJ-3

END OF DOCUMENT