CRITICAL IMPACT POINTS FOR CRASH TESTING TRANSITIONS

Submitted by

Ronald K. Faller, Ph.D., P.E. Research Assistant Professor

Dean L. Sicking, Ph.D., P.E. Associate Professor and MwRSF Director

MIDWEST ROADSIDE SAFETY FACILITY

University of Nebraska-Lincoln 1901 "Y" Street, Building "C" Lincoln, Nebraska 68588-0601 (402) 472-6864

Submitted to

Charles F. McDevitt, P.E. Project Manager and Research Structural Engineer

FEDERAL HIGHWAY ADMINISTRATION

Turner-Fairbank Highway Research Center Safety Design Division (HSR-20) 6300 Georgetown Pike McLean, Virginia 22101-2296

MwRSF Research Report No. TRP-03-84-99

April 16, 1999

Technical Report Documentation Page

1. Report No.	2.	3. Recipient's Accession No.	
DTFH61-98-P-00287			
4. Title and Subtitle		5. Report Date	
Critical Impact Points For Crash	Testing Transitions	April 16, 1999	
		6.	
7. Author(s)		8. Performing Organization Re	port No.
Faller, R.K. and Sicking, D.L.		TRP-03-84-99	
9. Performing Organization Name and Address		10. Project/Task/Work Unit No).
Midwest Roadside Safety Facilit	ty (MwRSF)		
University of Nebraska-Lincoln		11. Contract © or Grant (G) No	2.
1901 Y St., Bldg. C Lincoln. NE 68588-0601		DTFH61-98-P-00287	7
12. Sponsoring Organization Name and Address	\$	13. Type of Report and Period	Covered
Federal Highway Administration	1	Draft Report 1998-19)99
Turner-Fairbank Highway Resea	nrch Center	14. Sponsoring Agency Code	
6300 Georgetown Pike))		
McLean, Virginia 22101-2296			
15. Supplementary Notes			
Prepared in cooperation with U.S	5. Department of Transporta	tion, Federal Highway	Administration
16. Abstract (Limit: 200 words)			
Two approach guardrail critical impact point (CIP) for eac the TL-3 impact conditions foun nested W-beam rail with attached beam system, the CIP was detern steel space tube. The second trans which was supported by steel wi beam system, the CIP was detern	transitions were modeled were system. The computer simed in NCHRP Report No. 350 d rubrail and was supported lenined to occur for an impact sition consisted of a nested the ide-flanged posts and includ mined to occur for an impact	with BARRIER VII in nulation modeling was 0 (2). The first transitio by steel wide-flanged p 1,905-mm upstream fra- nrie beam rail with a ba- ed a special post spaci between post nos. 1 a	order to determine the performed according to n system consisted of a bosts. For the nested W- om the centerline of the ckup steel tube member ng. For the nested thrie nd 2.
17. Document Analysis/Descriptors		18. Availability Statement	
, Highway Safety, Guardrail	Roadside Appurtenances	No restrictions. Doc	ument available from:
Longitudinal Barrier,	Computer Simulation,	National Technical Ir	nformation Services,
Approach Guardrail Transition	Barrier VII	Springfield, Virginia	22161
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	39	

DISCLAIMER STATEMENT

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

ACKNOWLEDGMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Federal Highway Administration for funding this research effort; and (2) Charlie McDevitt, P.E., Project Manager, for all his valuable input and support in supplying background information for this project.

TABLE OF CONTENTS

Page

TECHNICAL REPORT DOCUMENTATION PAGE
DISCLAIMER STATEMENT ii
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS
List of Tables
1 INTRODUCTION
1.1 Background
2 DESIGN DETAILS - NESTED W-BEAM TRANSITION
3 COMPUTER SIMULATION - NESTED W-BEAM TRANSITION 7
4 DESIGN DETAILS - NESTED THRIE BEAM TRANSITION
5 COMPUTER SIMULATION - NESTED THRIE BEAM TRANSITION 16
6 SUMMARY AND CONCLUSIONS
7 REFERENCES
8 APPENDICES 20
APPENDIX A - BARRIER VII COMPUTER MODELS - BARRIER AND VEHICLE 21
APPENDIX B - TYPICAL BARRIER VII INPUT DATA - NWRR5.DAT AND NWRR5M DAT 25
APPENDIX C - COMPUTER SIMULATION RESULTS - NESTED W-BEAM TRANSITION 30
APPENDIX D - BARRIER VII COMPUTER MODEL - BARRIER
APPENDIX F - COMPUTER SIMULATION RESULTS - NESTED THRIE BEAM TRANSITION

List of Figures

Page

1. Layout and Design Details for Nested W-Beam Transition	5
2. Design Details for Nested W-Beam Transition (Continued)	6
3. Layout and Design Details for Nested Thrie Beam Transition	0
4. Design Details for Nested Thrie Beam Transition (Continued)1	1
5. Design Details for Nested Thrie Beam Transition (Continued)	2
6. Design Details for Nested Thrie Beam Transition (Continued)	3
7. Post Details for Nested Thrie Beam Transition14	4
8. Concrete Buttress Details for Nested Thrie Beam Transition	5

List of Tables

C-1. Computer Simulation Test Matrix and Results for Nested W-Beam Transition without
Crushable Spacer Tube
C-2. Computer Simulation Test Matrix and Results for Nested W-Beam Transition with Crushable
Spacer Tube
F-1. Computer Simulation Test Matrix and Results for Nested Thrie Beam Transition with Backup
Tube Rail

1 INTRODUCTION

1.1 Background

Approach guardrail transitions are commonly used to provide structural continuity between a flexible guardrail system adjacent to the roadway and a rigid railing system located at the edge of a bridge deck. Typically, approach guardrail transitions are designed to incorporate a gradual increase in lateral stiffness in order to reduce the potential for an impacting vehicle to snag or pocket near the end of the bridge railing. In the past, the increase in lateral stiffness has been accomplished by incorporating one or more of several acceptable methods. Common methods for increasing the lateral stiffness include providing a reduced post spacing, lengthening the posts in order to increase embedment depth and post-soil forces, using thrie beam rail in place of W-beam rail, and nesting the guardrail beams. Rubrails, typically consisting of either a steel channel or W-beam rail placed below the main rail, also have been used to eliminate the potential for wheel snagging on the upstream end of a rigid bridge railing.

Since the mid-1980's, several research studies were conducted to develop, crash test, and evaluate transition designs that incorporated the common strengthening techniques. As a result of these crash test programs that were largely based on crash tests with passenger sedans, several transition designs were found to be acceptable according to the evaluation criteria found in the National Cooperative Highway Research Program (NCHRP) Report No. 230 *Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances* (1). These criteria required that the transition system perform acceptably when crash tested with a 2,041-lb sedan impacting at a speed of 96.56 km/hr and an angle of 25 degrees. The impact location for this crash test was specified to be 4,572-mm upstream from the second system or bridge railing.

In 1993, NCHRP published Report No. 350 *Recommended Procedures for the Safety Performance Evaluation of Highway Features* which included revised crash test procedures and evaluation criteria for approach guardrail transitions (2). Due to the recent increase in popularity of light trucks and sport utility vehicles, the sedan test vehicle was replaced with a ¾-ton pickup truck having a mass of 2,000 kg. Although the impact angle remained the same, the impact speed increased from 96.56 km/hr to 100 km/hr. In addition, the impact location is now to be determined as the predicted worst case location referred to as the critical impact point (CIP). General guidelines for determining CIP*s are provided in NCHRP 350 in the form of graphical charts and tables. However, it is recommended that the CIP be determined by performing computer simulation modeling of the specific approach guardrail transition system. The most common computer program used in the analysis and design of approach guardrail transitions is the 2-dimensional, dynamic nonlinear finite-clement code called BARRIER VII (3).

Following the adoption of the NCHRP 350 guidelines by the Federal Highway Administration (FHWA), State Highway Agencies will soon be required to use transition designs that meet NCHRP 350 safety standards. Therefore, existing transition designs previously crashed tested with sedans according to NCHRP 230 guidelines must be re-evaluated using pickup truck crash tests according to the new NCHRP 350 impact standards.

1.2 Objective

The objective of this research project was to determine the CIP for two approach guardrail transition designs that will be later crash tested using the Test Level 3 (TL-3) impact conditions of NCHRP 350. The first transition system, consisting of a nested W-beam upper rail and a lower rubrail, is supported by steel posts with a reduced post spacing. This transition design is attached to

a safety shape concrete bridge railing. The second transition system, consisting of a nested thrie beam rail and a backup steel tubel, is supported by steel posts with a special post spacing. This transition system is attached to a concrete buttress with a flared end section.

1.3 Scope

The scope of this project was completed by performing a series of computer simulation runs with BARRIER VII to identify the CIP along the length of each transition section. Finally, the simulation results were analyzed, evaluated, and documented.

2 DESIGN DETAILS - NESTED W-BEAM TRANSITION

The first transition system, shown in Figures 1 and 2, consisted of an upper rail and a lower rubrail in the transition region. The upper rail was constructed with nested, 12-gauge W-beam and single 12-gauge W-beam, while the lower rubrail was fabricated from two different rail sizes - a C152x12.2 channel rail and a special bent plate rail section. The guardrail in the transition region was supported by two sizes of wide-flange steel posts. Post nos. 1 and 2 were W203x19.3 by 2,286-mm long, while post nos. 3 through 9 were W152x13.4 by 1,981-mm long. The post spacing, starting at the upstream end of the concrete bridge railing, consisted of one at approximately 302 mm, four at 476 mm, and four at 952 mm. A schedule 40, 250-mm long structural steel spacer tube with a 168.3-mm outside diameter, was placed behind the nested W-beam rail and on the face of the concrete end section. The transition design was attached to a safety shape concrete bridge railing.

Figure 1. Layout and Design Details for Nested W-Beam Transition

S

Figure 2. Design Details for Nested W-Beam Transition (Continued)

6

3 COMPUTER SIMULATION - NESTED W-BEAM TRANSITION

3.1 Introduction

Computer simulation modeling with BARRIER VII (<u>3</u>) was performed to analyze and predict the dynamic performance of the approach guardrail transition systems prior to full-scale vehicle crash testing. Computer simulation was also used to determine the critical impact point (CIP) for the nested W-beam approach guardrail transition. Several simulations were conducted modeling a 2000kg pickup truck impacting at a speed of 100.0 km/hr and at an angle of 25 degrees. The BARRIER VII finite element models of the approach guardrail transition systems as well as the idealized finite element, 2-dimensional vehicle model for the pickup truck are shown in Appendix A. Typical computer simulation input data files for the nested W-beam transition system and pickup truck are shown in Appendix B.

3.2 Simulation Results

Fourteen computer simulation runs were performed on two configurations of the nested Wbeam approach guardrail transition, as shown in Tables C-1 and C-2 of Appendix C. The first seven runs were conducted using a rigid post support in place of the steel spacer tube. The last seven runs were performed using a flexible post support to represent the steel spacer tube. The simulation results indicated that the approach guardrail transition system would satisfactorily redirect the 2,000kg pickup truck. In addition, all structural hardware was predicted to remain functional during the vehicle impact with the approach guardrail transition system.

Following the analysis of the simulation results, the CIP was determined to occur for a pickup truck impacting 1,905-mm upstream of the centerline of the steel spacer tube. The maximum dynamic and permanent set deflections of the upper W-beam rail, as measured from the roadway

surface to the center of the rail, were 133 mm and 94, respectively. The maximum 0.010-sec average lateral and longitudinal decelerations were 13.6 and 13.3 g's, respectively. The peak 0.050-sec average impact force perpendicular to the approach guardrail transition was 282.1 kN. The pickup truck became parallel to the approach guardrail transition at 0.203 sec with a velocity of 75.4 km/hr. At 0.266 sec after impact, the pickup truck exited the approach guardrail transition with a velocity of 72.2 km/hr and at an angle of 5.0 degrees.

4 DESIGN DETAILS - NESTED THRIE BEAM TRANSITION

The second transition system, shown in Figures 3 through 8, consisted of a three beam rail and a special tube backup rail in the transition region. The corrugated rail was constructed with nested, 12-gauge three beam which was 3,810-mm long. The special backup rail, fabricated from 102-mm x 102-mm x 7.9-mm ASTM A500 Grade B structural steel tubing, was positioned between post no. 1 and the upstream end of the concrete buttress. Fabricated steel hardware was used at each end of the tube member to provide a rigid attachment. Timber blockouts were attached to the top and bottom surfaces of the tube member to allow for a timber spacer to be used to block the rail away from the tube at a location of 952-mm downstream of post no. 1. This timber spacer and backup tube rail combination was used to simulate a guardrail post in the span were a post could not be installed due to the existence of the bridge substructure. The guardrail in the transition region was supported by two sizes of wide-flange steel posts. Post nos. 1 and 2 were W152x37.2 by 2,591-mm long, while post nos. 3 through 6 were W152x22.3 by 2,134-mm long. The post spacing, starting at the upstream end of the concrete buttress, consisted of one at approximately 296 mm, four at 952 mm, and one at 1,905 mm. The transition design was attached to a concrete buttress which can be used with either safety shape, rectangular, or open concrete bridge railing systems.

Figure 4. Design Details for Nested Thrie Beam Transition (Continued)

12

ELEVATION VIEW

ELEVATION VIEW Figure 6. Design Details for Nested Thrie Beam Transition (Continued)

Figure 7. Post Details for Nested Thrie Beam Transition

Figure 8. Concrete Buttress Details for Nested Thrie Beam Transition

15

5 COMPUTER SIMULATION - NESTED THRIE BEAM TRANSITION

5.1 Introduction

Computer simulation modeling with BARRIER VII (<u>3</u>) was performed to analyze and predict the dynamic performance of the approach guardrail transition systems prior to full-scale vehicle crash testing. Computer simulation was also used to determine the critical impact point (CIP) for the nested thrie beam approach guardrail transition. Several simulations were conducted modeling a 2000-kg pickup truck impacting at a speed of 100.0 km/hr and at an angle of 25 degrees. The BARRIER VII finite element model of the approach guardrail transition system is shown in Appendix D. A typical computer simulation input data file for the nested thrie beam transition system and pickup truck are shown in Appendix E.

5.2 Simulation Results

Six computer simulation runs were performed on the nested thrie beam approach guardrail transition, as shown in Table F-1 of Appendix F. The simulation results indicated that the approach guardrail transition system would satisfactorily redirect the 2,000-kg pickup truck.

Following the analysis of the simulation results, the CIP was determined to occur for a pickup truck impacting 1,725-mm upstream of the tapered concrete end section or at the midspan location of post nos. 1 and 2. The maximum dynamic and permanent set deflections of the thrie beam rail, as measured from the roadway surface to the center of the rail, were 170 mm and 141, respectively. The maximum 0.010-sec average lateral and longitudinal decelerations were 12.5 and 13.3 g's, respectively. The peak 0.050-sec average impact force perpendicular to the approach guardrail transition was 133.8 kN. The pickup truck became parallel to the approach guardrail transition at 0.193 sec with a velocity of 67.8 km/hr. At 0.325 sec after impact, the pickup truck

exited the approach guardrail transition with a velocity of 64.9 km/hr and at an angle of 13.3 degrees.

6 SUMMARY AND CONCLUSIONS

Two approach guardrail transitions were modeled with BARRIER VII in order to determine the CIP for each system. The computer simulation modeling was performed according to the TL-3 impact conditions found in NCHRP Report No. 350 (2). For the nested W-beam system with attached rubrail, the CIP was determined to occur for an impact 1,905-mm upstream from the centerline of the steel space tube. For the nested thrie beam system with attached backup steel tube, the CIP was determined to occur for an impact between post nos. 1 and 2.

7 REFERENCES

- 1. Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances*, National Cooperative Highway Research Program (NCHRP) Report No. 230, Transportation Research Board, Washington, D.C., March 1981.
- 2. Ross, H.E., Sicking, D.L., Zimmer, R.A. and Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Research Program (NCHRP) Report No. 350, Transportation Research Board, Washington, D.C., 1993.
- 3. Powell, G.H., *BARRIER VII: A Computer Program For Evaluation of Automobile Barrier Systems*, Prepared for: Federal Highway Administration, Report No. FHWA RD-73-51, April 1973.

8 APPENDICES

APPENDIX A

BARRIER VII COMPUTER MODELS - BARRIER AND VEHICLE

Room Man Lais T age						-			-			-			2			-			-					
seam memoer types	1			I.		2			2			2			2			2			2				3	
Post Member Numbers	6					G			G			G			8	,		0						(73	(
Post Locations(in.)	0			75		150			225			300			375	5		450			525	7			600	6
	43				12-0	Sauge Li	-Beam	1.0"					{				12-	-Gauge	ε W-	Beam	0"				4	Ac
	1				TSpace	5 @ 6 - 3	= 25	-0				1					space	3 6 8	5 =		0				1	7
Actual Post Numbers	17			16		15			14 T			13			12			11 			10 T				9	
	2	•	-	<u> </u>		<u> </u>			<u> </u>		•	<u> </u>		•	<u> </u>		•	- ċ		•	- ċ		•		<u> </u>	•
																				į.						
Node Numbers	1	2		3	4	5		6	7		8	9		10	11		12	13		14	15		16		17	18
													×													
Prove the law all laws		^	(A		A	0		A	4	2	0				,	6	Ø		(•		6
sean member numbers		U	Q		3	9	9	6		Ψ			U.		U)	W	(,	Ð	(J)			Ø	6
2							·						÷					() .								
Seam Member Types		1	ł		1	1	1	1		I		1	1		I	1		1	ł		1	I		l	Z	z

.

APPENDIX B

TYPICAL BARRIER VII INPUT DATA - NWRR5.DAT AND NWRR5M.DAT

TRANSIT	ION TO	SAFETY	SHAPE	- NW	RR5.D	AT -	12-GA	. NEST	ED W	V-BEAM	RAILS	5 W/	CHANNEL	AND	BENT	PLATE	RUBRAI	LS	(NODE	37/38)
0.0	0001	0.0001	5	0.50	300	ő		1.0	1												
0.0 1 1 3 5 7 9 1 3 5 7 8 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 7 9 1 3 5 7 7 8 5 7 7 8 1 3 5 7 7 8 5 7 7 8 1 5 7 7 8 1 5 7 7 8 1 5 7 8 1 5 7 8 5 7 8 5 7 8 5 7 8 1 5 7 8 1 7 7 8 1 5 7 8 1 5 7 8 1 1 5 7 8 5 7 7 8 1 3 8 5 7 8 1 5 7 8 1 5 7 8 1 5 7 8 1 5 7 8 1 5 7 8 1 5 7 8 1 5 7 8 1 5 7 8 1 8 1 5 7 8 1 8 1 5 7 8 1 5 7 8 1 8 1 7 8 1 8 1 5 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	0001 500 75. 150. 225. 300. 375. 525. 600. 525. 600. 677. 675. 712. 712. 750. 750. 768. 768. 768. 768. 768. 806. 825. 806. 825. 825. 843. 900.	0.0001 5.0 00 00 00 00 00 00 00 00 00	50.00 0.0	0.50	300 1	0		1.0	1												
6613579113179122337159364826041 113579122337159364826041 115579122337159364826041	900. 3579113579113579122337159354826046538460465566453	00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0			51	40	47													
65 45 25	63 43 24	61 59 41 39 23 22	57 37 21	55 35 20	53 33 19	51 31 18	49 29 17	47 27 16													
15	14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 1	10	9	8	7	6													
66	13 64 44	62 60 42	58	56	54	52	50	48													
100 1 2 3 4 5 6	6 2. 2. 4. 1. 0.6	30 30 30 60 42 93	$1.99 \\ 1.99 \\ 1.99 \\ 3.98 \\ 1.58 \\ 2.40$	3 1 9 9 9 9	7.50 8.75 .375 .375 .375 .375 .375	300 300 300 300 300 300 300	$\begin{array}{c} 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0 \end{array}$	1	5.92 5.92 5.92 3.84 5.4 8.2	1	99.5 99.5 99.5 99.0 5.0 5.0	1 2 1	68.5 0. 68.5 0. 68.5 0. 137.0 0. 23.15 0.	10 10 10 10 10	12-Ga 12-Ga 12-Ga Neste Bent C6x8.	uge W- uge W- uge W- d 12-G Plate 2 Chan	Beam Ra Beam Ra Beam Ra auge W Rubrai nel Ra	ail ail -Bea l (F il (m Rai y=56.9 Fy=86] 9k) .4k)	
300 1	21.	65	0.0	2 0	00.00	2 0	00.0	2	50.0	100	00.0	100	000.0 0.	10	Stron	g Post	Ancho	r			
2	21.	65	0.0	16.0	4.00	16.0	5.00		54.0	9	2.88	27	0.62 0.	10	W6x9x	6' Pos	t (43.	3" e	mbedm	ent de	epth)
3	21.	65 15.0	0.0	16.0	4.00	16.0	5.00	3	54.0	9	2.88	33	36.42 0.	10	W6x9x	6.5' P	ost (49	9.4"	embe	dment	depth)
4	21. 8.0	65 20.0	9.06	16.0	4.00	16.0	5.00		58.5	9	2.88	33	36.42 0.	10	W6x9x	b.5' P	ost (4	9.4"	embe	ament	depth)
5	21.	65 30.0	9.06	16.0	8.00	16.0	8.00		97.5	11	6.10	100	00.00	10	W8x13	Rost	rost (irec	emp	eament	. depth
6 20	21. 00.0	65 200.0	9.06	2.0	0.50	2.0	00.0	2	50.0	100	5.0	100		10	stron	POST	Ancho	r	cron (Jury	
7	21.	65 200.0	9.06	2.0^{10}	0.00	2.0^{10}	00.0	2	50.0	100	00.0	100	.00.0 0.	10	scion	y rost	Anchu				

1 7 225 29 45 7 65 7 76 67 776 80 82 83 400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 20 24 28 44 56 64 66 72 75 77 79 81	1 1 2 2 2 2 2 2 2 2 2 2 8 4 4	101 102 103 103 104 105 106 301 302 303 304 304 304 305 306 307 6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$		$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
4123456123456789011234567890123413	0.055 0.057 0.062 0.110 0.35 1.45 100.75 100.75 100.75 100.75 64.75 52.75 64.75 64.75 -13.25 -33.25 -73.25 -93.25 -113.25 -113.25 -113.25 -62.75 69.25 -62.75 -63.75	15 27 39 39 39 39 39 39 39 39 39 39 39 39 39	0.125 0.115 0.118 0.355 1.505 1	6.00 7.00 10.00 12.00 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 12.0 12.0 10.0 12.0 10.0 10.0 10.0 0 0 0 0 0 0 0 0 0 0	17.0 18.0 12.0 6.0 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	000000000000000000000000000000000000000	0.0		1.0	

TRANS	SITION	TO SAFE	TY S	SHAPE 83	- NW	RR5M.	DAT -	12-GA	. NE	STED	W-BEAM	RAILS	W/	CHANNEL	AND	BENT	PLATE	RUBR	AILS	(NODE	37/38)	
(0.0001	0.00	01	5	0.50	300	ŏ		1.0	1												
	L 5 3 7 3 15 1 222 3 0 3 0 3 0 3 0 3 0 3 0 5 15 5 7 15	0.0 25.00 20.0	2		2	T																
	3 5 7 9 1 13 5 7 9 1 13 15 5 17 9 1 13 15 5 17 9 1 25 33 7 1 45 5 3 37 1 45 5 3 38 37 1 45 5 37 1 45 5 37 1 45 5 37 1 45 5 37 1 45 5 37 1 45 5 37 1 45 5 37 1 45 5 37 1 45 5 37 1 45 5 37 1 45 5 37 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1		111111111111222222222222222222222222222	57			51	40	47													
42	43	41 23	39 39 22	37 37 21	35	33 19	31 18	29 17	27 16													
T	$ \begin{array}{ccc} 14 \\ 5 & 4 \\ 7 & 13 \end{array} $	3	2	1	10	9	0	1	0													
60	64 64 44	62 42	60	58	56	54	52	50	48													
100		2.30 2.30 2.30 4.60 1.42 0.693	 A strategy at each 	1.99 1.99 1.99 3.98 1.58 2.40	3 1 9 9 9	7.50 8.75 .375 .375 .375 .375 .375	3000 3000 3000 3000 3000 3000	$\begin{array}{c} 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0\\ 00.0 \end{array}$	1	6.92 6.92 6.92 3.84 5.4 8.2	9 9 19 19	9.5 9.5 9.0 5.0 5.0	6 6 13 23 17	$\begin{array}{c} 8.5 & 0.1 \\ 8.5 & 0.1 \\ 8.5 & 0.1 \\ 7.0 & 0.1 \\ 15 & 0.1 \\ 15 & 0.1 \\ 7.71 & 0.1 \end{array}$	0 1 0 1 0 1 0 N 0 B 0 C	2-Gau 2-Gau 2-Gau ested ent P 6x8.2	ge W-B ge W-B 12-Ga late R Chann	eam R eam R eam R uge W ubrai el Ra	ail ail Bear (Fy il (i	n Rail y=56.9 Fy=86.4	k) 4k)	
300	200.0	21.65	.0	0.0	10 2.0	00.0	100 2.0	00.0	2	50.0	1000	0 0	1000	0.0 0.1	0 S	trong	Post	Ancho	r			
2	6.p	21.65	.0	0.0	16.0	4.00	16.0	5.00		54.0	92	.88	270	.62 0.1	0 W	6x9x6	· Post	43.3	em	oedmen	t depth	
3	8.0	1.65	.0	0.0	16.0	4.00	16.0	5.00		58.5	92	.88	336	.42 0.1	0 w	6x9x6	.5 PO	st 49	.4"	embedm	ent depth	
2	8.0	20	.0	9.06	16.0	4.00	16.0	8.00		97.5	116	.10	553	1.59 0.1	0 w	8x13x	7.5' P	ost 6	1.5"	embedi	ment depth	
	10.0	30	.0	9.06	16.0	0.50	16.0	1.88	1	.89.7	110	5.0	236	.85 0.1	0 C	rusha	ble Pi	pe Po	st Y	-Direc	tion Only	
1	200.0	200	.0	9.06	2.0 10	00.0	6.0	00.0	2	50.0	1000	0.0	1000	0.0 0.1	0 S	trong	Post	Ancho	r			
	200.0	200	. U		2.0		4.0															

1 17 225 229 457 667 736 780 823 440 123 456 123 456 123 456 123	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 1 20 1 24 1 28 2 44 2 56 2 66 2 75 2 75 2 77 8 79 4 81 4 00.0 20 0.12 0.15 0.15 0.45 1.50 1.50 15.875 39.875	$ \begin{array}{c} 101\\ 102\\ 103\\ 103\\ 104\\ 105\\ 106\\ 301\\ 302\\ 303\\ 304\\ 305\\ 306\\ 307\\ 6\\ 4\\ 6.00\\ 7.00\\ 10.00\\ 12.00\\ 6.00\\ 15.00\\ 1\\ 2 \end{array} $	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	0 0 0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.
4 5 6 7 8 9 10 11 23 4 15 6 7 8 9 10 11 23 4 1 3	$\begin{array}{c} 88.75\\ 88.75\\ 76.75\\ 64.75\\ 52.75\\ 40.75\\ 28.75\\ 16.75\\ -13.25\\ -33.25\\ -33.25\\ -73.25\\ -93.25\\ -113.25\\ 100.75\\ 69.25\\ 69.25\\ 69.25\\ 69.25\\ 69.25\\ 69.25\\ -62.75\\ 69.25\\ -62.75\\ 0.0\\ 768.75\end{array}$	39.875 30.875 30.875 30.875 30.875 30.875 30.875 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.75 30.00000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 1 \\ 12.0 & 0 \\ 12.0 & 0 \\ 1.0 & 1 \\ 1.0 & 1 \\ 1.0 & 1 \\ 1.0 & 1 \\ 1.0 & 1 \\ 1.0 & 1 \\ 1.0 & 1 \\ 608. \\ 608. \\ 492. \\ 62.14 \end{array}$	000000000000000000000000000000000000000	0.0		1.0	

0 0

APPENDIX C

COMPUTER SIMULATION RESULTS - NESTED W-BEAM TRANSITION

Test No.	Impact Node	Impact Distance ¹	Maximum W-Beam	Maximum W-Beam	Maximum W-Beam	W-Beam I Node 3	Deflection WI Near W-Bean	nen Vehicle 1 Node 53	Transition Posts	Remarks
		(in.)	Dynamic Deflection (in.)	Permanent Set Deflection (in.)	Tension (kips)	δ (in.) Node 51	δ (in.) Node 53	Net δ (in.) ²	Removed During Simulation	
NWRR1	29 30	112.50	7.25	3.89	83.86	NA	NA	NA	No	Ty=5 ^k rubrail. Rigid support post used.
NWRR2	31/32	103.125	6.20	3.13	75.09	NA	NA	NA	No	Ty=5 ^k rubrail. Rigid support post used.
NWRR3	33 34	93.75	5.53	2.61	67.29	1.40	0.01	1.39	No	Ty=5 ^k rubrail. Rigid support post used.
NŴRR4	35/36	84.375	4.76	2.50	61.94	1.75	0.05	1.70	No	Ty=5 ^k rubrail. Rigid support post used.
NWRR5 ³	37/38	75.00	4.24	2.18	54.59	1.81	0.06	1.75	No	Ty=5 ^k rubrail. Rigid support post used.
NWRR6	39 40	65.625	3.41	1.60	38.66	1.76	0.06	1.70	No	Ty=5 ^k rubrail. Rigid support post used.
NWRR7	41/42	56.25	2.68	1.44	29.08	1.55	0.07	1.48	No	Ty=5 ^k rubrail. Rigid support post used.

Table C-1. Computer Simulation Test Matrix and Results for Nested W-Beam Transition without Crushable Spacer Tube

¹- Longitudinal distance measured from impact location to centerline of steel space tube.

Relative net difference in W-beam displacement between rail nodes 51 and 53 is used to help predict pocketing or snagging when vehicle node 3 reaches rail node 53.

³ - Assumed critical impact point (CIP).

31

Test No.	Impact Node	Impact Distance ¹ (in.)	Maximum W-Beam Dynamic Deflection	Maximum W-Beam Permanent Set	Maximum W-Beam Tension	W-Bea Vehicle N	m Deflection Node 3 Near V Node 53	When W-Beam	Transition Posts Removed	Remarks
			Deflection (in.)	Deflection (in.)	(kips)	δ (in.) @ Node 51	δ (in.) @ Node 53	$ Net \\ \delta (in.)^2 $	During Simulation	
NWRRM1	29/30	112.50	7.27	4.02	80.99	NA	NA	NA	No	Ty=5 ^k rubrail. Crushable support post used.
NWRRM2	31/32	103.125	6.23	3.34	70.72	NA	NA	NA	No	Ty=5 ^k rubrail. Crushable support post used.
NWRRM3	33/34	93.75	5.62	2.93	57.84	NA	NA	NA	No	Ty=5 ^k rubrail. Crushable support post used.
NWRRM4	35/36	84.375	5.28	3.20	48.75	4.42	3.47	0.95	No	Ty=5 ^k rubrail. Crushable support post used.
NWRRM5 ³	37/38	75.00	5.23	3.69	50.96	5.20	4.48	0.72	No	Ty=5 ^k rubrail. Crushable support post used.
NWRRM6	39/40	65.625	5.69	4.77	74.75	5.43	4.96	0.47	No	Ty=5 ^k rubrail. Crushable support post used.
NWRRM7 ⁴	41/42	56.25	7.17	4.11	117.39	5.34	5.30	0.04	Yes	Ty=5 ^k rubrail. Crushable support post used.

Table C-2. Computer Simulation Test Matrix and Results for Nested W-Beam Transition with Crushable Spacer	Tut	ibe
---	-----	-----

¹- Longitudinal distance measured from impact location to centerline of steel space tube.

² - Relative net difference in W-beam displacement between rail nodes 51 and 53 is used to help predict pocketing or snagging when vehicle node 3 reaches rail node 53.

³ - Assumed critical impact point (CIP).

⁴ - During simulation no. NWRRM7, the support post was removed from the model. This occurred after the dynamic rail deflection at node 53 exceeded the post deflection limit of 6 in. which was based on the available crush distance of the steel spacer tube. However, the model was not revised since the post deflection limit was not exceeded in the previous simulation runs.

32

APPENDIX D

BARRIER VII COMPUTER MODEL - BARRIER

NEBRA	SKA TR	ANSITIC	DN DEVEL	OPMENT	=					FHWA Project -	Revised 8/4/97 Revised 11/10/97 - Revised 4/5/99
										Version B*	Revised 4/7/99
<i>6</i> "	75"	150"	225 ["]	300"	375 ⁿ	4 <i>5</i> 0"	525 ¹¹	88 	675"	712.50" 750" - 787 ,5 '! - 800 '!	= 10 Post Location
I.	12- 6 24	C. U. Bassa				12-6-2448	6×15	6×15 6	X15 GXE Cauge m to Beam	5 6x25 6x25	
Y	28	S'-O"Long	Ŧ		· - ·	25-0	"Long_	Sech	Thong T	Thrie Beam 121-6"Lon	
<u> </u>			, <u>₽</u>			!		<u> </u>		20 24 38 4	Buttwess
1 2	3 4	4 5 I	678	39.	וו סו	Z 13	14 15	18 17 18 1	9 20 ZI Zi	23 25 27 29 33 37 41 2 24 26 28 31 35 89	44 Node Nu upper Rail (Th
Ø	Q 3	&	Ø D	B (1)	@ 0	© 3	® (b)	6 6 6	(9) (2)	ර්ග කිරී ගත කර කර කර කර කර කර කර කර	BB Beam Me u.R. Numb L.R.
ł	I 1	1 1	1 1	τ 1	1 1	I I	1 1	123	4 5 6	66 6 <u>6 666666666</u> 77 7 788	66 U.R. Boom Mer L.R. Type
Ð	图	ß	86	5 7	圈	A	52	s e			Post Men Numb
1	1	2	2	Z	2	2	3	з .	4 5	6 7 A	Post Men Type

APPENDIX E

TYPICAL BARRIER VII INPUT DATA - NEBT2RUN1B2N.DAT

NEBRAS 44 0.0	KA'S 20 0001	TRANS 16 0.0	1TIO 2 00001	N ТО 58	CONCF 22 0.60	RETE 2 6000	3UTTR 2)	ESS V O O	WITH	1 BACH	KUP F	RAIL	& NEST	ED T	THRIE	– Run	1 1B2N @ Node 27 - Version B Extra Post/Z
10 1 3	50 7	50 0.0 5.00	50	50 0.0 0.0	50) 10)										
5 7 9	15 22 30	0.00 5.00 0.00		$0.0 \\ 0.0 \\ 0.0$													
11 13 15	37 45 52	5.00 0.00 5.00		$0.0 \\ 0.0 \\ 0.0$													
17 19 21	60 63 67	0.00		$0.0 \\ 0.0 \\ 0.0$													
25 29 30	71 75 75	2.50		$0.0 \\ 0.0 \\ 0.0$													
37 38 41	78 78 80	7.50		$0.0 \\ 0.0 \\ 0.0$													
42 43 44	80 815 82	0.00 .625 5.00		$0.0 \\ 0.0 \\ 0.0$													
1 3 5	3 5 7	1 1 1	1 1 1		0.0)))											
7 9 11	9 11 13	1 1 1	1 1 1		0.0 0.0 0.0												
13 15 17	15 17 19	1 1 1	1 1 1		$0.0 \\ 0.0 \\ 0.0 \\ 0.0$												
19 21 25	21 25 29	1 3 3	1 1 1		$0.0 \\ 0.0 \\ 0.0$,
29 37 30	37 41 38	3 1 3	2 2 2		$0.0 \\ 0.0 \\ 0.0$												
38 1 44	42 37 43	1 41	2 0.35 39	37	0.0 35	33	3	12	29	28							
27 17 7	26 16 6	25 15 5	24 14 4	23 13 3	22 12 2	21 11 1	. 2 . 1	0 1 0	9 9	18 8							
2 42 100	7 40 8	38	0.35 36	34	32	30							00.5		60 F	0 10	
1 2 3	2	2.30 .475 2.84	2	1.99 2.125 2.40		37.50 18.75 18.75	3	0000. 0000. 0000.	0000	7. 8.	.92 405 375	1	99.5 06.25 120.0		68.5 73.75 84.0	$0.10 \\ 0.10 \\ 0.10$	
4 5 6	3	.205 .575 7.52		2.68 2.96 6.20		18.75 18.75 9.375	3	0000. 0000. 0000.	0000	10. 21	.35 325 .62		134.0 148.0 310.0	1	94.0 04.25 219.0	$0.10 \\ 0.10 \\ 0.10$	
7 8 300	10	9.58 9.58		4.79 4.79		9.375 6.25	31	0000. 0000.	0 0	1	.83		$1.0 \\ 1.0$		$1.56 \\ 1.56$	$0.10 \\ 0.10$	TS 4x4x5/16 Backup Rail (Zero Strength) TS 4x4x5/16 Backup Rail (Zero Strength)
1	2:	1.65 20	00.0	0.0	1 2.0	000.0	2.	1000. 0 2 4	0	25	0.0	1	96.6	1	000.0 55.57	0.10	Simulated Upstream Anchor W6x9 Steel Post
3	6.0	1.65	15.0	0.0	16.0	8.00	16.	8.0	00	9	7.5		256.5	4	95.78	0.10	W6x15 Steel Post
4	15.0 21	1.65	30.0	0.0	16.0	8.00	16.	0 8.0	0	10	5.0		256.5	5	80.87	0.10	W6x15 Steel Post
5	15.0 21	1.65	30.0	0.0	16.0	8.00	16.	8.0	0	10	5.0		256.5	5	39.52	0.10	W6x15 Steel Post
6	21	1.65	50.0	0.0	16.0	8.00	16.	8.0	00	21	2.5	4	62.24	9	84.21	0.10	W6x25 Steel Post
7 _	20.0	1.65	55.0 55.0	21.00	16.0	8.00	10.	8.0	00	21	2.5	4	62.24	9	84.21	0.10	W6x25 Steel Post
8	20.0	1.65	35.0	0.0	10.0	196.0	10.	ີ 196.	0	10	0.0		.20.0	6	26.77	0.10	Simulated Midspan Post
9	22	1.00	0.0	0.0	2	000.0	1.	2000.	0	50	0.0	2	500.0	2	500.0	0.10	Simulated Downstream Anchor
10	21	1.65	0.00	0.0	2	000.0	1.	2000.	0	50	0.0	2	500.0	2	500.0	0.10	Simulated Downstream Anchor
1 17	1 17	2 18	16	1 1	101 102		0.0))		$0.0 \\ 0.0$		$0.0 \\ 0.0$					
$\begin{array}{c} 18\\19\end{array}$	$\frac{18}{19}$	19 20		$\begin{array}{c} 1\\ 1\end{array}$	$\begin{array}{c} 103 \\ 104 \end{array}$		0.0	2		0.0		0.0					
20 21	20 21	21 22	28	$\begin{array}{c} 1 \\ 1 \end{array}$	$ \frac{105}{106} $		0.0)		$0.0 \\ 0.0 \\ 0.0$		0.0					
29 33	29 37	31 39	32 34	2 2	$106 \\ 106$		0.0)		$0.0 \\ 0.0 \\ 0.0$		0.0					
35	41 43	43			106		0.0	5		0.0		0.0					

37 41 43 50 52 53 54	30 32 38 40 1 5 15 19 21 25 20	40 2 42 2 44 2 49 2 51 2	107 108 301 302 303 304 305 306	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$		$0.0 \\ 0.0 $		0.0
55 57 58 44(1 2	29 50 37 42 44 00.0 400 0.055 0.057	000.0 20 0.12 0.15	308 309 310 6 4 6.00 7.00	0.0 0.0 0.0 17.0 18.0	0.0 0.0 0.0		0.0 0.0 0.0		0.0 0.0 0.0		0.0
34561234567	$\begin{array}{c} 0.062\\ 0.110\\ 0.35\\ 1.45\\ 100.75\\ 100.75\\ 100.75\\ 100.75\\ 88.75\\ 76.75\\ 64.75\\ 52.75\\ $	0.18 0.35 0.45 1.50 15.875 39.875 39.875 39.875 39.875 39.875	10.00 12.00 6.00 15.00 1 2 2 2 2	$ \begin{array}{c} 12.0\\ 12.0$		000000000000000000000000000000000000000					
8 9 10 11 12 13 14 15 16 17	40.75 28.75 16.75 -13.25 -33.25 -53.25 -93.25 -113.25 -113.25	39.875 39.875 39.875 39.875 39.875 39.875 39.875 39.875 39.875 39.875 -39.875	2 2 2 3 3 3 3 3 4 4	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0		000000000000000000000000000000000000000	000000000000000000000000000000000000000				
18 19 20 1 2 3 4 1 3	100.75 69.25 -62.75 69.25 -62.75 -62.75 -62.75 0.0 731.250	-39.875 37.75 32.75 -32.75 -2.75 -32.75 -32.75 -32.75 0.0 0.0	1 5 6 0.0 0.0 0.0 0.0 25.0	12.0 (1.0 1 1.0 5 608 608 492 492 62.14		000	000	0.0		1.0	

APPENDIX F

COMPUTER SIMULATION RESULTS - NESTED THRIE BEAM TRANSITION

Test No.	Impact Node	Impact Distance ¹	Maximum Thrie Beam	Maximum Thrie Beam	Maximum Thrie Beam	Wheel Snag Potential On Concrete End Section ²				
		(in.)	Dynamic Deflection (in.)	Permanent Set Deflection (in.)	Tension (kips)	δ (in.) Steel Rim Lateral Distance	δ (in.) Rubber Tire Lateral Distance	Snag (Y/N)		
NEBT2RUN6B2	25	87.50	6.23	5.31	99.42	4.25	5.05	N		
NEBT2RUN5B2	26	78.125	6.73	5.57	122.97	5.48	6.05	N		
NEBT2RUN1B2	27	68.75	6.71	5.54	138.16	6.06	6.26	N		
NEBT2RUN2B2	28	59.375	6.19	5.52	135.42	5.97	5.73	N		
NEBT2RUN3B2	2,9	50.00	6.07	5.42	130.13	5.43	4.25	N		
NEBT2RUN4B2	31	40.625	5.41	5.10	120.06	3.84	2.05	N		

Table F-1. Computer Simulation Test Matrix and Results for Nested Thrie Beam Transition with Backup Tube Rail

¹ - Longitudinal distance measured from impact location to upstream end of tapered concrete end section.
 ² - The upstream end of the tapered concrete end section is positioned approximately 8 in. away from the front face of the concrete buttress.